Kallistatin as a Potential Marker of Therapeutic Response During Alpha-Lipoic Acid Treatment in Diabetic Patients with Sensorimotor Polyneuropathy
Abstract
:1. Introduction
2. Results
2.1. Clinical and Laboratory Characteristics of DSPN Patients
2.2. Correlations Between Kallistatin and Main Parameters in DSPN Patients
2.3. Spearman’s Correlations Between Changes in Kallistatin Levels and Changes in Different Laboratory Parameters
3. Discussion
4. Materials and Methods
4.1. Study Population
4.2. Blood Sampling
4.3. Measurement of Serum Kallistatin
4.4. Serum ADMA Measurement
4.5. Serum TNF-α Measurement
4.6. Measurement of oxLDL
4.7. Measurement of sICAM-1, sVCAM-1, and VEGF
4.8. Assay for Nitric Oxide Concentration
4.9. Assessment of Autonomic and Peripheral Nerve Function
4.10. Statistical Methods
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ADMA | Asymmetric dimethylarginine |
ALA | Alpha-lipoic acid |
CPT | Current perception threshold |
CVs | Coefficients of variation |
DN4 | Douleur Neuropathique 4 |
DSPN | Diabetic sensorimotor neuropathy |
ELISA | Enzyme-linked immunosorbent assay |
eNOS | Endothelial NO synthase |
HbA1c | Hemoglobin A1c |
HDL-C | High-density lipoprotein cholesterol |
ICAM-1 | Intercellular adhesion molecule-1 |
IL-6 | Interleukin-6 |
LDL-C | Low-density lipoprotein cholesterol |
NADPH | Nicotinamide adenine dinucleotide phosphate |
NF-κB | Nuclear factor kappa B |
NO | Nitric oxide |
NTSS-6 | Neuropathy Total Symptom Score-6 |
oxLDL | Oxidized LDL |
ROS | Reactive oxygen species |
T2DM | Type 2 diabetes |
TNF-α | Tumor necrosis factor-alpha |
VCAM-1 | Vascular cell adhesion molecule-1 |
VEGF | Vascular endothelial growth factor |
References
- Callaghan, B.C.; Price, R.S.; Chen, K.S.; Feldman, E.L. The Importance of Rare Subtypes in Diagnosis and Treatment of Peripheral Neuropathy: A Review. JAMA Neurol. 2015, 72, 1510–1518. [Google Scholar] [CrossRef] [PubMed]
- Ziegler, D.; Tesfaye, S.; Spallone, V.; Gurieva, I.; Al Kaabi, J.; Mankovsky, B.; Martinka, E.; Radulian, G.; Nguyen, K.T.; Stirban, A.O.; et al. Screening, diagnosis and management of diabetic sensorimotor polyneuropathy in clinical practice: International expert consensus recommendations. Diabetes Res. Clin. Pract. 2022, 186, 109063. [Google Scholar] [CrossRef]
- Coppey, L.J.; Gellett, J.S.; Davidson, E.P.; Dunlap, J.A.; Lund, D.D.; Yorek, M.A. Effect of antioxidant treatment of streptozotocin-induced diabetic rats on endoneurial blood flow, motor nerve conduction velocity, and vascular reactivity of epineurial arterioles of the sciatic nerve. Diabetes 2001, 50, 1927–1937. [Google Scholar] [CrossRef]
- Goldberg, R.B. Cytokine and cytokine-like inflammation markers, endothelial dysfunction, and imbalanced coagulation in development of diabetes and its complications. J. Clin. Endocrinol. Metab. 2009, 94, 3171–3182. [Google Scholar] [CrossRef] [PubMed]
- Maiuolo, J.; Gliozzi, M.; Musolino, V.; Carresi, C.; Nucera, S.; Macri, R.; Scicchitano, M.; Bosco, F.; Scarano, F.; Ruga, S.; et al. The Role of Endothelial Dysfunction in Peripheral Blood Nerve Barrier: Molecular Mechanisms and Pathophysiological Implications. Int. J. Mol. Sci. 2019, 20, 3022. [Google Scholar] [CrossRef] [PubMed]
- Caturano, A.; D’Angelo, M.; Mormone, A.; Russo, V.; Mollica, M.P.; Salvatore, T.; Galiero, R.; Rinaldi, L.; Vetrano, E.; Marfella, R.; et al. Oxidative Stress in Type 2 Diabetes: Impacts from Pathogenesis to Lifestyle Modifications. Curr. Issues Mol. Biol. 2023, 45, 6651–6666. [Google Scholar] [CrossRef]
- Vincent, A.M.; Callaghan, B.C.; Smith, A.L.; Feldman, E.L. Diabetic neuropathy: Cellular mechanisms as therapeutic targets. Nat. Rev. Neurol. 2011, 7, 573–583. [Google Scholar] [CrossRef]
- Rask-Madsen, C.; King, G.L. Vascular complications of diabetes: Mechanisms of injury and protective factors. Cell Metab. 2013, 17, 20–33. [Google Scholar] [CrossRef]
- Ostergaard, L.; Finnerup, N.B.; Terkelsen, A.J.; Olesen, R.A.; Drasbek, K.R.; Knudsen, L.; Jespersen, S.N.; Frystyk, J.; Charles, M.; Thomsen, R.W.; et al. The effects of capillary dysfunction on oxygen and glucose extraction in diabetic neuropathy. Diabetologia 2015, 58, 666–677. [Google Scholar] [CrossRef]
- Du, M.R.; Ju, G.X.; Li, N.S.; Jiang, J.L. Role of Asymmetrical Dimethylarginine in Diabetic Microvascular Complications. J. Cardiovasc. Pharmacol. 2016, 68, 322–326. [Google Scholar] [CrossRef]
- Abbasi, F.; Asagmi, T.; Cooke, J.P.; Lamendola, C.; McLaughlin, T.; Reaven, G.M.; Stuehlinger, M.; Tsao, P.S. Plasma concentrations of asymmetric dimethylarginine are increased in patients with type 2 diabetes mellitus. Am. J. Cardiol. 2001, 88, 1201–1203. [Google Scholar] [CrossRef] [PubMed]
- Sztanek, F.; Lőrincz, H.; Molnár, Á.; Szentpéteri, A.; Zöld, E.; Seres, I.; Páll, D.; Harangi, M.; Kempler, P.; Paragh, G. The effect of α-lipoic acid treatment on plasma asymmetric dimethylarginine, a biomarker of endothelial dysfunction in diabetic neuropathy. Arch. Med. Sci. 2020. [Google Scholar] [CrossRef]
- Yasar, H.; Senol, M.G.; Kendirli, T.; Onem, Y.; Ozdag, F.; Saracoglu, M. Serum asymmetric dimethylarginine levels in diabetic patients with neuropathy. Diabetes Res. Clin. Pract. 2011, 92, 223–227. [Google Scholar] [CrossRef] [PubMed]
- Tesfaye, S.; Boulton, A.J.; Dyck, P.J.; Freeman, R.; Horowitz, M.; Kempler, P.; Lauria, G.; Malik, R.A.; Spallone, V.; Vinik, A.; et al. Diabetic neuropathies: Update on definitions, diagnostic criteria, estimation of severity, and treatments. Diabetes Care 2010, 33, 2285–2293. [Google Scholar] [CrossRef]
- Cornblath, D.R.; Chaudhry, V.; Carter, K.; Lee, D.; Seysedadr, M.; Miernicki, M.; Joh, T. Total neuropathy score: Validation and reliability study. Neurology 1999, 53, 1660–1664. [Google Scholar] [CrossRef]
- Bastyr, E.J.; Price, K.L.; Bril, V.; Group, M.S. Development and validity testing of the neuropathy total symptom score-6: Questionnaire for the study of sensory symptoms of diabetic peripheral neuropathy. Clin. Ther. 2005, 27, 1278–1294. [Google Scholar] [CrossRef]
- Tibullo, D.; Li Volti, G.; Giallongo, C.; Grasso, S.; Tomassoni, D.; Anfuso, C.D.; Lupo, G.; Amenta, F.; Avola, R.; Bramanti, V. Biochemical and clinical relevance of alpha lipoic acid: Antioxidant and anti-inflammatory activity, molecular pathways and therapeutic potential. Inflamm. Res. 2017, 66, 947–959. [Google Scholar] [CrossRef]
- Papanas, N.; Ziegler, D. Efficacy of α-lipoic acid in diabetic neuropathy. Expert. Opin. Pharmacother. 2014, 15, 2721–2731. [Google Scholar] [CrossRef]
- Maciejczyk, M.; Żebrowska, E.; Nesterowicz, M.; Żendzian-Piotrowska, M.; Zalewska, A. α-Lipoic Acid Strengthens the Antioxidant Barrier and Reduces Oxidative, Nitrosative, and Glycative Damage, as well as Inhibits Inflammation and Apoptosis in the Hypothalamus but Not in the Cerebral Cortex of Insulin-Resistant Rats. Oxid. Med. Cell. Longev. 2022, 2022, 7450514. [Google Scholar] [CrossRef]
- Chao, J.; Stallone, J.N.; Liang, Y.M.; Chen, L.M.; Wang, D.Z.; Chao, L. Kallistatin is a potent new vasodilator. J. Clin. Investig. 1997, 100, 11–17. [Google Scholar] [CrossRef]
- Yin, H.; Gao, L.; Shen, B.; Chao, L.; Chao, J. Kallistatin inhibits vascular inflammation by antagonizing tumor necrosis factor-alpha-induced nuclear factor kappaB activation. Hypertension 2010, 56, 260–267. [Google Scholar] [CrossRef] [PubMed]
- Chao, J.; Yin, H.; Yao, Y.Y.; Shen, B.; Smith, R.S.; Chao, L. Novel role of kallistatin in protection against myocardial ischemia-reperfusion injury by preventing apoptosis and inflammation. Hum. Gene Ther. 2006, 17, 1201–1213. [Google Scholar] [CrossRef] [PubMed]
- Huang, K.F.; Yang, H.Y.; Xing, Y.M.; Lin, J.S.; Diao, Y. Recombinant human kallistatin inhibits angiogenesis by blocking VEGF signaling pathway. J. Cell. Biochem. 2014, 115, 575–584. [Google Scholar] [CrossRef] [PubMed]
- Shen, B.; Gao, L.; Hsu, Y.T.; Bledsoe, G.; Hagiwara, M.; Chao, L.; Chao, J. Kallistatin attenuates endothelial apoptosis through inhibition of oxidative stress and activation of Akt-eNOS signaling. Am. J. Physiol. Heart Circ. Physiol. 2010, 299, H1419–H1427. [Google Scholar] [CrossRef] [PubMed]
- Huang, K.F.; Huang, X.P.; Xiao, G.Q.; Yang, H.Y.; Lin, J.S.; Diao, Y. Kallistatin, a novel anti-angiogenesis agent, inhibits angiogenesis via inhibition of the NF-κB signaling pathway. Biomed. Pharmacother. 2014, 68, 455–461. [Google Scholar] [CrossRef]
- Xing, Q.; Zhang, G.; Kang, L.; Wu, J.; Chen, H.; Liu, G.; Zhu, R.; Guan, H.; Lu, P. The Suppression of Kallistatin on High-Glucose-Induced Proliferation of Retinal Endothelial Cells in Diabetic Retinopathy. Ophthalmic Res. 2017, 57, 141–149. [Google Scholar] [CrossRef]
- Yiu, W.H.; Wong, D.W.; Wu, H.J.; Li, R.X.; Yam, I.; Chan, L.Y.; Leung, J.C.; Lan, H.Y.; Lai, K.N.; Tang, S.C. Kallistatin protects against diabetic nephropathy in db/db mice by suppressing AGE-RAGE-induced oxidative stress. Kidney Int. 2016, 89, 386–398. [Google Scholar] [CrossRef]
- Chao, J.; Guo, Y.; Chao, L. Protective Role of Endogenous Kallistatin in Vascular Injury and Senescence by Inhibiting Oxidative Stress and Inflammation. Oxid. Med. Cell. Longev. 2018, 2018, 4138560. [Google Scholar] [CrossRef]
- Lorincz, H.; Csiha, S.; Ratku, B.; Somodi, S.; Sztanek, F.; Paragh, G.; Harangi, M. Associations between Serum Kallistatin Levels and Markers of Glucose Homeostasis, Inflammation, and Lipoprotein Metabolism in Patients with Type 2 Diabetes and Nondiabetic Obesity. Int. J. Mol. Sci. 2024, 25, 6264. [Google Scholar] [CrossRef]
- Fang, Z.; Shen, G.; Wang, Y.; Hong, F.; Tang, X.; Zeng, Y.; Zhang, T.; Liu, H.; Li, Y.; Wang, J.; et al. Elevated Kallistatin promotes the occurrence and progression of non-alcoholic fatty liver disease. Signal Transduct. Target. Ther. 2024, 9, 66. [Google Scholar] [CrossRef]
- Gateva, A.; Assyov, Y.; Velikova, T.; Kamenov, Z. Increased kallistatin levels in patients with obesity and prediabetes compared to normal glucose tolerance. Endocr. Res. 2017, 42, 163–168. [Google Scholar] [CrossRef] [PubMed]
- Shen, B.; Hagiwara, M.; Yao, Y.Y.; Chao, L.; Chao, J. Salutary effect of kallistatin in salt-induced renal injury, inflammation, and fibrosis via antioxidative stress. Hypertension 2008, 51, 1358–1365. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Bledsoe, G.; Yang, Z.R.; Fan, H.; Chao, L.; Chao, J. Human kallistatin administration reduces organ injury and improves survival in a mouse model of polymicrobial sepsis. Immunology 2014, 142, 216–226. [Google Scholar] [CrossRef] [PubMed]
- Fruhbeck, G.; Gomez-Ambrosi, J.; Rodriguez, A.; Ramirez, B.; Valenti, V.; Moncada, R.; Becerril, S.; Unamuno, X.; Silva, C.; Salvador, J.; et al. Novel protective role of kallistatin in obesity by limiting adipose tissue low grade inflammation and oxidative stress. Metabolism 2018, 87, 123–135. [Google Scholar] [CrossRef]
- Calan, M.; Guler, A.; Unal Kocabas, G.; Alarslan, P.; Bicer, M.; Imamoglu, C.; Yuksel, A.; Bozkaya, G.; Bilgir, O. Association of kallistatin with carotid intima-media thickness in women with polycystic ovary syndrome. Minerva Endocrinol. 2018, 43, 236–245. [Google Scholar] [CrossRef]
- Gao, L.; Li, P.; Zhang, J.; Hagiwara, M.; Shen, B.; Bledsoe, G.; Chang, E.; Chao, L.; Chao, J. Novel role of kallistatin in vascular repair by promoting mobility, viability, and function of endothelial progenitor cells. J. Am. Heart Assoc. 2014, 3, e001194. [Google Scholar] [CrossRef]
- Green, L.C.; Wagner, D.A.; Glogowski, J.; Skipper, P.L.; Wishnok, J.S.; Tannenbaum, S.R. Analysis of nitrate, nitrite, and [15N]nitrate in biological fluids. Anal. Biochem. 1982, 126, 131–138. [Google Scholar] [CrossRef]
- Pop-Busui, R.; Boulton, A.J.; Feldman, E.L.; Bril, V.; Freeman, R.; Malik, R.A.; Sosenko, J.M.; Ziegler, D. Diabetic Neuropathy: A Position Statement by the American Diabetes Association. Diabetes Care 2017, 40, 136–154. [Google Scholar] [CrossRef]
- Matsutomo, R.; Takebayashi, K.; Aso, Y. Assessment of peripheral neuropathy using measurement of the current perception threshold with the neurometer in patients with type 2 diabetes mellitus. J. Int. Med. Res. 2005, 33, 442–453. [Google Scholar] [CrossRef]
- Ewing, D.J.; Clarke, B.F. Diagnosis and management of diabetic autonomic neuropathy. Br. Med. J. (Clin. Res. Ed.) 1982, 285, 916–918. [Google Scholar] [CrossRef]
Diabetic Patients with Neuropathy Before ALA Treatment | Diabetic Patients with Neuropathy After ALA Treatment | Control Patients with Diabetes | |
---|---|---|---|
General patient data | |||
Number of patients (male/female) | 54 (22M/32F) | 24 (11M/13F) | |
Age of patients (years) | 64.2 ± 8.7 | 63.6 ± 5.1 | |
Duration of diabetes (years) | 12.4 ± 2.3 | 11.3 ± 3.1 | |
Current perception threshold (CPT) (Neurometer, mA) | 0.473 ± 0.171 | 0.409 ± 0.154 * | 0.375 ± 0.124 ** |
Composite autonomic score | 2.67 ± 1.05 | 1.56 ± 1.24 * | 1.13 ± 0.77 ** |
NTSS-6 score | 8.16 (6.99–15.97; 95 % CI: 9.19; 12.29) | 5.66 (2.99–12.33; 95% CI: 6.41; 9.41) * | NA |
DN4 score | 3.3 ± 1.4 | 2.6 ± 1.4 * | NA |
BMI (kg/m2) | 30.02 ± 3.29 | 29.95 ± 3.73 | 29.50 ± 2.86 |
Waist circumference (cm) | 102.3 ± 12.7 | 102.4 ± 13.2 | 101.0 ± 9.8 |
Routine laboratory parameters | |||
Glucose (mmol/L) | 7.34 ± 2.18 | 7.51 ± 2.60 | 7.44 ± 1.36 |
HbA1C (%) | 6.94 ± 0.93 | 6.84 ± 1.04 | 6.78 ± 0.75 |
Creatinine (µmol/L) | 72.61 ± 16.97 | 74.75 ± 14.65 | 75.17 ± 20.97 |
Uric acid (µmol/L) | 296.51 ± 76.44 | 304.33 ± 77.69 | 316.13 ± 57.37 |
Total cholesterol (mmol/L) | 4.84 ± 1.16 | 4.76 ± 1.24 | 4.90 ± 1.17 |
HDL-C (mmol/L) | 1.38 ± 0.37 | 1.38 ± 0.44 | 1.26 ± 0.33 |
LDL-C (mmol/L) | 2.98 ± 0.97 | 2.87 ± 1.16 | 2.84 ± 1.07 |
Non-HDL-C (mmol/L) | 3.47 ± 1.08 | 3.38 ± 1.19 | 3.63 ± 1.19 |
hsCRP (mg/L) | 2.1 (0.8–3.36; 95% CI: 2.08; 4.06) | 2.8 (0.75–5.15; 95% CI: 2.27; 6.22) | 1.25 (0.9–2.25; 95% CI: 1.2; 2.9) |
Biochemical parameters | |||
sVCAM-1 (ng/mL) | 820 (660–992; 95% CI: 795.2; 971) | 836.6 (674.3–929.6; 95% CI: 787.9; 982.6) | 729.2 (653.8–847; 95% CI: 685.8; 793.8) |
sICAM-1 (ng/mL) | 210.8 (184.4–247.3; 95% CI: 208.5; 249.5) | 216.8 (194.4–253.1; 95% CI: 215.2; 261.3) | 213.3 (189.4–239.4; 95% CI: 203; 236.2) |
VEGF (ng/mL) | 62.5 (44.9–93.0; 95% CI: 66.2; 93.9) | 72.6 (38.6–96.0; 95% CI: 59.5; 82.9) | 18.6 (15.2–96.0; 95% CI: 36.8; 80.6) ** |
oxLDL (U/L) | 63.6 (507–91.1; 95% CI: 65.0; 83.1) | 63.36 (45.59–89.77; 95% CI: 64.4; 89.3) | 70.76 (59.18–99.46; 95% CI: 64.5; 85.5) |
Kallistatin (ng/mL) | 12.45 (10–15.4; 95% CI: 12; 14.8) | 10.95 (9.9–13.7; 95% CI: 11.2; 13.3) * | 12.7 (10.9–13.7; 95% CI: 11.7; 13.2) |
TNF-α (pg/mL) | 1.18 ± 0.36 | 1.05 ± 0.50 * | 0.75 ± 0.29 ** |
ADMA (µmol/L) | 0.61 ± 0.11 | 0.53 ± 0.11 * | 0.56 ± 0.10 ** |
NO (µmol/L) | 16.8 ± 11.1 | 21.5 ± 9.0 * | 19.1 ± 10.9 |
Before ALA | After ALA | |
---|---|---|
Spearman’s Rank Correlation Coefficient | Spearman’s Rank Correlation Coefficient | |
General patient data | ||
Age (years) | 0.25 | 0.06 |
BMI (kg/m2) | 0.12 | −0.12 |
Waist circumference (cm) | −0.03 | −0.20 |
Current perception threshold (CPT) (Neurometer, mA) | −0.15 | −0.14 |
Composite autonomic score | −0.03 | −0.14 |
NTSS-6 score | −0.08 | 0.02 |
DN4 score | 0.01 | −0.03 |
Routine laboratory parameters | ||
Glucose (mmol/L) | −0.12 | 0.04 |
HbA1C (%) | 0.04 | 0.27 |
Total cholesterol (mmol/L) | 0.14 | −0.12 |
HDL-C (mmol/L) | 0.07 | 0.20 |
LDL-C (mmol/L) | 0.05 | −0.21 |
hsCRP (mg/L) | −0.22 | −0.21 |
Biochemical parameters | ||
sVCAM-1 (ng/mL) | 0.10 | 0.09 |
sICAM-1 (ng/mL) | −0.01 | 0.22 |
VEGF (ng/mL) | 0.05 | 0.13 |
oxidized LDL (U/L) | −0.02 | −0.06 |
TNF-α (pg/mL) | −0.08 | 0.46 |
ADMA (µmol/L) | 0.19 | 0.03 |
NO (µmol/L) | 0.13 | 0.32 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hernyák, M.; Tóth, L.I.; Csiha, S.; Molnár, Á.; Lőrincz, H.; Paragh, G.; Harangi, M.; Sztanek, F. Kallistatin as a Potential Marker of Therapeutic Response During Alpha-Lipoic Acid Treatment in Diabetic Patients with Sensorimotor Polyneuropathy. Int. J. Mol. Sci. 2024, 25, 13276. https://doi.org/10.3390/ijms252413276
Hernyák M, Tóth LI, Csiha S, Molnár Á, Lőrincz H, Paragh G, Harangi M, Sztanek F. Kallistatin as a Potential Marker of Therapeutic Response During Alpha-Lipoic Acid Treatment in Diabetic Patients with Sensorimotor Polyneuropathy. International Journal of Molecular Sciences. 2024; 25(24):13276. https://doi.org/10.3390/ijms252413276
Chicago/Turabian StyleHernyák, Marcell, László Imre Tóth, Sára Csiha, Ágnes Molnár, Hajnalka Lőrincz, György Paragh, Mariann Harangi, and Ferenc Sztanek. 2024. "Kallistatin as a Potential Marker of Therapeutic Response During Alpha-Lipoic Acid Treatment in Diabetic Patients with Sensorimotor Polyneuropathy" International Journal of Molecular Sciences 25, no. 24: 13276. https://doi.org/10.3390/ijms252413276
APA StyleHernyák, M., Tóth, L. I., Csiha, S., Molnár, Á., Lőrincz, H., Paragh, G., Harangi, M., & Sztanek, F. (2024). Kallistatin as a Potential Marker of Therapeutic Response During Alpha-Lipoic Acid Treatment in Diabetic Patients with Sensorimotor Polyneuropathy. International Journal of Molecular Sciences, 25(24), 13276. https://doi.org/10.3390/ijms252413276