Metabolomic Hallmarks of Obesity and Metabolic Dysfunction-Associated Steatotic Liver Disease
Abstract
:1. Introduction
2. Metabolomics
2.1. Introduction
2.2. Metabolomics of Obesity
2.2.1. Metabolomics of Obesity in Experimental Animals
2.2.2. Metabolomics of Obesity in Humans
Metabolomics of Obesity in Adults
Metabolomics of Obesity in Adolescents
Metabolomics of Obesity in Children
2.2.3. Metabolomic Patterns of Obesity
2.2.4. The Metabolomic Hallmarks of Obesity Preeminent in the Circulation
- Lysophosphatidylcholines (LPC)
- Acylcarnitines
- Essential amino acids
- Nonessential amino acids
- Energy metabolites
- Gut microbiota metabolites
2.3. The Metabolomics of MASLD
2.3.1. Metabolomics of MASLD in Humans
2.3.2. Metabolomics of MASLD in Experimental Animals
2.3.3. The Metabolomic Hallmarks of MASLD Preeminent in the Circulation
- Energy metabolites
- Essential amino acids
- Nonessential amino acids
- Fatty acids
- Bile acids
2.3.4. Comparison of the Obesity and MASLD Hallmarks
2.4. Key Unanswered Questions and Potential Future Directions
3. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Nasa, P.; Jain, R.; Juneja, D. Delphi methodology in healthcare research: How to decide its appropriateness. World J. Methodol. 2021, 11, 116–129. [Google Scholar] [CrossRef] [PubMed]
- Rinella, M.E.; Lazarus, J.V.; Ratziu, V.; Francque, S.M.; Sanyal, A.J.; Kanwal, F.; Romero, D.; Abdelmalek, M.F.; Anstee, Q.M.; Arab, J.P.; et al. A multisociety Delphi consensus statement on new fatty liver disease nomenclature. J. Hepatol. 2023, 79, 1542–1556. [Google Scholar] [CrossRef] [PubMed]
- Eslam, M.; Newsome, P.N.; Sarin, S.K.; Anstee, Q.M.; Targher, G.; Romero-Gomez, M.; Zelber-Sagi, S.; Wai-Sun Wong, V.; Dufour, J.F.; Schattenberg, J.M.; et al. A new definition for metabolic dysfunction-associated fatty liver disease: An international expert consensus statement. J. Hepatol. 2020, 73, 202–209. [Google Scholar] [CrossRef] [PubMed]
- Eslam, M.; Sanyal, A.J.; George, J.; International Consensus, P. MAFLD: A Consensus-Driven Proposed Nomenclature for Metabolic Associated Fatty Liver Disease. Gastroenterology 2020, 158, 1999–2014.e1. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Zhang, L.; Dong, B. Molecular mechanisms in MASLD/MASH-related HCC. Hepatology 2024, 10, 1097. [Google Scholar] [CrossRef]
- Riazi, K.; Azhari, H.; Charette, J.H.; Underwood, F.E.; King, J.A.; Afshar, E.E.; Swain, M.G.; Congly, S.E.; Kaplan, G.G.; Shaheen, A.A. The prevalence and incidence of NAFLD worldwide: A systematic review and meta-analysis. Lancet Gastroenterol. Hepatol. 2022, 7, 851–861. [Google Scholar] [CrossRef]
- Miao, L.; Targher, G.; Byrne, C.D.; Cao, Y.Y.; Zheng, M.H. Current status and future trends of the global burden of MASLD. Trends Endocrinol. Metab. 2024, 35, 697–707. [Google Scholar] [CrossRef]
- Jarvis, H.; Craig, D.; Barker, R.; Spiers, G.; Stow, D.; Anstee, Q.M.; Hanratty, B. Metabolic risk factors and incident advanced liver disease in non-alcoholic fatty liver disease (NAFLD): A systematic review and meta-analysis of population-based observational studies. PLoS Med. 2020, 17, e1003100. [Google Scholar] [CrossRef]
- Younossi, Z.M.; Golabi, P.; de Avila, L.; Paik, J.M.; Srishord, M.; Fukui, N.; Qiu, Y.; Burns, L.; Afendy, A.; Nader, F. The global epidemiology of NAFLD and NASH in patients with type 2 diabetes: A systematic review and meta-analysis. J. Hepatol. 2019, 71, 793–801. [Google Scholar] [CrossRef]
- Yki-Jarvinen, H. Non-alcoholic fatty liver disease as a cause and a consequence of metabolic syndrome. Lancet Diabetes Endocrinol. 2014, 2, 901–910. [Google Scholar] [CrossRef]
- Wu, X.; Cheung, C.K.Y.; Ye, D.; Chakrabarti, S.; Mahajan, H.; Yan, S.; Song, E.; Yang, W.; Lee, C.H.; Lam, K.S.L.; et al. Serum Thrombospondin-2 Levels Are Closely Associated With the Severity of Metabolic Syndrome and Metabolic Associated Fatty Liver Disease. J. Clin. Endocrinol. Metab. 2022, 107, e3230–e3240. [Google Scholar] [CrossRef] [PubMed]
- Nasereldin, D.S.; White, L.J.; Hodge, D.O.; Roberts, L.R.; Patel, T.; Antwi, S.O. Association of metabolic health phenotypes, obesity, and hepatocellular carcinoma risk. Dig. Liver Dis. 2022, 54, 964–972. [Google Scholar] [CrossRef] [PubMed]
- Alkhouri, N.; Almomani, A.; Le, P.; Payne, J.Y.; Asaad, I.; Polanco, P.; Leff, P.; Kumar, P.; Noureddin, M. The prevalence of metabolic dysfunction-associated steatotic liver disease (MASLD)-related advanced fibrosis and cirrhosis in the United States population utilizing AGILE 3 + and AGILE 4 scores: Analysis of the NHANES 2017-2018 cycle. BMC Gastroenterol. 2024, 24, 218. [Google Scholar] [CrossRef] [PubMed]
- Miyao, M.; Kotani, H.; Ishida, T.; Kawai, C.; Manabe, S.; Abiru, H.; Tamaki, K. Pivotal role of liver sinusoidal endothelial cells in NAFLD/NASH progression. Lab. Investig. 2015, 95, 1130–1144. [Google Scholar] [CrossRef]
- Adams, J.C.; Lawler, J. The thrombospondins. Cold Spring Harb. Perspect. Biol. 2011, 3, a009712. [Google Scholar] [CrossRef]
- Hutchison, A.L.; Tavaglione, F.; Romeo, S.; Charlton, M. Endocrine aspects of metabolic dysfunction-associated steatotic liver disease (MASLD): Beyond insulin resistance. J. Hepatol. 2023, 79, 1524–1541. [Google Scholar] [CrossRef]
- De Chiara, F.; Heeboll, S.; Marrone, G.; Montoliu, C.; Hamilton-Dutoit, S.; Ferrandez, A.; Andreola, F.; Rombouts, K.; Gronbaek, H.; Felipo, V.; et al. Urea cycle dysregulation in non-alcoholic fatty liver disease. J. Hepatol. 2018, 69, 905–915. [Google Scholar] [CrossRef]
- Mercado-Gomez, M.; Goikoetxea-Usandizaga, N.; Kerbert, A.J.C.; Gracianteparaluceta, L.U.; Serrano-Macia, M.; Lachiondo-Ortega, S.; Rodriguez-Agudo, R.; Gil-Pitarch, C.; Simon, J.; Gonzalez-Recio, I.; et al. The lipopolysaccharide-TLR4 axis regulates hepatic glutaminase 1 expression promoting liver ammonia build-up as steatotic liver disease progresses to steatohepatitis. Metabolism 2024, 158, 155952. [Google Scholar] [CrossRef]
- Avila-Calderon, E.D.; Ruiz-Palma, M.D.S.; Aguilera-Arreola, M.G.; Velazquez-Guadarrama, N.; Ruiz, E.A.; Gomez-Lunar, Z.; Witonsky, S.; Contreras-Rodriguez, A. Outer Membrane Vesicles of Gram-Negative Bacteria: An Outlook on Biogenesis. Front. Microbiol. 2021, 12, 557902. [Google Scholar] [CrossRef]
- Vaure, C.; Liu, Y. A comparative review of toll-like receptor 4 expression and functionality in different animal species. Front. Immunol. 2014, 5, 316. [Google Scholar] [CrossRef]
- Guo, J.; Friedman, S.L. Toll-like receptor 4 signaling in liver injury and hepatic fibrogenesis. Fibrogenesis Tissue Repair. 2010, 3, 21. [Google Scholar] [CrossRef] [PubMed]
- Gallage, S.; Ali, A.; Barragan Avila, J.E.; Seymen, N.; Ramadori, P.; Joerke, V.; Zizmare, L.; Aicher, D.; Gopalsamy, I.K.; Fong, W.; et al. A 5:2 intermittent fasting regimen ameliorates NASH and fibrosis and blunts HCC development via hepatic PPARalpha and PCK1. Cell Metab. 2024, 36, 1371–1393.e7. [Google Scholar] [CrossRef] [PubMed]
- Beyoglu, D.; Popov, Y.V.; Idle, J.R. The Metabolomic Footprint of Liver Fibrosis. Cells 2024, 13, 1333. [Google Scholar] [CrossRef] [PubMed]
- Patterson, A.D.; Maurhofer, O.; Beyoglu, D.; Lanz, C.; Krausz, K.W.; Pabst, T.; Gonzalez, F.J.; Dufour, J.F.; Idle, J.R. Aberrant lipid metabolism in hepatocellular carcinoma revealed by plasma metabolomics and lipid profiling. Cancer Res. 2011, 71, 6590–6600. [Google Scholar] [CrossRef] [PubMed]
- Fahrner, R.; Beyoglu, D.; Beldi, G.; Idle, J.R. Metabolomic markers for intestinal ischemia in a mouse model. J. Surg. Res. 2012, 178, 879–887. [Google Scholar] [CrossRef]
- Beyoglu, D.; Imbeaud, S.; Maurhofer, O.; Bioulac-Sage, P.; Zucman-Rossi, J.; Dufour, J.F.; Idle, J.R. Tissue metabolomics of hepatocellular carcinoma: Tumor energy metabolism and the role of transcriptomic classification. Hepatology 2013, 58, 229–238. [Google Scholar] [CrossRef]
- Beyoglu, D.; Krausz, K.W.; Martin, J.; Maurhofer, O.; Dorow, J.; Ceglarek, U.; Gonzalez, F.J.; Dufour, J.F.; Idle, J.R. Disruption of tumor suppressor gene Hint1 leads to remodeling of the lipid metabolic phenotype of mouse liver. J. Lipid Res. 2014, 55, 2309–2319. [Google Scholar] [CrossRef]
- Semmo, N.; Weber, T.; Idle, J.R.; Beyoglu, D. Metabolomics reveals that aldose reductase activity due to AKR1B10 is upregulated in hepatitis C virus infection. J. Viral Hepat. 2015, 22, 617–624. [Google Scholar] [CrossRef]
- Wang, M.; Keogh, A.; Treves, S.; Idle, J.R.; Beyoglu, D. The metabolomic profile of gamma-irradiated human hepatoma and muscle cells reveals metabolic changes consistent with the Warburg effect. PeerJ 2016, 4, e1624. [Google Scholar] [CrossRef]
- Simillion, C.; Semmo, N.; Idle, J.R.; Beyoglu, D. Robust Regression Analysis of GCMS Data Reveals Differential Rewiring of Metabolic Networks in Hepatitis B and C Patients. Metabolites 2017, 7, 51. [Google Scholar] [CrossRef]
- Keogh, A.; Senkardes, S.; Idle, J.R.; Kucukguzel, S.G.; Beyoglu, D. A Novel Anti-Hepatitis C Virus and Antiproliferative Agent Alters Metabolic Networks in HepG2 and Hep3B Cells. Metabolites 2017, 7, 23. [Google Scholar] [CrossRef] [PubMed]
- Patel, D.P.; Krausz, K.W.; Xie, C.; Beyoglu, D.; Gonzalez, F.J.; Idle, J.R. Metabolic profiling by gas chromatography-mass spectrometry of energy metabolism in high-fat diet-fed obese mice. PLoS ONE 2017, 12, e0177953. [Google Scholar] [CrossRef] [PubMed]
- Golla, S.; Golla, J.P.; Krausz, K.W.; Manna, S.K.; Simillion, C.; Beyoglu, D.; Idle, J.R.; Gonzalez, F.J. Metabolomic Analysis of Mice Exposed to Gamma Radiation Reveals a Systemic Understanding of Total-Body Exposure. Radiat. Res. 2017, 187, 612–629. [Google Scholar] [CrossRef] [PubMed]
- Pabst, T.; Kortz, L.; Fiedler, G.M.; Ceglarek, U.; Idle, J.R.; Beyoglu, D. The plasma lipidome in acute myeloid leukemia at diagnosis in relation to clinical disease features. BBA Clin. 2017, 7, 105–114. [Google Scholar] [CrossRef] [PubMed]
- Idle, J.R.; Seipel, K.; Bacher, U.; Pabst, T.; Beyoglu, D. (2R,3S)-Dihydroxybutanoic Acid Synthesis as a Novel Metabolic Function of Mutant Isocitrate Dehydrogenase 1 and 2 in Acute Myeloid Leukemia. Cancers 2020, 12, 2842. [Google Scholar] [CrossRef]
- Beyoglu, D.; Park, E.J.; Quinones-Lombrana, A.; Dave, A.; Parande, F.; Pezzuto, J.M.; Idle, J.R. Addition of grapes to both a standard and a high-fat Western pattern diet modifies hepatic and urinary metabolite profiles in the mouse. Food Funct. 2022, 13, 8489–8499. [Google Scholar] [CrossRef]
- Beyoglu, D.; Simillion, C.; Storni, F.; De Gottardi, A.; Idle, J.R. A Metabolomic Analysis of Cirrhotic Ascites. Molecules 2022, 27, 3935. [Google Scholar] [CrossRef]
- Beyoglu, D.; Huang, P.; Skelton-Badlani, D.; Zong, C.; Popov, Y.V.; Idle, J.R. Metabolic Hijacking of Hexose Metabolism to Ascorbate Synthesis Is the Unifying Biochemical Basis of Murine Liver Fibrosis. Cells 2023, 12, 485. [Google Scholar] [CrossRef]
- Beyoglu, D.; Schwalm, S.; Semmo, N.; Huwiler, A.; Idle, J.R. Hepatitis C Virus Infection Upregulates Plasma Phosphosphingolipids and Endocannabinoids and Downregulates Lysophosphoinositols. Int. J. Mol. Sci. 2023, 24, 1407. [Google Scholar] [CrossRef]
- Hang, D.; Yang, X.; Lu, J.; Shen, C.; Dai, J.; Lu, X.; Jin, G.; Hu, Z.; Gu, D.; Ma, H.; et al. Untargeted plasma metabolomics for risk prediction of hepatocellular carcinoma: A prospective study in two Chinese cohorts. Int. J. Cancer 2022, 151, 2144–2154. [Google Scholar] [CrossRef]
- Johnson, C.H.; Ivanisevic, J.; Siuzdak, G. Metabolomics: Beyond biomarkers and towards mechanisms. Nat. Rev. Mol. Cell Biol. 2016, 17, 451–459. [Google Scholar] [CrossRef] [PubMed]
- Benjamini, Y.; Hochberg, Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. J. R. Statist. Soc. B 1995, 57, 289–300. [Google Scholar] [CrossRef]
- Benjamini, Y. Discovering the false discovery rate. J. R. Statist. Soc. B 2010, 72, 405–416. [Google Scholar] [CrossRef]
- Moran, M. Arguments for rejecting the sequential Bonferroni in ecological studies. Oikos 2003, 100, 403–405. [Google Scholar] [CrossRef]
- Nakagawa, S. A farewell to Bonferroni: The problems of low statistical power and publication bias. Behav. Ecol. 2004, 15, 1044–1045. [Google Scholar] [CrossRef]
- Yun, J.H.; Kim, J.M.; Jeon, H.J.; Oh, T.; Choi, H.J.; Kim, B.J. Metabolomics profiles associated with diabetic retinopathy in type 2 diabetes patients. PLoS ONE 2020, 15, e0241365. [Google Scholar] [CrossRef]
- Li, L.J.; Wang, X.; Chong, Y.S.; Chan, J.K.Y.; Tan, K.H.; Eriksson, J.G.; Huang, Z.; Rahman, M.L.; Cui, L.; Zhang, C. Exploring preconception signatures of metabolites in mothers with gestational diabetes mellitus using a non-targeted approach. BMC Med. 2023, 21, 99. [Google Scholar] [CrossRef]
- Yang, M.; Zhu, C.; Du, L.; Huang, J.; Lu, J.; Yang, J.; Tong, Y.; Zhu, M.; Song, C.; Shen, C.; et al. A Metabolomic Signature of Obesity and Risk of Colorectal Cancer: Two Nested Case-Control Studies. Metabolites 2023, 13, 234. [Google Scholar] [CrossRef]
- Hu, W.; Wang, W.; Liao, H.; Bulloch, G.; Zhang, X.; Shang, X.; Huang, Y.; Hu, Y.; Yu, H.; Yang, X.; et al. Metabolic profiling reveals circulating biomarkers associated with incident and prevalent Parkinson’s disease. NPJ Park. Dis. 2024, 10, 130. [Google Scholar] [CrossRef]
- Harrell, F.E. Regression Modeling Strategies: With Applications to Linear Models, Logistic Regression, and Survival Analysis; Springer: New York, NY, USA, 2010. [Google Scholar]
- Castle, A.L.; Fiehn, O.; Kaddurah-Daouk, R.; Lindon, J.C. Metabolomics Standards Workshop and the development of international standards for reporting metabolomics experimental results. Brief. Bioinform. 2006, 7, 159–165. [Google Scholar] [CrossRef]
- Sumner, L.W.; Amberg, A.; Barrett, D.; Beale, M.H.; Beger, R.; Daykin, C.A.; Fan, T.W.; Fiehn, O.; Goodacre, R.; Griffin, J.L.; et al. Proposed minimum reporting standards for chemical analysis Chemical Analysis Working Group (CAWG) Metabolomics Standards Initiative (MSI). Metabolomics 2007, 3, 211–221. [Google Scholar] [CrossRef] [PubMed]
- Members, M.S.I.B.; Sansone, S.A.; Fan, T.; Goodacre, R.; Griffin, J.L.; Hardy, N.W.; Kaddurah-Daouk, R.; Kristal, B.S.; Lindon, J.; Mendes, P.; et al. The metabolomics standards initiative. Nat. Biotechnol. 2007, 25, 846–848. [Google Scholar] [CrossRef] [PubMed]
- Spicer, R.A.; Salek, R.; Steinbeck, C. A decade after the metabolomics standards initiative it’s time for a revision. Sci. Data 2017, 4, 170138. [Google Scholar] [CrossRef] [PubMed]
- Alden, N.; Krishnan, S.; Porokhin, V.; Raju, R.; McElearney, K.; Gilbert, A.; Lee, K. Biologically Consistent Annotation of Metabolomics Data. Anal. Chem. 2017, 89, 13097–13104. [Google Scholar] [CrossRef] [PubMed]
- Woldemariam, S.; Dorner, T.E.; Wiesinger, T.; Stein, K.V. Multi-omics approaches for precision obesity management: Potentials and limitations of omics in precision prevention, treatment and risk reduction of obesity. Wien. Klin. Wochenschr. 2023, 135, 113–124. [Google Scholar] [CrossRef]
- Abraham, A.; Yaghootkar, H. Identifying obesity subtypes: A review of studies utilising clinical biomarkers and genetic data. Diabet. Med. 2023, 40, e15226. [Google Scholar] [CrossRef]
- Ding, J.; Liu, H.; Zhang, X.; Zhao, N.; Peng, Y.; Shi, J.; Chen, J.; Chi, X.; Li, L.; Zhang, M.; et al. Integrative multiomic analysis identifies distinct molecular subtypes of NAFLD in a Chinese population. Sci. Transl. Med. 2024, 16, eadh9940. [Google Scholar] [CrossRef]
- Beyoglu, D.; Idle, J.R. Metabolomic and Lipidomic Biomarkers for Premalignant Liver Disease Diagnosis and Therapy. Metabolites 2020, 10, 50. [Google Scholar] [CrossRef]
- Mathe, E.A.; Patterson, A.D.; Haznadar, M.; Manna, S.K.; Krausz, K.W.; Bowman, E.D.; Shields, P.G.; Idle, J.R.; Smith, P.B.; Anami, K.; et al. Noninvasive urinary metabolomic profiling identifies diagnostic and prognostic markers in lung cancer. Cancer Res. 2014, 74, 3259–3270. [Google Scholar] [CrossRef]
- Kim, H.Y. Recent advances in nonalcoholic fatty liver disease metabolomics. Clin. Mol. Hepatol. 2021, 27, 553–559. [Google Scholar] [CrossRef]
- Reinson, T.; Buchanan, R.M.; Byrne, C.D. Noninvasive serum biomarkers for liver fibrosis in NAFLD: Current and future. Clin. Mol. Hepatol. 2023, 29, S157–S170. [Google Scholar] [CrossRef] [PubMed]
- Yip, T.C.; Lyu, F.; Lin, H.; Li, G.; Yuen, P.C.; Wong, V.W.; Wong, G.L. Non-invasive biomarkers for liver inflammation in non-alcoholic fatty liver disease: Present and future. Clin. Mol. Hepatol. 2023, 29, S171–S183. [Google Scholar] [CrossRef] [PubMed]
- Griffin, J.L.; Nicholls, A.W. Metabolomics as a functional genomic tool for understanding lipid dysfunction in diabetes, obesity and related disorders. Pharmacogenomics 2006, 7, 1095–1107. [Google Scholar] [CrossRef] [PubMed]
- Gulston, M.K.; Titman, C.M.; Griffin, J.L. Applications of metabolomics to understanding obesity in mouse and man. Biomark. Med. 2007, 1, 575–582. [Google Scholar] [CrossRef]
- Serkova, N.J.; Jackman, M.; Brown, J.L.; Liu, T.; Hirose, R.; Roberts, J.P.; Maher, J.J.; Niemann, C.U. Metabolic profiling of livers and blood from obese Zucker rats. J. Hepatol. 2006, 44, 956–962. [Google Scholar] [CrossRef]
- Loftus, N.; Miseki, K.; Iida, J.; Gika, H.G.; Theodoridis, G.; Wilson, I.D. Profiling and biomarker identification in plasma from different Zucker rat strains via high mass accuracy multistage mass spectrometric analysis using liquid chromatography/mass spectrometry with a quadrupole ion trap-time of flight mass spectrometer. Rapid Commun. Mass. Spectrom. 2008, 22, 2547–2554. [Google Scholar] [CrossRef]
- Kim, H.J.; Kim, J.H.; Noh, S.; Hur, H.J.; Sung, M.J.; Hwang, J.T.; Park, J.H.; Yang, H.J.; Kim, M.S.; Kwon, D.Y.; et al. Metabolomic analysis of livers and serum from high-fat diet induced obese mice. J. Proteome Res. 2011, 10, 722–731. [Google Scholar] [CrossRef]
- Duggan, G.E.; Hittel, D.S.; Sensen, C.W.; Weljie, A.M.; Vogel, H.J.; Shearer, J. Metabolomic response to exercise training in lean and diet-induced obese mice. J. Appl. Physiol. (1985) 2011, 110, 1311–1318. [Google Scholar] [CrossRef]
- Ma, B.; Zhang, Q.; Wang, G.J.; A, J.Y.; Wu, D.; Liu, Y.; Cao, B.; Liu, L.S.; Hu, Y.Y.; Wang, Y.L.; et al. GC-TOF/MS-based metabolomic profiling of estrogen deficiency-induced obesity in ovariectomized rats. Acta Pharmacol. Sin. 2011, 32, 270–278. [Google Scholar] [CrossRef]
- Duggan, G.E.; Hittel, D.S.; Hughey, C.C.; Weljie, A.; Vogel, H.J.; Shearer, J. Differentiating short- and long-term effects of diet in the obese mouse using (1) H-nuclear magnetic resonance metabolomics. Diabetes Obes. Metab. 2011, 13, 859–862. [Google Scholar] [CrossRef]
- Oberbach, A.; Bluher, M.; Wirth, H.; Till, H.; Kovacs, P.; Kullnick, Y.; Schlichting, N.; Tomm, J.M.; Rolle-Kampczyk, U.; Murugaiyan, J.; et al. Combined proteomic and metabolomic profiling of serum reveals association of the complement system with obesity and identifies novel markers of body fat mass changes. J. Proteome Res. 2011, 10, 4769–4788. [Google Scholar] [CrossRef] [PubMed]
- Mihalik, S.J.; Michaliszyn, S.F.; de las Heras, J.; Bacha, F.; Lee, S.; Chace, D.H.; DeJesus, V.R.; Vockley, J.; Arslanian, S.A. Metabolomic profiling of fatty acid and amino acid metabolism in youth with obesity and type 2 diabetes: Evidence for enhanced mitochondrial oxidation. Diabetes Care 2012, 35, 605–611. [Google Scholar] [CrossRef] [PubMed]
- Escobar-Morreale, H.F.; Samino, S.; Insenser, M.; Vinaixa, M.; Luque-Ramirez, M.; Lasuncion, M.A.; Correig, X. Metabolic heterogeneity in polycystic ovary syndrome is determined by obesity: Plasma metabolomic approach using GC-MS. Clin. Chem. 2012, 58, 999–1009. [Google Scholar] [CrossRef] [PubMed]
- Sampey, B.P.; Freemerman, A.J.; Zhang, J.; Kuan, P.F.; Galanko, J.A.; O’Connell, T.M.; Ilkayeva, O.R.; Muehlbauer, M.J.; Stevens, R.D.; Newgard, C.B.; et al. Metabolomic profiling reveals mitochondrial-derived lipid biomarkers that drive obesity-associated inflammation. PLoS ONE 2012, 7, e38812. [Google Scholar] [CrossRef]
- Szymanska, E.; Bouwman, J.; Strassburg, K.; Vervoort, J.; Kangas, A.J.; Soininen, P.; Ala-Korpela, M.; Westerhuis, J.; van Duynhoven, J.P.; Mela, D.J.; et al. Gender-dependent associations of metabolite profiles and body fat distribution in a healthy population with central obesity: Towards metabolomics diagnostics. OMICS 2012, 16, 652–667. [Google Scholar] [CrossRef]
- Won, E.Y.; Yoon, M.K.; Kim, S.W.; Jung, Y.; Bae, H.W.; Lee, D.; Park, S.G.; Lee, C.H.; Hwang, G.S.; Chi, S.W. Gender-specific metabolomic profiling of obesity in leptin-deficient ob/ob mice by 1H NMR spectroscopy. PLoS ONE 2013, 8, e75998. [Google Scholar] [CrossRef]
- Perng, W.; Gillman, M.W.; Fleisch, A.F.; Michalek, R.D.; Watkins, S.M.; Isganaitis, E.; Patti, M.E.; Oken, E. Metabolomic profiles and childhood obesity. Obesity 2014, 22, 2570–2578. [Google Scholar] [CrossRef]
- Calvani, R.; Brasili, E.; Pratico, G.; Sciubba, F.; Roselli, M.; Finamore, A.; Marini, F.; Marzetti, E.; Miccheli, A. Application of NMR-based metabolomics to the study of gut microbiota in obesity. J. Clin. Gastroenterol. 2014, 48, S5–S7. [Google Scholar] [CrossRef]
- Liu, L.; Feng, R.; Guo, F.; Li, Y.; Jiao, J.; Sun, C. Targeted metabolomic analysis reveals the association between the postprandial change in palmitic acid, branched-chain amino acids and insulin resistance in young obese subjects. Diabetes Res. Clin. Pract. 2015, 108, 84–93. [Google Scholar] [CrossRef]
- Baker, P.R., 2nd; Boyle, K.E.; Koves, T.R.; Ilkayeva, O.R.; Muoio, D.M.; Houmard, J.A.; Friedman, J.E. Metabolomic analysis reveals altered skeletal muscle amino acid and fatty acid handling in obese humans. Obesity 2015, 23, 981–988. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, D.; Li, Y.; Guo, L.; Cui, Y.; Zhang, X.; Li, E. Metabolomic analysis of serum from obese adults with hyperlipemia by UHPLC-Q-TOF MS/MS. Biomed. Chromatogr. 2016, 30, 48–54. [Google Scholar] [CrossRef] [PubMed]
- Butte, N.F.; Liu, Y.; Zakeri, I.F.; Mohney, R.P.; Mehta, N.; Voruganti, V.S.; Goring, H.; Cole, S.A.; Comuzzie, A.G. Global metabolomic profiling targeting childhood obesity in the Hispanic population. Am. J. Clin. Nutr. 2015, 102, 256–267. [Google Scholar] [CrossRef] [PubMed]
- Badoud, F.; Lam, K.P.; Perreault, M.; Zulyniak, M.A.; Britz-McKibbin, P.; Mutch, D.M. Metabolomics Reveals Metabolically Healthy and Unhealthy Obese Individuals Differ in their Response to a Caloric Challenge. PLoS ONE 2015, 10, e0134613. [Google Scholar] [CrossRef] [PubMed]
- Pelantova, H.; Bartova, S.; Anyz, J.; Holubova, M.; Zelezna, B.; Maletinska, L.; Novak, D.; Lacinova, Z.; Sulc, M.; Haluzik, M.; et al. Metabolomic profiling of urinary changes in mice with monosodium glutamate-induced obesity. Anal. Bioanal. Chem. 2016, 408, 567–578. [Google Scholar] [CrossRef]
- Gralka, E.; Luchinat, C.; Tenori, L.; Ernst, B.; Thurnheer, M.; Schultes, B. Metabolomic fingerprint of severe obesity is dynamically affected by bariatric surgery in a procedure-dependent manner. Am. J. Clin. Nutr. 2015, 102, 1313–1322. [Google Scholar] [CrossRef]
- Gooda Sahib Jambocus, N.; Saari, N.; Ismail, A.; Khatib, A.; Mahomoodally, M.F.; Abdul Hamid, A. An Investigation into the Antiobesity Effects of Morinda citrifolia L. Leaf Extract in High Fat Diet Induced Obese Rats Using a (1)H NMR Metabolomics Approach. J. Diabetes Res. 2016, 2016, 2391592. [Google Scholar] [CrossRef]
- Cho, K.; Moon, J.S.; Kang, J.H.; Jang, H.B.; Lee, H.J.; Park, S.I.; Yu, K.S.; Cho, J.Y. Combined untargeted and targeted metabolomic profiling reveals urinary biomarkers for discriminating obese from normal-weight adolescents. Pediatr. Obes. 2017, 12, 93–101. [Google Scholar] [CrossRef]
- Mastrangelo, A.; Martos-Moreno, G.A.; Garcia, A.; Barrios, V.; Ruperez, F.J.; Chowen, J.A.; Barbas, C.; Argente, J. Insulin resistance in prepubertal obese children correlates with sex-dependent early onset metabolomic alterations. Int. J. Obes. 2016, 40, 1494–1502. [Google Scholar] [CrossRef]
- Abdul Ghani, Z.D.; Husin, J.M.; Rashid, A.H.; Shaari, K.; Chik, Z. Biochemical studies of Piper betle L leaf extract on obese treated animal using 1H-NMR-based metabolomic approach of blood serum samples. J. Ethnopharmacol. 2016, 194, 690–697. [Google Scholar] [CrossRef]
- Men, L.; Pi, Z.; Zhou, Y.; Wei, M.; Liu, Y.; Song, F.; Liu, Z. Urine metabolomics of high-fat diet induced obesity using UHPLC-Q-TOF-MS. J. Pharm. Biomed. Anal. 2017, 132, 258–266. [Google Scholar] [CrossRef]
- Tulipani, S.; Palau-Rodriguez, M.; Minarro Alonso, A.; Cardona, F.; Marco-Ramell, A.; Zonja, B.; Lopez de Alda, M.; Munoz-Garach, A.; Sanchez-Pla, A.; Tinahones, F.J.; et al. Biomarkers of Morbid Obesity and Prediabetes by Metabolomic Profiling of Human Discordant Phenotypes. Clin. Chim. Acta 2016, 463, 53–61. [Google Scholar] [CrossRef] [PubMed]
- Troisi, J.; Pierri, L.; Landolfi, A.; Marciano, F.; Bisogno, A.; Belmonte, F.; Palladino, C.; Guercio Nuzio, S.; Campiglia, P.; Vajro, P. Urinary Metabolomics in Pediatric Obesity and NAFLD Identifies Metabolic Pathways/Metabolites Related to Dietary Habits and Gut-Liver Axis Perturbations. Nutrients 2017, 9, 485. [Google Scholar] [CrossRef] [PubMed]
- Fattuoni, C.; Mando, C.; Palmas, F.; Anelli, G.M.; Novielli, C.; Parejo Laudicina, E.; Savasi, V.M.; Barberini, L.; Dessi, A.; Pintus, R.; et al. Preliminary metabolomics analysis of placenta in maternal obesity. Placenta 2018, 61, 89–95. [Google Scholar] [CrossRef] [PubMed]
- Bagheri, M.; Farzadfar, F.; Qi, L.; Yekaninejad, M.S.; Chamari, M.; Zeleznik, O.A.; Kalantar, Z.; Ebrahimi, Z.; Sheidaie, A.; Koletzko, B.; et al. Obesity-Related Metabolomic Profiles and Discrimination of Metabolically Unhealthy Obesity. J. Proteome Res. 2018, 17, 1452–1462. [Google Scholar] [CrossRef] [PubMed]
- Bervoets, L.; Massa, G.; Guedens, W.; Reekmans, G.; Noben, J.P.; Adriaensens, P. Identification of metabolic phenotypes in childhood obesity by (1)H NMR metabolomics of blood plasma. Future Sci. OA 2018, 4, FSO310. [Google Scholar] [CrossRef]
- Libert, D.M.; Nowacki, A.S.; Natowicz, M.R. Metabolomic analysis of obesity, metabolic syndrome, and type 2 diabetes: Amino acid and acylcarnitine levels change along a spectrum of metabolic wellness. PeerJ 2018, 6, e5410. [Google Scholar] [CrossRef]
- Yu, H.T.; Fu, X.Y.; Xu, B.; Zuo, L.L.; Ma, H.B.; Wang, S.R. Untargeted metabolomics approach (UPLC-Q-TOF-MS) explores the biomarkers of serum and urine in overweight/obese young men. Asia Pac. J. Clin. Nutr. 2018, 27, 1067–1076. [Google Scholar] [CrossRef]
- Bagheri, M.; Djazayery, A.; Farzadfar, F.; Qi, L.; Yekaninejad, M.S.; Aslibekyan, S.; Chamari, M.; Hassani, H.; Koletzko, B.; Uhl, O. Plasma metabolomic profiling of amino acids and polar lipids in Iranian obese adults. Lipids Health Dis. 2019, 18, 94. [Google Scholar] [CrossRef]
- Kim, M.J.; Kim, J.H.; Kim, M.S.; Yang, H.J.; Lee, M.; Kwon, D.Y. Metabolomics Associated with Genome-Wide Association Study Related to the Basal Metabolic Rate in Overweight/Obese Korean Women. J. Med. Food 2019, 22, 499–507. [Google Scholar] [CrossRef]
- Bellissimo, M.P.; Cai, Q.; Ziegler, T.R.; Liu, K.H.; Tran, P.H.; Vos, M.B.; Martin, G.S.; Jones, D.P.; Yu, T.; Alvarez, J.A. Plasma High-Resolution Metabolomics Differentiates Adults with Normal Weight Obesity from Lean Individuals. Obesity 2019, 27, 1729–1737. [Google Scholar] [CrossRef]
- Lokhov, P.G.; Balashova, E.E.; Trifonova, O.P.; Maslov, D.L.; Ponomarenko, E.A.; Archakov, A.I. Mass Spectrometry-Based Metabolomics Analysis of Obese Patients’ Blood Plasma. Int. J. Mol. Sci. 2020, 21, 568. [Google Scholar] [CrossRef] [PubMed]
- Zhou, B.; Ichikawa, R.; Parnell, L.D.; Noel, S.E.; Zhang, X.; Bhupathiraju, S.N.; Smith, C.E.; Tucker, K.L.; Ordovas, J.M.; Lai, C.Q. Metabolomic Links between Sugar-Sweetened Beverage Intake and Obesity. J. Obes. 2020, 2020, 7154738. [Google Scholar] [CrossRef] [PubMed]
- Hsu, Y.H.; Astley, C.M.; Cole, J.B.; Vedantam, S.; Mercader, J.M.; Metspalu, A.; Fischer, K.; Fortney, K.; Morgen, E.K.; Gonzalez, C.; et al. Integrating untargeted metabolomics, genetically informed causal inference, and pathway enrichment to define the obesity metabolome. Int. J. Obes. 2020, 44, 1596–1606. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.; Ni, Z.; Yu, J.; Cheng, W.; Cai, Z.; Yu, C. Correlation Between Fecal Metabolomics and Gut Microbiota in Obesity and Polycystic Ovary Syndrome. Front. Endocrinol. 2020, 11, 628. [Google Scholar] [CrossRef]
- Barlow, S.E.; Dietz, W.H. Obesity evaluation and treatment: Expert Committee recommendations. The Maternal and Child Health Bureau, Health Resources and Services Administration and the Department of Health and Human Services. Pediatrics 1998, 102, E29. [Google Scholar] [CrossRef]
- Gall, W.E.; Beebe, K.; Lawton, K.A.; Adam, K.P.; Mitchell, M.W.; Nakhle, P.J.; Ryals, J.A.; Milburn, M.V.; Nannipieri, M.; Camastra, S.; et al. alpha-hydroxybutyrate is an early biomarker of insulin resistance and glucose intolerance in a nondiabetic population. PLoS ONE 2010, 5, e10883. [Google Scholar] [CrossRef]
- Bulut, O.; Temba, G.S.; Koeken, V.; Moorlag, S.; de Bree, L.C.J.; Mourits, V.P.; Kullaya, V.I.; Jaeger, M.; Qi, C.; Riksen, N.P.; et al. Common and distinct metabolomic markers related to immune aging in Western European and East African populations. Mech. Ageing Dev. 2024, 218, 111916. [Google Scholar] [CrossRef]
- Feng, R.; Tian, Z.; Mao, R.; Ma, R.; Luo, W.; Zhao, M.; Li, X.; Liu, Y.; Huang, K.; Xiang, L.; et al. Gut Microbiome-Generated Phenylacetylglutamine from Dietary Protein is Associated with Crohn’s Disease and Exacerbates Colitis in Mouse Model Possibly via Platelet Activation. J. Crohns Colitis 2023, 17, 1833–1846. [Google Scholar] [CrossRef]
- Sibal, L.; Agarwal, S.C.; Home, P.D.; Boger, R.H. The Role of Asymmetric Dimethylarginine (ADMA) in Endothelial Dysfunction and Cardiovascular Disease. Curr. Cardiol. Rev. 2010, 6, 82–90. [Google Scholar] [CrossRef]
- Nunez-Sanchez, M.A.; Martinez-Sanchez, M.A.; Sierra-Cruz, M.; Lambertos, A.; Rico-Chazarra, S.; Oliva-Bolarin, A.; Balaguer-Roman, A.; Yuste, J.E.; Martinez, C.M.; Mika, A.; et al. Increased hepatic putrescine levels as a new potential factor related to the progression of metabolic dysfunction-associated steatotic liver disease. J. Pathol. 2024, 264, 101–111. [Google Scholar] [CrossRef]
- Tan, S.T.; Ramesh, T.; Toh, X.R.; Nguyen, L.N. Emerging roles of lysophospholipids in health and disease. Prog. Lipid Res. 2020, 80, 101068. [Google Scholar] [CrossRef] [PubMed]
- Kalhan, S.C.; Guo, L.; Edmison, J.; Dasarathy, S.; McCullough, A.J.; Hanson, R.W.; Milburn, M. Plasma metabolomic profile in nonalcoholic fatty liver disease. Metabolism 2011, 60, 404–413. [Google Scholar] [CrossRef] [PubMed]
- Manna, S.K.; Patterson, A.D.; Yang, Q.; Krausz, K.W.; Li, H.; Idle, J.R.; Fornace, A.J., Jr.; Gonzalez, F.J. Identification of noninvasive biomarkers for alcohol-induced liver disease using urinary metabolomics and the Ppara-null mouse. J. Proteome Res. 2010, 9, 4176–4188. [Google Scholar] [CrossRef] [PubMed]
- Manna, S.K.; Patterson, A.D.; Yang, Q.; Krausz, K.W.; Idle, J.R.; Fornace, A.J.; Gonzalez, F.J. UPLC-MS-based urine metabolomics reveals indole-3-lactic acid and phenyllactic acid as conserved biomarkers for alcohol-induced liver disease in the Ppara-null mouse model. J. Proteome Res. 2011, 10, 4120–4133. [Google Scholar] [CrossRef] [PubMed]
- Shi, X.; Wei, X.; Yin, X.; Wang, Y.; Zhang, M.; Zhao, C.; Zhao, H.; McClain, C.J.; Feng, W.; Zhang, X. Hepatic and fecal metabolomic analysis of the effects of Lactobacillus rhamnosus GG on alcoholic fatty liver disease in mice. J. Proteome Res. 2015, 14, 1174–1182. [Google Scholar] [CrossRef]
- Lai, Y.S.; Chen, W.C.; Kuo, T.C.; Ho, C.T.; Kuo, C.H.; Tseng, Y.J.; Lu, K.H.; Lin, S.H.; Panyod, S.; Sheen, L.Y. Mass-Spectrometry-Based Serum Metabolomics of a C57BL/6J Mouse Model of High-Fat-Diet-Induced Non-alcoholic Fatty Liver Disease Development. J. Agric. Food Chem. 2015, 63, 7873–7884. [Google Scholar] [CrossRef]
- Jin, R.; Banton, S.; Tran, V.T.; Konomi, J.V.; Li, S.; Jones, D.P.; Vos, M.B. Amino Acid Metabolism is Altered in Adolescents with Nonalcoholic Fatty Liver Disease-An Untargeted, High Resolution Metabolomics Study. J. Pediatr. 2016, 172, 14–19.e5. [Google Scholar] [CrossRef]
- Wang, Y.; Niu, M.; Jia, G.L.; Li, R.S.; Zhang, Y.M.; Zhang, C.E.; Meng, Y.K.; Cui, H.R.; Ma, Z.J.; Li, D.H.; et al. Untargeted Metabolomics Reveals Intervention Effects of Total Turmeric Extract in a Rat Model of Nonalcoholic Fatty Liver Disease. Evid. Based Complement. Alternat Med. 2016, 2016, 8495953. [Google Scholar] [CrossRef]
- Koch, M.; Freitag-Wolf, S.; Schlesinger, S.; Borggrefe, J.; Hov, J.R.; Jensen, M.K.; Pick, J.; Markus, M.R.P.; Hopfner, T.; Jacobs, G.; et al. Serum metabolomic profiling highlights pathways associated with liver fat content in a general population sample. Eur. J. Clin. Nutr. 2017, 71, 995–1001. [Google Scholar] [CrossRef]
- Han, J.; Dzierlenga, A.L.; Lu, Z.; Billheimer, D.D.; Torabzadeh, E.; Lake, A.D.; Li, H.; Novak, P.; Shipkova, P.; Aranibar, N.; et al. Metabolomic profiling distinction of human nonalcoholic fatty liver disease progression from a common rat model. Obesity 2017, 25, 1069–1076. [Google Scholar] [CrossRef]
- Dong, S.; Zhan, Z.Y.; Cao, H.Y.; Wu, C.; Bian, Y.Q.; Li, J.Y.; Cheng, G.H.; Liu, P.; Sun, M.Y. Urinary metabolomics analysis identifies key biomarkers of different stages of nonalcoholic fatty liver disease. World J. Gastroenterol. 2017, 23, 2771–2784. [Google Scholar] [CrossRef] [PubMed]
- Tu, L.N.; Showalter, M.R.; Cajka, T.; Fan, S.; Pillai, V.V.; Fiehn, O.; Selvaraj, V. Metabolomic characteristics of cholesterol-induced non-obese nonalcoholic fatty liver disease in mice. Sci. Rep. 2017, 7, 6120. [Google Scholar] [CrossRef] [PubMed]
- Prisingkorn, W.; Prathomya, P.; Jakovlic, I.; Liu, H.; Zhao, Y.H.; Wang, W.M. Transcriptomics, metabolomics and histology indicate that high-carbohydrate diet negatively affects the liver health of blunt snout bream (Megalobrama amblycephala). BMC Genom. 2017, 18, 856. [Google Scholar] [CrossRef] [PubMed]
- Romero-Ibarguengoitia, M.E.; Vadillo-Ortega, F.; Caballero, A.E.; Ibarra-Gonzalez, I.; Herrera-Rosas, A.; Serratos-Canales, M.F.; Leon-Hernandez, M.; Gonzalez-Chavez, A.; Mummidi, S.; Duggirala, R.; et al. Family history and obesity in youth, their effect on acylcarnitine/aminoacids metabolomics and non-alcoholic fatty liver disease (NAFLD). Structural equation modeling approach. PLoS ONE 2018, 13, e0193138. [Google Scholar] [CrossRef]
- Mayo, R.; Crespo, J.; Martinez-Arranz, I.; Banales, J.M.; Arias, M.; Minchole, I.; Aller de la Fuente, R.; Jimenez-Aguero, R.; Alonso, C.; de Luis, D.A.; et al. Metabolomic-based noninvasive serum test to diagnose nonalcoholic steatohepatitis: Results from discovery and validation cohorts. Hepatol. Commun. 2018, 2, 807–820. [Google Scholar] [CrossRef]
- Yang, Z.; Kusumanchi, P.; Ross, R.A.; Heathers, L.; Chandler, K.; Oshodi, A.; Thoudam, T.; Li, F.; Wang, L.; Liangpunsakul, S. Serum Metabolomic Profiling Identifies Key Metabolic Signatures Associated With Pathogenesis of Alcoholic Liver Disease in Humans. Hepatol. Commun. 2019, 3, 542–557. [Google Scholar] [CrossRef]
- Gawlik, A.; Shmoish, M.; Hartmann, M.F.; Wudy, S.A.; Olczak, Z.; Gruszczynska, K.; Hochberg, Z. Steroid metabolomic signature of liver disease in nonsyndromic childhood obesity. Endocr. Connect. 2019, 8, 764–771. [Google Scholar] [CrossRef]
- Cui, H.; Li, Y.; Cao, M.; Liao, J.; Liu, X.; Miao, J.; Fu, H.; Song, R.; Wen, W.; Zhang, Z.; et al. Untargeted Metabolomic Analysis of the Effects and Mechanism of Nuciferine Treatment on Rats With Nonalcoholic Fatty Liver Disease. Front. Pharmacol. 2020, 11, 858. [Google Scholar] [CrossRef]
- Chang, Y.; Gao, X.Q.; Shen, N.; He, J.; Fan, X.; Chen, K.; Lin, X.H.; Li, H.M.; Tian, F.S.; Li, H. A targeted metabolomic profiling of plasma acylcarnitines in nonalcoholic fatty liver disease. Eur. Rev. Med. Pharmacol. Sci. 2020, 24, 7433–7441. [Google Scholar] [CrossRef]
- Lu, Y.; Shao, M.; Xiang, H.; Zheng, P.; Wu, T.; Ji, G. Integrative transcriptomics and metabolomics explore the mechanism of kaempferol on improving nonalcoholic steatohepatitis. Food Funct. 2020, 11, 10058–10069. [Google Scholar] [CrossRef]
- Zheng, T.X.; Pu, S.L.; Tan, P.; Du, Y.C.; Qian, B.L.; Chen, H.; Fu, W.G.; Huang, M.Z. Liver Metabolomics Reveals the Effect of Lactobacillus reuteri on Alcoholic Liver Disease. Front. Physiol. 2020, 11, 595382. [Google Scholar] [CrossRef] [PubMed]
- Zhao, M.; Xing, Y.; Liu, L.; Fan, X.; Liu, L.; Geng, T.; Gong, D. GC-TOF-MS-Based Metabolomics Analyses of Liver and Intestinal Contents in the Overfed vs. Normally-Fed Geese. Animals 2020, 10, 2375. [Google Scholar] [CrossRef] [PubMed]
- Xue, L.J.; Han, J.Q.; Zhou, Y.C.; Peng, H.Y.; Yin, T.F.; Li, K.M.; Yao, S.K. Untargeted metabolomics characteristics of nonobese nonalcoholic fatty liver disease induced by high-temperature-processed feed in Sprague-Dawley rats. World J. Gastroenterol. 2020, 26, 7299–7311. [Google Scholar] [CrossRef] [PubMed]
- Shi, C.; Wang, L.; Zhou, K.; Shao, M.; Lu, Y.; Wu, T. Targeted Metabolomics Identifies Differential Serum and Liver Amino Acids Biomarkers in Rats with Alcoholic Liver Disease. J. Nutr. Sci. Vitaminol. 2020, 66, 536–544. [Google Scholar] [CrossRef]
- Masarone, M.; Troisi, J.; Aglitti, A.; Torre, P.; Colucci, A.; Dallio, M.; Federico, A.; Balsano, C.; Persico, M. Untargeted metabolomics as a diagnostic tool in NAFLD: Discrimination of steatosis, steatohepatitis and cirrhosis. Metabolomics 2021, 17, 12. [Google Scholar] [CrossRef]
- Yang, Y.; Huang, Z.; Yang, Z.; Qi, Y.; Shi, H.; Zhou, Y.; Wang, F.; Yang, M. Serum metabolomic profiling reveals an increase in homocitrulline in Chinese patients with nonalcoholic fatty liver disease: A retrospective study. PeerJ 2021, 9, e11346. [Google Scholar] [CrossRef]
- Mazzini, F.N.; Cook, F.; Gounarides, J.; Marciano, S.; Haddad, L.; Tamaroff, A.J.; Casciato, P.; Narvaez, A.; Mascardi, M.F.; Anders, M.; et al. Plasma and stool metabolomics to identify microbiota derived-biomarkers of metabolic dysfunction-associated fatty liver disease: Effect of PNPLA3 genotype. Metabolomics 2021, 17, 58. [Google Scholar] [CrossRef]
- Kordy, K.; Li, F.; Lee, D.J.; Kinchen, J.M.; Jew, M.H.; La Rocque, M.E.; Zabih, S.; Saavedra, M.; Woodward, C.; Cunningham, N.J.; et al. Metabolomic Predictors of Non-alcoholic Steatohepatitis and Advanced Fibrosis in Children. Front. Microbiol. 2021, 12, 713234. [Google Scholar] [CrossRef]
- Feng, Y.; Li, H.; Chen, C.; Lin, H.; Xu, G.; Li, H.; Wang, C.; Chen, J.; Sun, J. Study on the Hepatoprotection of Schisandra chinensis Caulis Polysaccharides in Nonalcoholic Fatty Liver Disease in Rats Based on Metabolomics. Front. Pharmacol. 2021, 12, 727636. [Google Scholar] [CrossRef]
- Mowry, C.J.; Alonso, C.; Iruarrizaga-Lejarreta, M.; Ortiz, P.; Levitsky, J.; Rinella, M. Utility of Metabolomic Biomarkers to Identify Nonalcoholic Fatty Liver Disease in Liver Transplant Recipients. Transplant. Direct 2021, 7, e784. [Google Scholar] [CrossRef]
- He, D.; Su, Y.; Meng, D.; Wang, X.; Wang, J.; Ye, H. A pilot study optimizing metabolomic and lipidomic acquisition in serum for biomarker discovery in nonalcoholic fatty liver disease. J. Mass. Spectrom. Adv. Clin. Lab. 2021, 22, 17–25. [Google Scholar] [CrossRef] [PubMed]
- Zhu, M.N.; Zhao, C.Z.; Wang, C.Z.; Rao, J.B.; Qiu, Y.W.; Gao, Y.P.; Wang, X.Y.; Zhang, Y.M.; Wu, G.; Chen, J.; et al. Dataset for liver metabolomic profile of highland barley Monascus purpureus went extract-treated golden hamsters with nonalcoholic fatty liver disease. Data Brief. 2022, 40, 107773. [Google Scholar] [CrossRef] [PubMed]
- Yan, X.; Li, L.; Liu, P.; Xu, J.; Wang, Z.; Ding, L.; Yang, L. Targeted metabolomics profiles serum fatty acids by HFD induced non-alcoholic fatty liver in mice based on GC-MS. J. Pharm. Biomed. Anal. 2022, 211, 114620. [Google Scholar] [CrossRef] [PubMed]
- Charkoftaki, G.; Tan, W.Y.; Berrios-Carcamo, P.; Orlicky, D.J.; Golla, J.P.; Garcia-Milian, R.; Aalizadeh, R.; Thomaidis, N.S.; Thompson, D.C.; Vasiliou, V. Liver metabolomics identifies bile acid profile changes at early stages of alcoholic liver disease in mice. Chem. Biol. Interact. 2022, 360, 109931. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.J.; Li, H.Z.; Zhao, J.; Sun, Y.M.; Jin, X.W.; Lv, S.Q.; Luo, J.Y.; Fang, X.X.; Wen, W.B.; Liao, J.B. Mechanical Study of Jian-Gan-Xiao-Zhi Decoction on Nonalcoholic Fatty Liver Disease Based on Integrated Network Pharmacology and Untargeted Metabolomics. Evid. Based Complement. Alternat Med. 2022, 2022, 2264394. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, T.; Hou, X.; Hu, C.; Zhang, L.; Wang, S.; Zhang, Q.; Shi, K. Multi-Channel Metabolomics Analysis Identifies Novel Metabolite Biomarkers for the Early Detection of Fatty Liver Disease in Dairy Cows. Cells 2022, 11, 2883. [Google Scholar] [CrossRef]
- Shao, L.; Liu, J.; Song, Y.; Yang, W.; Gong, L.; Lyu, Z.; Zhu, Q.; Fu, J.; Li, J.; Shi, J. Serum metabolomics-based heterogeneities and screening strategy for metabolic dysfunction-associated fatty liver disease (MAFLD). Clin. Chim. Acta 2023, 538, 203–210. [Google Scholar] [CrossRef]
- Demirel, M.; Koktasoglu, F.; Ozkan, E.; Dulun Agac, H.; Gul, A.Z.; Sharifov, R.; Sarikaya, U.; Basaranoglu, M.; Selek, S. Mass spectrometry-based untargeted metabolomics study of non-obese individuals with non-alcoholic fatty liver disease. Scand. J. Gastroenterol. 2023, 58, 1344–1350. [Google Scholar] [CrossRef]
- Gagnon, E.; Manikpurage, H.D.; Mitchell, P.L.; Girard, A.; Gobeil, E.; Bourgault, J.; Begin, F.; Marette, A.; Theriault, S.; Arsenault, B.J. Large-scale metabolomic profiling and incident non-alcoholic fatty liver disease. iScience 2023, 26, 107127. [Google Scholar] [CrossRef]
- Garibay-Nieto, N.; Pedraza-Escudero, K.; Omana-Guzman, I.; Garces-Hernandez, M.J.; Villanueva-Ortega, E.; Flores-Torres, M.; Perez-Hernandez, J.L.; Leon-Hernandez, M.; Laresgoiti-Servitje, E.; Palacios-Gonzalez, B.; et al. Metabolomic Phenotype of Hepatic Steatosis and Fibrosis in Mexican Children Living with Obesity. Medicina 2023, 59, 1785. [Google Scholar] [CrossRef]
- Calzadilla, N.; Zilberstein, N.; Hanscom, M.; Al Rashdan, H.T.; Chacra, W.; Gill, R.K.; Alrefai, W.A. Serum metabolomic analysis in cirrhotic alcohol-associated liver disease patients identified differentially altered microbial metabolites and novel potential biomarkers for disease severity. Dig. Liver Dis. 2024, 56, 923–931. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Jin, Y.; Song, C.; Chen, G.; Li, Q.; Yuan, H.; Wei, S.; Yang, M.; Li, S.; Jin, S. Comparative analysis of the synergetic effects of Diwuyanggan prescription on high fat diet-induced non-alcoholic fatty liver disease using untargeted metabolomics. Heliyon 2023, 9, e22151. [Google Scholar] [CrossRef] [PubMed]
- Thing, M.; Werge, M.P.; Kimer, N.; Hetland, L.E.; Rashu, E.B.; Nabilou, P.; Junker, A.E.; Galsgaard, E.D.; Bendtsen, F.; Laupsa-Borge, J.; et al. Targeted metabolomics reveals plasma short-chain fatty acids are associated with metabolic dysfunction-associated steatotic liver disease. BMC Gastroenterol. 2024, 24, 43. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Wu, R.; Liu, Y.; Dai, S.; Gong, X.; Li, Y. Integration of pharmacodynamics and metabolomics to reveal rhubarb anthraquinone protection against nonalcoholic fatty liver disease rat model. J. Pharm. Pharmacol. 2024, 76, 381–390. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Z.; Zhang, Y.; Li, J.; Han, Y.; Wang, L.; Zhang, Y.; Geng, H.; Zheng, Y.; Wang, X.; Sun, C.; et al. Mass spectrometry imaging-based metabolomics highlights spatial metabolic alterations in three types of liver injuries. J. Pharm. Biomed. Anal. 2024, 242, 116030. [Google Scholar] [CrossRef]
- Huneault, H.E.; Gent, A.E.; Cohen, C.C.; He, Z.; Jarrell, Z.R.; Kamaleswaran, R.; Vos, M.B. Validation of a screening panel for pediatric metabolic dysfunction-associated steatotic liver disease using metabolomics. Hepatol. Commun. 2024, 8, e0375. [Google Scholar] [CrossRef]
- Luo, J.; Luo, M.; Kaminga, A.C.; Wei, J.; Dai, W.; Peng, Y.; Zhao, K.; Duan, Y.; Xiao, X.; Ouyang, S.; et al. Integrative metabolomics highlights gut microbiota metabolites as novel NAFLD-related candidate biomarkers in children. Microbiol. Spectr. 2024, 12, e0523022. [Google Scholar] [CrossRef]
- Tang, N.; Ji, L.; Shi, X.; Xiong, Y.; Xiong, X.; Zhao, H.; Song, H.; Wang, J.; Zhang, L.; You, S.; et al. Effects of Ganjianglingzhu Decoction on Lean Non-Alcoholic Fatty Liver Disease in Mice Based on Untargeted Metabolomics. Pharmaceuticals 2024, 17, 502. [Google Scholar] [CrossRef]
- Daniels, N.J.; Hershberger, C.E.; Kerosky, M.; Wehrle, C.J.; Raj, R.; Aykun, N.; Allende, D.S.; Aucejo, F.N.; Rotroff, D.M. Biomarker Discovery in Liver Disease Using Untargeted Metabolomics in Plasma and Saliva. Int. J. Mol. Sci. 2024, 25, 144. [Google Scholar] [CrossRef]
- Zhang, S.; Peng, X.; Yang, S.; Li, X.; Huang, M.; Wei, S.; Liu, J.; He, G.; Zheng, H.; Yang, L.; et al. The regulation, function, and role of lipophagy, a form of selective autophagy, in metabolic disorders. Cell Death Dis. 2022, 13, 132. [Google Scholar] [CrossRef]
- Filali-Mouncef, Y.; Hunter, C.; Roccio, F.; Zagkou, S.; Dupont, N.; Primard, C.; Proikas-Cezanne, T.; Reggiori, F. The menage a trois of autophagy, lipid droplets and liver disease. Autophagy 2022, 18, 50–72. [Google Scholar] [CrossRef] [PubMed]
- Kaini, R.R.; Sillerud, L.O.; Zhaorigetu, S.; Hu, C.A. Autophagy regulates lipolysis and cell survival through lipid droplet degradation in androgen-sensitive prostate cancer cells. Prostate 2012, 72, 1412–1422. [Google Scholar] [CrossRef] [PubMed]
- Korbecki, J.; Bosiacki, M.; Kupnicka, P.; Barczak, K.; Zietek, P.; Chlubek, D.; Baranowska-Bosiacka, I. Biochemistry and Diseases Related to the Interconversion of Phosphatidylcholine, Phosphatidylethanolamine, and Phosphatidylserine. Int. J. Mol. Sci. 2024, 25, 10745. [Google Scholar] [CrossRef] [PubMed]
- Sun, C.; Holstein, D.J.F.; Garcia-Cubero, N.; Moulla, Y.; Stroh, C.; Dietrich, A.; Schon, M.R.; Gartner, D.; Lohmann, T.; Dressler, M.; et al. The Role of Phosphatidylethanolamine N-Methyltransferase (PEMT) and Its Waist-Hip-Ratio-Associated Locus rs4646404 in Obesity-Related Metabolic Traits and Liver Disease. Int. J. Mol. Sci. 2023, 24, 6850. [Google Scholar] [CrossRef] [PubMed]
- Song, J.; da Costa, K.A.; Fischer, L.M.; Kohlmeier, M.; Kwock, L.; Wang, S.; Zeisel, S.H. Polymorphism of the PEMT gene and susceptibility to nonalcoholic fatty liver disease (NAFLD). FASEB J. 2005, 19, 1266–1271. [Google Scholar] [CrossRef]
- Wan, S.; van der Veen, J.N.; Bakala N’Goma, J.C.; Nelson, R.C.; Vance, D.E.; Jacobs, R.L. Hepatic PEMT activity mediates liver health, weight gain, and insulin resistance. FASEB J. 2019, 33, 10986–10995. [Google Scholar] [CrossRef]
- Alonso, C.; Fernandez-Ramos, D.; Varela-Rey, M.; Martinez-Arranz, I.; Navasa, N.; Van Liempd, S.M.; Lavin Trueba, J.L.; Mayo, R.; Ilisso, C.P.; de Juan, V.G.; et al. Metabolomic Identification of Subtypes of Nonalcoholic Steatohepatitis. Gastroenterology 2017, 152, 1449–1461.e7. [Google Scholar] [CrossRef]
- Zurier, R.B.; Burstein, S.H. Cannabinoids, inflammation, and fibrosis. FASEB J. 2016, 30, 3682–3689. [Google Scholar] [CrossRef]
- Kasatkina, L.A.; Rittchen, S.; Sturm, E.M. Neuroprotective and Immunomodulatory Action of the Endocannabinoid System under Neuroinflammation. Int. J. Mol. Sci. 2021, 22, 5431. [Google Scholar] [CrossRef]
- Forlani, L.; Cristoni, G.; Boga, C.; Todesco, T.E.; Del Vecchio, E.; Selva, S.; Monari, M. Reinvestigation of the tautomerism of some substituted 2-hydroxypyridines. ARKIVOC 2002, 11, 198–215. [Google Scholar] [CrossRef]
- Neubert, P.; Holck, J.P. Automated pre-column high-performance liquid chromatographic method for the investigation of adibendan metabolism. J. Chromatogr. 1989, 490, 155–164. [Google Scholar] [CrossRef] [PubMed]
- Denno, M.E.; Privman, E.; Borman, R.P.; Wolin, D.C.; Venton, B.J. Quantification of Histamine and Carcinine in Drosophila melanogaster Tissues. ACS Chem. Neurosci. 2016, 7, 407–414. [Google Scholar] [CrossRef] [PubMed]
- Boeglin, W.E.; Kim, R.B.; Brash, A.R. A 12R-lipoxygenase in human skin: Mechanistic evidence, molecular cloning, and expression. Proc. Natl. Acad. Sci. USA 1998, 95, 6744–6749. [Google Scholar] [CrossRef] [PubMed]
- Mashima, R.; Okuyama, T. The role of lipoxygenases in pathophysiology; new insights and future perspectives. Redox Biol. 2015, 6, 297–310. [Google Scholar] [CrossRef]
- Aguilera, J.A.; Linares, A.; Arce, V.; Garcia-Peregrin, E. Incorporation of mevalonate into squalene, lanosterol and cholesterol by different neonatal chick tissues. Int. J. Biochem. 1983, 15, 1481–1484. [Google Scholar] [CrossRef]
- Chua, N.K.; Coates, H.W.; Brown, A.J. Squalene monooxygenase: A journey to the heart of cholesterol synthesis. Prog. Lipid Res. 2020, 79, 101033. [Google Scholar] [CrossRef]
- Li, Z.; Agellon, L.B.; Allen, T.M.; Umeda, M.; Jewell, L.; Mason, A.; Vance, D.E. The ratio of phosphatidylcholine to phosphatidylethanolamine influences membrane integrity and steatohepatitis. Cell Metab. 2006, 3, 321–331. [Google Scholar] [CrossRef]
- van der Veen, J.N.; Kennelly, J.P.; Wan, S.; Vance, J.E.; Vance, D.E.; Jacobs, R.L. The critical role of phosphatidylcholine and phosphatidylethanolamine metabolism in health and disease. Biochim. Biophys. Acta Biomembr. 2017, 1859, 1558–1572. [Google Scholar] [CrossRef]
- Vance, D.E. Phospholipid methylation in mammals: From biochemistry to physiological function. Biochim. Biophys. Acta 2014, 1838, 1477–1487. [Google Scholar] [CrossRef]
- Lopez, M.J.; Mohiuddin, S.S. Biochemistry, Essential Amino Acids. In StatPearls; Treasure Island (FL) ineligible companies. Disclosure: Shamim Mohiuddin declares no relevant financial relationships with ineligible companies; StatPearls Publishing: Treasure Island, FL, USA, 2024. [Google Scholar]
- Shen, J.; Xie, E.; Shen, S.; Song, Z.; Li, X.; Wang, F.; Min, J. Essentiality of SLC7A11-Mediated Nonessential Amino Acids in MASLD. Sci. Bull. 2024, in press. [Google Scholar] [CrossRef]
- Gobeil, E.; Maltais-Payette, I.; Taba, N.; Briere, F.; Ghodsian, N.; Abner, E.; Bourgault, J.; Gagnon, E.; Manikpurage, H.D.; Couture, C.; et al. Mendelian Randomization Analysis Identifies Blood Tyrosine Levels as a Biomarker of Non-Alcoholic Fatty Liver Disease. Metabolites 2022, 12, 440. [Google Scholar] [CrossRef] [PubMed]
- Masoodi, M.; Gastaldelli, A.; Hyotylainen, T.; Arretxe, E.; Alonso, C.; Gaggini, M.; Brosnan, J.; Anstee, Q.M.; Millet, O.; Ortiz, P.; et al. Metabolomics and lipidomics in NAFLD: Biomarkers and non-invasive diagnostic tests. Nat. Rev. Gastroenterol. Hepatol. 2021, 18, 835–856. [Google Scholar] [CrossRef] [PubMed]
- Moore, M.P.; Shryack, G.; Alessi, I.; Wieschhaus, N.; Meers, G.M.; Johnson, S.A.; Wheeler, A.A.; Ibdah, J.A.; Parks, E.J.; Rector, R.S. Relationship between serum beta-hydroxybutyrate and hepatic fatty acid oxidation in individuals with obesity and NAFLD. Am. J. Physiol. Endocrinol. Metab. 2024, 326, E493–E502. [Google Scholar] [CrossRef] [PubMed]
- Post, A.; Garcia, E.; van den Berg, E.H.; Flores-Guerrero, J.L.; Gruppen, E.G.; Groothof, D.; Westenbrink, B.D.; Connelly, M.A.; Bakker, S.J.L.; Dullaart, R.P.F. Nonalcoholic fatty liver disease, circulating ketone bodies and all-cause mortality in a general population-based cohort. Eur. J. Clin. Investig. 2021, 51, e13627. [Google Scholar] [CrossRef]
- Nunez-Sanchez, M.A.; Martinez-Sanchez, M.A.; Martinez-Montoro, J.I.; Balaguer-Roman, A.; Murcia-Garcia, E.; Fernandez-Ruiz, V.E.; Ferrer-Gomez, M.; Martinez-Caceres, C.M.; Sledzinski, T.; Frutos, M.D.; et al. Lipidomic Analysis Reveals Alterations in Hepatic FA Profile Associated With MASLD Stage in Patients With Obesity. J. Clin. Endocrinol. Metab. 2024, 109, 1781–1792. [Google Scholar] [CrossRef]
- Morales-Marroquin, E.; Hanson, B.; Greathouse, L.; de la Cruz-Munoz, N.; Messiah, S.E. Comparison of methodological approaches to human gut microbiota changes in response to metabolic and bariatric surgery: A systematic review. Obes. Rev. 2020, 21, e13025. [Google Scholar] [CrossRef]
- Steffen, K.J.; Sorgen, A.A.; Fodor, A.A.; Carroll, I.M.; Crosby, R.D.; Mitchell, J.E.; Bond, D.S.; Heinberg, L.J. Early changes in the gut microbiota are associated with weight outcomes over 2 years following metabolic and bariatric surgery. Obesity 2024, 32, 1985–1997. [Google Scholar] [CrossRef]
- Beyoglu, D.; Idle, J.R. The gut microbiota—A vehicle for the prevention and treatment of hepatocellular carcinoma. Biochem. Pharmacol. 2022, 204, 115225. [Google Scholar] [CrossRef]
- Dave, A.; Beyoglu, D.; Park, E.J.; Idle, J.R.; Pezzuto, J.M. Influence of grape consumption on the human microbiome. Sci. Rep. 2023, 13, 7706. [Google Scholar] [CrossRef]
- Dave, A.; Park, E.J.; Kumar, A.; Parande, F.; Beyoglu, D.; Idle, J.R.; Pezzuto, J.M. Consumption of Grapes Modulates Gene Expression, Reduces Non-Alcoholic Fatty Liver Disease, and Extends Longevity in Female C57BL/6J Mice Provided with a High-Fat Western-Pattern Diet. Foods 2022, 11, 1984. [Google Scholar] [CrossRef]
- Queathem, E.D.; Stagg, D.B.; Nelson, A.B.; Chaves, A.B.; Crown, S.B.; Fulghum, K.; d’Avignon, D.A.; Ryder, J.R.; Bolan, P.J.; Hayir, A.; et al. Ketogenesis protects against MASLD-MASH progression through fat oxidation-independent mechanisms. bioRxiv 2024, 10.17, 618895. [Google Scholar] [CrossRef]
- Fernandez-Tussy, P.; Cardelo, M.P.; Zhang, H.; Sun, J.; Price, N.L.; Boutagy, N.E.; Goedeke, L.; Cadena-Sandoval, M.; Xirouchaki, C.E.; Brown, W.; et al. miR-33 deletion in hepatocytes attenuates MASLD-MASH-HCC progression. JCI Insight 2024, 9, e168476. [Google Scholar] [CrossRef] [PubMed]
- Biro, F.M.; Wien, M. Childhood obesity and adult morbidities. Am. J. Clin. Nutr. 2010, 91, 1499S–1505S. [Google Scholar] [CrossRef] [PubMed]
- Hines, R.N. Ontogeny of human hepatic cytochromes P450. J. Biochem. Mol. Toxicol. 2007, 21, 169–175. [Google Scholar] [CrossRef] [PubMed]
- Subash, S.; Singh, D.K.; Ahire, D.; Khojasteh, S.C.; Murray, B.P.; Zientek, M.A.; Jones, R.S.; Kulkarni, P.; Zubair, F.; Smith, B.J.; et al. Ontogeny of Human Liver Aldehyde Oxidase: Developmental Changes and Implications for Drug Metabolism. Mol. Pharm. 2024, 21, 2740–2750. [Google Scholar] [CrossRef]
- Badee, J.; Qiu, N.; Collier, A.C.; Takahashi, R.H.; Forrest, W.F.; Parrott, N.; Schmidt, S.; Fowler, S. Characterization of the Ontogeny of Hepatic UDP-Glucuronosyltransferase Enzymes Based on Glucuronidation Activity Measured in Human Liver Microsomes. J. Clin. Pharmacol. 2019, 59, S42–S55. [Google Scholar] [CrossRef]
Species | Pathology | Tissues Studied | Findings | Reference |
---|---|---|---|---|
rat | Zucker obese rat | liver, blood | methionine (X50), betaine (X4) ↓ in obese rat liver | [66] |
rat | Zucker obese rat | plasma | LPC(16:0), LPC(18:1), LPC(18:0) ↑ in obese rat plasma | [67] |
mouse | obese on high-fat diet (HFD) | liver, serum | arginine, tyrosine, pipecolic acid, benzoic acid, pantothenic acid, uric acid, phenylpyruvic acid, phenylacetamide, serotonin, L-carnitine, stearoylcarnitine, PCs, and 3 LPCs with C17:0, C18:0, and C18:3 ↑ in serum by HFD. Four acyl-carnitines (with C14:0, C16:1, C18:0, C18:1, and C18:2), 11 LPCs (with C14:0, C15:0, C16:0, C16:1, C17:1, C18:1, and C18:2, C19:0, C20:1, and C20:4), and two LPEs (with C18:2 and C20:4) ↓ in serum by HFD. 7-ketodeoxycholic acid, pantothenic acid, PCs and LPCs (with C20:4 and C22:6) ↑ in liver by HFD. valine, betaine, L-carnitine, 3-methylgutarylcarnitine, and LPCs (with C14:0, C16:0, C16:1, C18:0, and C18:3) ↓ in liver by HFD. | [68] |
mouse | obese on HFD | serum | glucose ↑ in HF serum vs. LF isobutyrate, TMAO, creatine, valine, 3-methyl-2-oxovalerate, phenylalanine, isoleucine, leucine, taurine, glycine, O-acetylcarnitine, choline, glutamate, lactate, tyrosine, methionine, acetate ↓ in HF serum vs. LF | [69] |
rat | ovariectomized (OVX) obese | serum | cholesterol, glycerol, glucose, arachidonic acid, glutamic acid, glycine, and cystine ↑ in OVX serum alanine ↓ in OVX | [70] |
mouse | obese on HFD | serum | 3-hydroxybutyrate, glutamine, 2-hydroxybutyrate, tyrosine, citrulline, glucose ↑ in HF serum vs. chow glutamate, fumarate, choline, urea ↓ in HF serum vs. chow | [71] |
human | healthy obese | serum | glycine, glutamine, PC(42:0) ↑ in healthy obese vs. healthy lean PC(32:0), PC(31:1), PC(40:5) ↓ in healthy obese vs. healthy lean | [72] |
human | obese adolescents | plasma | carnitine(10:0), histidine, serine ↓ in obese adolescents | [73] |
human | obese PCOS, obese non-PCOS, non-obese PCOS, non-obese non-PCOS | plasma | linoleic acid, oleic acid, glycerol ↑ in obese PCOS palmitoleic acid, oleic acid, citramalic acid, phenylalanine, gluconic acid lactone in all obese ↑ glycine ↓ in all obese | [74] |
rat | HFD, LFD, cafeteria diet (CAF) | serum, liver, muscle, adipose | myristic acid (14:0), palmitoleic acid (16:1), palmitic acid (16:0), α-linolenic acid (18:3), linoleic acid (18:2), oleic acid (18:1), stearic acid (18:0) ↑ in serum on CAF diet triglycerides ↑ in muscle on CAF diet C3, C4/C14, C5, C4-OH, C6, C8, C10, C12, C14, C16, C18:1, C18 acylcarnitines ↑ in muscle on CAF diet C10, C12, C18:1, C18 acylcarnitines ↑ in adipose on CAF diet | [75] |
human | men and women with abdominal obesity | serum | correlated metabolites with android (A), gynoid (G), abdominal visceral (VAT), subcutaneous (SAT) fat. Triglycerides TG(54:1–3) correlated to VAT in women but TG(50:1–5), TG(55:1), PC(32:0) correlated to VAT in men. | [76] |
mouse | ob/ob mice vs. B6 controls | urine | male mice: alanine, 5-aminolevulinate, guanidino-acetate, 2-hydroxybutyrate, 3-hydroxy-kynurenine, isopropanol, leucine, methionine, methylmalonate, N-acetyl aspartate, N-acetyl glutamate, 2-oxo-isocaproate, phenylalanine, threonine, tryptophan, tyrosine, valine, pyruvate, glycerol, creatine, creatine phosphate, creatinine, choline, dimethylamine, hippurate, 2-hydroxyisobutyrate, isobutyrate, methylamine, p-cresol, TMA, trigonelline, allantoin, , suberate, 2-hydroxyvalerate, nicotinamide N-oxide ↓ ob/ob vs. B6 controls female mice: alanine, 2-hydroxybutyrate, leucine, methionine, 2-oxo-isocaproate, phenylalanine, urea, acetate, taurine, creatine, creatinine, choline, methylamine, 2-hydroxyvalerate, suberate ↓ ob/ob vs. B6 controls acetoacetate, acetone, citrate, fumarate, 2-oxo-glutarate, succinate, TMA, 3-hydroxybutyrate ↑ ob/ob vs B6 controls male mice: arginine, lysine, ornithine, glucose, glycolate, pyruvate, creatine ↓ in ob/ob mice vs B6 controls acetoacetate, succinate, carnitine, TMAO, VLDL/LDL cholesterol ↑ in ob/ob vs B6 controls female mice: alanine, arginine, glycine, isoleucine, lysine, methionine, ornithine, serine, citrate, glycolate, lactate, creatine, choline, ethylene glycol ↓ in ob/ob vs B6 controls acetone, carnitine, VLDL/LDL cholesterol ↑ in ob/ob vs B6 controls | [77] |
serum | male mice: arginine, lysine, orni-thine, glucose, glycolate, pyruvate, creatine ↓ in ob/ob mice vs B6 con-trols acetoacetate, succinate, carnitine, TMAO, VLDL/LDL cholesterol ↑ in ob/ob vs B6 controls female mice: alanine, arginine, gly-cine, isoleucine, lysine, methionine, ornithine, serine, citrate, glycolate, lactate, creatine, choline, ethylene glycol ↓ in ob/ob vs B6 controls acetone, carnitine, VLDL/LDL cho-lesterol ↑ in ob/ob vs B6 controls | |||
human | childhood obese vs. lean | plasma | BCAA; valine, leucine, isoleucine, (and related intermediate metabolites) and androgens; dehydroepiandrosterone sulfate (and their metabolites) ↑ in obese than lean children | [78] |
human | nondiabetic obese vs nondiabetic lean | serum | 3-hydroxybutyric acid, lysine, glutamine, choline, proline, 3,7-dimethyluric acid, pantothenic acid, myo-inositol, threonine, leucine, sorbitol, glycerol, glucose, histidine ↑ in nondiabetic obese vs. nondiabetic lean | [79] |
human | fasting obese vs lean young students | serum | alanine, valine, proline, creatine, asparagine, phenylalanine, leucine, isoleucine, FFA(14:0), FFA(16:0), FFA(16:1), FFA(18:0), FFA(18:1), FFA(18:2), FFA(18:3), FFA(20:2), FFA(20:5), FFA(22:4), FFA(22:5), FFA(22:6) ↑ in fasting obese vs fasting lean glutamate, glutamine, taurine ↓ in fasting obese vs fasting lean | [80] |
human | obese vs lean males | skeletal muscle | 2-oxoglutarate ↑ in obese skeletal muscle than lean skeletal muscle glycine, histidine, methionine, citrulline, C4, C8, C10, C10:1, C10:2, C12:1 acylcarnitines ↓ in obese skeletal muscle than lean skeletal muscle | [81] |
plasma | C3, C4, C10:1 acylcarnitines ↑ in obese plasma than lean plasma histidine ↓ in obese plasma than lean plasma | |||
human | obese vs normal weight men | serum | 2-octenoylcarnitine, eicosadienoic acid, 12-hydroperoxyeicosatetraenoic acid, 4-hydroxyestrone sulfate, LPE [18:1(11Z)/0:0], thromboxane B2 and pyridinoline ↑ in obese men vitamin D3 glucuronide, 9,10-DHOME ↓ in obese men | [82] |
human | obese vs nonobese Hispanic children | fasting plasma | alanine, creatine, glutamate, 3-methyl-2-oxobutyrate, α-hydroxyisovalerate, isoleucine, leucine, valine, lysine, α-hydroxybutyric acid, α-ketobutyric acid, 3-(4)-hydroxyphenyllactate, phenylalanine, tyrosine, N-(3-acetamidopropyl)pyrrolidin-2-one, C-glycosyl-tryptophan, kynurenate, kynurenine, tryptophan, ornithine, γ-glutamylglutamate, γ-glutamylleucine, γ-glutamylphenylalanine, γ-glutamyltyrosine, bradykinin, des-Arg9-bradykinin ↑ in obese Hispanic children asparagine, aspartate, pyroglutamine, glycine, N-acetylglycine, serine, histidine, citrulline ↓ in obese Hispanic children | [83] |
human | metabolically healthy obese (MHO), lean healthy (LH) and metabolically unhealthy obese (MUO) | fasting serum | MUO < MHO < LH: asparagine, glutamine, cystine, serine LH < MHO ≈ MUO: FA(16:1) LH ≈ MUO < MHO: FA(20:4), FA(18:2) MUO < MHO ≈ LH: FA(18:3) Correlation with HOMA-IR: proline, leucine, FA(14:0), FA(16:0) Correlation with fasting glucose: creatine, proline, FA(14:0), FA(18:0), FA(14:1), FA(18:1), FA(18:2) Correlation with postprandial AUC glucose: FA(14:0), FA(16:0), FA(14:1) Correlation with postprandial AUC insulin: FA(16:0), isoleucine | [84] |
human | MSG-treated obese mice | urine | 2 months: 1-methylnicotinamide, 2-PY, 4-PY, citrate, succinate, acetate ↑ trigonelline, nicotinamide N-oxide, methylamine, creatine, N-isovalerylglycine, putrescine ↓ 6 months: 1-methylnicotinamide, 2-PY, 4-PY, phenacetylglycine, allantoin ↑ trigonelline, nicotinamide N-oxide, methylamine, N-isovalerylglycine, putrescine ↓ 9 months: 1-methylnicotinamide, 2-PY, 4-PY, phenacetylglycine, allantoin ↑ trigonelline, nicotinamide N-oxide, methylamine, N-isovalerylglycine, putrescine ↓ | [85] |
human | severely obese vs non-obese | serum | alanine, leucine, isoleucine, valine, tyrosine, phenylalanine, pyruvate, citrate, acetoacetate, glucose, VLDL1, formate, methanol, isopropanol ↑ glutamine, histidine ↓ | [86] |
rat | obese (HFD) vs lean (ND) | serum | lactate, alanine, 2-hydroxyisobutyrate, pyruvate, creatine/creatinine, glucose, acetate ↑ 3-hydroxybutyrate ↓ | [87] |
human | obese adolescents vs normal weight adolescents | urine | C3, C5, C8, C10, C12, C14 acylcarnitines, hydroxypropionyl carnitine, carnitine, aspartate, asymmetric dimethylarginine, putrescine ↑ carnitine, carnitine, aspartate, asymmetric dimethylarginine, putrescine ↑ glycine, serine, threonine, methionine, dopamine, isoleucine, arginine, ornithine, citrulline, carnosine, serotonin, C4 acylcarnitine, SM(16:0), SM(OH)(22:1), SM(24:1), PC aa 34:2, 38:6, 30:2, 34:4, 34:1, 38:5, 36:1 ↓ | [88] |
human | obese children with and without im-paired insulin sig-naling | serum | taurodeoxycholate, glycodeoxycholate, LPE(16:0), LPC(14:0), LPE(18:0), LPE(18:1), LPE(18:2), LPE(20:3), LPS(19:0), LPS(20:4), methylbutyrylcarnitine, threitol, piperidine, pyruvate, lactate, alanine, proline, valine, leucine, isoleucine, 2-ketoisocaproate, tryptophan, phenylalanine, tyrosine, arginine, aspartate ↑ acetylcarnitine, biliverdin, docosapentaenoate, docosahexaenoate, 3-hydroxybutyrate ↓ | [89] |
mouse | obese (HFD) vs lean (normal diet) | serum | glucose, glycine, alanine ↑ serine, isoleucine, valine, acetoacetate ↓ | [90] |
rat | obese (HFD) vs lean (normal diet) | urine | creatinine, cytosine, 7-methylhypoxanthine, glucosamine, indole-3-carboxylic acid glucuronide, indole-3-carboxylic acid, phenacetylglycine, 3-methoxyphenylpropanoic acid, 3-methyldioxyindole, indoxyl sulfate, p-cresol glucuronide, p-cresol sulfate, suberic acid ↑ hippuric acid, 4,6-dihydroxyquinoline, tyrosol, 4-pyridoxic acid, 2-phenylethanol glucuronide, 5-L-glutamyltaurine, cholic acid ↓ | [91] |
human | morbid obese vs non-obese | fasting serum | glutamate, 12 x ceramides ↑ glycine, LPC(16:0), LPC(17:0), LPC(18:0), LPC(18:1), LPC(18:2), LPE(18:0), LPE(18:1), LPE(18:2), PC(34:2), PC(34:3), PC(36:2), PC(36:3), PC(38:0), PC(38:5), PC(38:6), PC(40:6), PE(28:5), PE(36:0), PE(38:0), PE(38:1), PE(40:2), PE(40:3), PE(34:1), PE(34:2), PE(34:3), PE(36:2), PE(36:3), PE(38:2), PE(38:3), PE(38:6), PE(40:3), PE(40:5), PE(40:6), PS(38:4) ↓ | [92] |
human | obese vs normal weight children | urine | xylitol, phenylacetic acid ↓ | [93] |
human | obese gravidae vs normal weight gravidae | placenta | uracil, hypoxanthine, glucose-6-phosphate, 3-phosphoglycerate, glycerol, nicotinamide, tyrosine, phenylalanine, isoleucine, leucine, serine, palmitate ↑ lysine, taurine, aspartate, glutamine, inosine, guanosine, inositol, gluconate, docosahexaenoate, arachidonate, stearate ↓ | [94] |
human | metabolically unhealthy (MUHO) obese vs metabolically healthy (MHO) | plasma | MHO: BCAA, tyrosine, glutamate, PC(32:1), PC(38:3) ↑ acylcarnitine C18:2, LPC(18:0), LPC(18:1), LPC(18:2) ↓ MUHO: proline, PC(32:2), PC(34:2), C3 acylcarnitine, LPC(16:1) ↑ serine, asparagine, LPC(18:1), LPC(18:2), PC(34:3) ↓ | [95] |
human | obese and normal weight children | plasma | lactate ↑ glucose, cysteine, 2-oxoglutarate, citrate ↓ | [96] |
human | obese metabolic well and unwell vs lean well | plasma | alanine, α-aminoadipic acid, cystine, isoleucine, leucine, valine, phenylalanine, tyrosine, propionylcarnitine ↑ malonylcarnitine ↓ | [97] |
human | overweight/ obese men vs. normal weight men | serum | Phe-Phe, phenylalanine, tryptophan ↑ p-cresol, p-cresol sulfate, phenacetylglutamine, glutamine, sphingosine 1-phosphate ↓ | [98] |
urine | glucuronic acid, uric acid, tetrahydrocortisone, deoxycortisol ↑ glutamine, phenacetylglutamine, indoxyl sulfate, p-cresol, p-cresol sulfate, phenylacetamide, 19-hydroxy-testosterone, tetrahydrodeoxycorticosterone ↓ | |||
human | obese vs non-obese | fasting plasma | leucine, isoleucine, valine, alanine, glutamate, proline, tyrosine, LPC(16:1), PC(32:1), PC(32:2), PC(38:3) ↑ serine, asparagine, LPC(18:1), LPC(18:2), LPC(18:0), PC(34:3), PC(38:4), PC(40:6) ↓ | [99] |
human | obese vs non-obese | plasma | LPC(14:0), LPC(16:0), phenylalanine, tryptophan, tyrosine, isoleucine, leucine, valine, phenylacetamide, phenylpyruvic acid, uric acid, arginine ↑ LPC(18:1), LPC(18:2), LPC(20:4), LPC(20:5), acylcarnitines C8:0, C10:1, hypoxanthine ↓ | [100] |
human | lean vs normal weight obese (NWO) vs overweight obese (OWO) | plasma | OWO ≈ NWO > lean: linoleic acid, HPODE, HODE/EpOME, lysine, carnitine, proline ↑ | [101] |
human | healthy vs overweight vs stages 1,2,3 obesity | plasma | obese > overweight > healthy: steroidogenesis, androgen and estrogen metabolism, glycine and serine metabolism, homocysteine degradation, malate-aspartate shuttle, cysteine metabolism, beta-alanine metabolism, aspartate metabolism, taurine and hypotaurine metabolism, retinol metabolism, glutathione metabolism, glutamate metabolism, ammonia recycling, estrone metabolism, amino sugar metabolism, tryptophan metabolism, histidine metabolism, arginine, and proline metabolism ↑ | [102] |
human | link between sugar-sweetened beverages and obesity | plasma | 5-hydroxylysine, glycine, γ-tocopherol/β-tocopherol, 2-oxoglutarate, N-acetylhistidine, butyrylcarnitine, cholesterol, 3-phenylpropionate, 9-hydroxystearate, 2-hydroxybutyrate/2-hydroxyisobutyrate, 3-hydroxybutyrylcarnitine, 3-hydroxyisobutyrate, 3-hydroxybutyrylcarnitine, 1,5-anhydroglucitol, erythronic acid, LPC(18:1), LPC(16:0), LPC(16:1), PC(18:2/18:2), PC(18:0/18:2), PC(18:2/18:3), LPE(18:2), LPI(18:1), LPE(18:1), PC(16:0/18:0), sphingomyelin(d18:1/20:0)/(d16:1/22:0), sphingomyelin(d18:2/14:0)/(d18:1/14:1) ↑ | [103] |
human | causes obesity effect of obesity both cause and effect of obesity | plasma | 2-hydroxybutyrate, PC(34:4), acylcarnitine C6, PCE(18:1), cotinine ↑ valine, LPC(22:6), acylcarnitine C18 ↑ glycine, tyrosine ↑ | [104] |
human | obese women with PCOS vs obese women without PCOS | feces | taurocholate, FA(20:3), FA(20:4), FA(20:5), FA(22:4) FA(22:6), DHEA sulfate, 9,12,13-triHOME, pregnenolone sulfate, bilirubin ↑ testosterone, plastoquinol, xanthine, FA(24:1), thymine ↓ | [105] |
Species | Pathology | Tissues Studied | Findings | Reference |
---|---|---|---|---|
human | NAFLD | plasma | taurocholate, glutamylvaline, glutamylleucine, glutamylphenylalanine, glutamyltyrosine, FA(11:0), FA(18:3), acylcarnitines C0 and C4, mannose, lactate, glutamate, lysine, tyrosine, isoleucine ↑ | [113] |
mouse | ALD | urine | ethylsulfate, ethyl-β-D-glucuronide, 4-hydroxyphenylacetic acid, 4-hydroxyphenylacetic acid sulfate ↑, indole-3-lactic acid ↑ in PPARα-null mice only | [114] |
mouse | ALD | urine | ethyl-β-D-glucuronide, N-acetylglycine ↑, phenyllactic acid, indole-3-lactic acid ↑ in PPARα-null mice only | [115] |
mouse | ALD | liver | FA(2:0), FA(6:0), FA(12:0), FA(14:0), FA(16:1), FA(20:3), tyrosine, 2-aminobutyrate, glycolate, 3-pyridinol, hypoxanthine ↑ | [116] |
mouse | NAFLD | serum | methylhippurate, glycerol 3-phosphate, mannose, ketoleucine, 2-oxohexanoate, hydroxyphenyllactate, succinate, methionine, tryptophan ↑ | [117] |
human | NAFLD | plasma | tyrosine, glutamate, FA(8:0) ↑ | [118] |
rat | NAFLD | serum | FA(28:8), CE(12:0), PG(14:0/18:1) ↑ | [119] |
human | MASLD | serum | glutamate, isoleucine, valine, leucine, tyrosine, acylcarnitine C3, γ-glutamylvaline, γ-glutamylisoleucine, γ-glutamylleucine, urate, 3-methyl-2-oxovalerate, cyclo(leucylprolyl) ↑ | [120] |
human | NAFLD | liver | DCA, TCA ↑ | [121] |
rat | NAFLD | liver | CA, DCA, citrulline, lysine, serine, threonine ↑ | |
human | NAFLD | urine | acylcarnitines C0, C2, C10, 7-methylxanthine, 6β-hydroxy-testosterone ↑ | [122] |
human | NAFLD | urine | glucose, 1-methylhistidine, pseudouridine, glycolate, sebacate, glucono-1,4-lactone, 1-methylnicotinate, oxalate ↑ | [93] |
mouse | NAFLD nonobese | liver | free cholesterol, CE(16:1), CE(18:1), CE(18:2), CE(18:3). CE(20:1), CE(20:2), CE(20:3), CE(20:4), CE(22:5), CE(22:6), CA ↑ | [123] |
plasma | CE(16:1), CE(18:1), CE(18:2), CE(18:3). CE(20:1), CE(20:2), CE(20:3), CE(22:5), CA, DCA ↑ | |||
blunt snout bream | NAFLD | serum | glucose, succinate, tyrosine ↑ | [124] |
human | NAFLD | plasma | arginine, alanine, leucine, phenylalanine, tyrosine, valine, ornithine, proline, acylcarnitines C0, C10:2, C14:1 ↑ | [125] |
human | NAFLD | serum | TG(52:1), TG(53:1), TG(53:0), TG(58:2), TG(54:5) ↑ | [126] |
human | ALD | serum | glycocholate, taurocholate, taurochenodeoxycholate, glycodeoxycholate, taurodeoxycholate, glycolithocholate, S-methylmethionine, methionine sulfoxide, cystine, bilirubin (Z,Z), bilirubin (E,E), urobilinogen. 3β,17β-androstenediol monosulfate, 3β,17β-androstenediol disulfate, 5α--androstane-3β,17β-diol disulfate, isovalerate, 2-hydroxy-3-methylvalerate, α-hydroxyisovalerate, 2,3-dihydroxy-2-methylbutyrate ↑ | [127] |
human | NAFLD | urine | androgens (e.g., DHEA), glucocorticoids (e.g., tetrahydrocortisone), mineralocorticoids (e.g., corticosterone) ↑ | [128] |
rat | NAFLD | serum | 12(R)-HETE, phosphatidylethanolamine, leucine, valine, isoleucine, proline, arginine, tryptophan, 2-hydroxycinnamic acid, trans-cinnamic acid ↑ | [129] |
human | NAFLD | plasma | acylcarntines C0, C3, C3DC, C4, C5, C5OH, C8:1, C10, C14OH, C14:1OH, C16:1, C16:2, C18, C18OH, C18:1, C18:2, C20, C20:4 ↑ | [130] |
mouse | NAFLD | serum | methylcysteine, tryptophan, tyrosine, alanine, p-cresol sulfate, 2-hydroxyglutarate, glutaconate, FA(22:4) ↑ | [131] |
ALD | liver | FA(16:0), FA(18:2), FA(20:4), FA(22:5), xanthosine ↑ | [132] | |
goose | NAFLD | liver | 3-phosphoglycerate, glutarate, sphingosine, FA(24:0), 3α,7α,12α-trihydroxycoprostane, squalene, glutathione ↑ | [133] |
rat | NAFLD | liver | 3-phosphoglycerate, taurochenodeoxycholate-3-sulfate, 4-hydroxy-6-eicosanone, 13-hydroxy-9-methoxy-10-oxo-11-octadecenate ↑ | [134] |
rat | ALD | serum | β-alanine, alanine, arginine, serine, tyrosine, ornithine ↑ | [135] |
human | NAFLD | serum | urate, galactose, galactitol, mannose, guanosine ↑ | [136] |
human | NAFLD | serum | glutaconate, homocitrulline, acylcarnitines C2, C3, LPE(22:1), PA(13:0/17:1), PA(20:3/20:5), PC(14:1:22:6), PE(14:0/14:0), PE(18:0/22:6), PE(18:3/20:5), PE(18:4/18:4), PE(20:4/20:4), LPS(21:0), MGDG(18:3/18:4) N-succinyldiaminopimelate, 20-COOH-leukotriene B4 ↑ | [137] |
human | MASLD | plasma | LPC(26:0), LPC(28:0), PC(24:0), PC(36:2), PC(40:6), glutamate, tyrosine ↑ | [138] |
stool | cysteine, xanthine ↑ | |||
human | NAFLD | serum | mannose, FA(18:0), FA(20:2), PI(18:0/20:4) ↑ | [139] |
rat | NAFLD | plasma | proline, fumarate, glucosylgalactosyl hydroxylysine, 3-methyl-1-hydroxybutyl-ThPP, 2-oxoglutarate, acetylphosphate, inosine triphosphate ↑ | [140] |
human | NAFLD | plasma | TG(54:0), TG(54:1), TG(53:0), TG(52:0), TG(50:0), TG(49:0), TG(48:0), TG(46:0), TG(45:1), TG(44:1), PC(32:1), LPE(16:1), CDCA, CA, LPE(20:4), LPE(22:5), androsterone sulfate ↑ | [141] |
human | NAFLD | serum | 3-hydroxy-cis-5-tetradecenoylcarnitine, acylcarnitines C5, C8, C11-OH, C12-OH, C12-OHDC, LPE(17:0), LPC(14:0), LPC(18:0), LPC(18:3), LPC(20:3), MG(18:1), DG(18:1/18:2), DG(20:3/20:4), 25-hydroxyvitamin D3-26,23-lactol, deoxycholate 3-glucuronide, tuftsin, retinyl glucuronide, cortolone 3-glucuronide, tetrahydroaldosterone 3-glucuronide ↑ | [142] |
hamster | NAFLD | liver | glucosylceramide, PE(16:1/20:1), PE(16:1/20:2), PE(P-18:0/20:4), PC(18:0/18:2), DG(18:0/18:2), C16 sphingosine, S-(2-carboxypropyl)-cysteamine, tetrahydrodipicolinate, glycerol 3-phosphate, LPC(20:2), LPE(20:1), LPE(20:2), LPE(20:3) ↑ | [143] |
mouse | NAFLD | serum | FA(16:0), FA(18:0), FA(18:1), FA(20:4) ↑ | [144] |
mouse | ALD | liver | taurocholate, glycocholate, taurohyodeoxycholate, taurodeoxycholate, 7-keto-deoxycholate ↑ | [145] |
rat | NAFLD | serum | proline, lysine, tryptophan, citrulline, isoleucine, valine, arginine, leucine, sphingosine-1-phosphate, glycocholate, urate, stearate, palmitate, glycerylphosphorylethanolamine, TG(18:0/20:4/20:4), glycerol, 12(R)-HETE, galactose ↑ | [146] |
cow | NAFLD | feces urine serum | FA(22:0) ↑ FA(16:1) ↑ FA(17:0), FA(18:0), FA(19:0), FA(18:1,6Z) ↑ | [147] |
human | MAFLD | serum | 1-carboxyethylisoleucine, 1-carboxyethyltyrosine, 1-carboxyethylphenylalanine, 2-oxoglutarate, acylcarnitines C4OH, C8OH, PE(18:0/22:6), PE(16:0/22:6), formiminoglutamate, glutamate, glycoursodeoxycholate 3-sulfate, pyruvate, 2-hydroxybutyrate/2-hydroxyisobutyrate, ribitol, sphinganine, sphingosine ↑ | [148] |
human | NAFLD | serum | pantothenate, hypoxanthine, citrate, citramalate, phenylalanine, glutamine, 1,4-butynediol, pyroglutamate, dehydroisoandroste-rone sulfate (DHEA-S), 5-androsten-3β,17β-diol-3-sulfate, glycerate, ribose, and 5α-pregnan-3α,17-diol-20-one 3-sulfate ↑ | [149] |
human | NAFLD | plasma | alanine, isoleucine, leucine, valine, tyrosine, lactate ↑ | [150] |
human | NAFLD | serum | phenylalanine, tyrosine, proline, alanine, arginine, leucine, ornithine, urate, carnitine, acylcarnitines C6, C8, C10, C10:2 ↑ | [151] |
human | ALD | serum | indolebutyrate, methionine sulfoxide, 3-ureidopropionate, cis-3,3-methyleneheptanoylglycine, retinol, valine ↑ | [152] |
mouse | NAFLD | serum | N-palmitoylarginine, sphingosine, arachidonoylarginine, LPC(20:2), LPC(20:3), PC(20:5-3-OH/2:0), LPI(20:4), Cer(d18:0/18:0) | [153] |
human | MASLD | plasma | propionate, formate, valerate, α-methylbutyrate | [154] |
rat | NAFLD | serum | FA(18:3), AMP, dihydrothymine, uracil, arabinonate, fructose, mannose, glyceraldehyde, dihydroorotate, citrate, glutamine, GS-SG, homocystate, β-alanine, TCA, DCA, GCA, GCDCA, PI(34:2), PI(38:5), FA(18:1, 12,13-di-OH), FA(20:1), 3-hydroxy-3-methylglutarate, glycerol 2-phosphate, LPE(18:1) ↑ | [155] |
zebrafish | ALD | whole body | glutamate, taurine, malate, acylcarnitine C2, LPC(16:0), PC(34:1) | [156] |
human | MASLD | serum | serine, leucine, isoleucine, tryptophan, LPE(20:0) ↑ | [157] |
human | NAFLD | serum | sulfoacetate, gallate, pregnanetriol, LPS(22:2), FA(20:4), 1-lauroylglycerol, adenine, PE(14:0/15:0), PC(16:0/17:2), LPE(16:0) ↑ | [158] |
mouse | NAFLD | plasma | PE(22:4/19:0), PS(O-20:0/18:1), 2-hydroxypyridine, β-alanyl histamine ↑ | [159] |
human | NAFLD | saliva | aconitate, cholesterol ↑ | [160] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Beyoğlu, D.; Popov, Y.V.; Idle, J.R. Metabolomic Hallmarks of Obesity and Metabolic Dysfunction-Associated Steatotic Liver Disease. Int. J. Mol. Sci. 2024, 25, 12809. https://doi.org/10.3390/ijms252312809
Beyoğlu D, Popov YV, Idle JR. Metabolomic Hallmarks of Obesity and Metabolic Dysfunction-Associated Steatotic Liver Disease. International Journal of Molecular Sciences. 2024; 25(23):12809. https://doi.org/10.3390/ijms252312809
Chicago/Turabian StyleBeyoğlu, Diren, Yury V. Popov, and Jeffrey R. Idle. 2024. "Metabolomic Hallmarks of Obesity and Metabolic Dysfunction-Associated Steatotic Liver Disease" International Journal of Molecular Sciences 25, no. 23: 12809. https://doi.org/10.3390/ijms252312809
APA StyleBeyoğlu, D., Popov, Y. V., & Idle, J. R. (2024). Metabolomic Hallmarks of Obesity and Metabolic Dysfunction-Associated Steatotic Liver Disease. International Journal of Molecular Sciences, 25(23), 12809. https://doi.org/10.3390/ijms252312809