Helichrysum populifolium Compounds Inhibit MtrCDE Efflux Pump Transport Protein for the Potential Management of Gonorrhoea Infection
Abstract
:1. Introduction
2. Results
2.1. Crystal Structure of the MtrCDE Efflux Pump Protein
2.2. Molecular Docking of the Studied Compounds
2.3. Binding Free Energy Calculations Using the MM/GBSA Approach
2.4. Per-Residue Energy Decomposition (PRED) to the Overall Binding Free Energy
2.5. Dynamic Conformational Stability and Fluctuation of the Studied Compounds
2.5.1. Conformational Stability of the Studied Compounds
2.5.2. Dynamic Conformational Fluctuations of the Analyzed Compounds
2.6. Pharmacokinetics and Pharmacochemical Evaluation of the Studied Compounds
2.7. Validation of H. populifolium Compound’s Antibacterial Activity Against N. gonorrhoeae ATCC 49981
2.8. Hoechest (Bis-Benzimide) Accumulation Assay
3. Discussion
4. Materials and Methods
4.1. Molecular Docking
4.1.1. Protein Generation and Preparation
4.1.2. Ligand Generation and Preparation
4.1.3. Ligand Docking
4.2. Molecular Dynamics Simulations
4.2.1. Post-Molecular Dynamic Analysis
Binding Free Energy Analysis
Dynamic Conformational Stability and Fluctuation of the Protein–Ligand Complex
4.3. Drug-Likeness Properties of the Studied Compounds
4.4. Chemicals and Compounds Used in the In Vitro Assay
4.5. Preparation and Culturing of the Neisseria gonorrhoea ATCC 49981
4.6. H. populifolium Antibacterial Activity Against N. gonorrhoeae ATCC49981
4.7. Bis-Benzimide Accumulation Assay
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lim, K.Y.L.; Mullally, C.A.; Haese, E.C.; Kibble, E.A.; McCluskey, N.R.; Mikucki, E.C.; Thai, V.C.; Stubbs, K.A.; Sarkar-Tyson, M.; Kahler, C.M. Anti-virulence therapeutic approaches for Neisseria gonorrhoeae. Antibiotics 2021, 10, 103. [Google Scholar] [CrossRef] [PubMed]
- Rowley, J.; Vander Hoorn, S.; Korenromp, E.; Low, N.; Unemo, M.; Abu-Raddad, L.J.; Chico, R.M.; Smolak, A.; Newman, L.; Gottlieb, S.; et al. Chlamydia, Gonorrhoea, Trichomoniasis and Syphilis: Global prevalence and incidence estimates, 2016. Bull. World Health Organ. 2019, 97, 228486. [Google Scholar] [CrossRef] [PubMed]
- de Vos, L.; Daniels, J.; Gebengu, A.; Mazzola, L.; Gleeson, B.; Piton, J.; Mdingi, M.; Gigi, R.; Ferreyra, C.; Klausner, J.D.; et al. Usability of a novel Lateral Flow Assay for the Point-of-Care Detection of Neisseria gonorrhoeae: A Qualitative Time-Series Assessment among Healthcare Workers in South Africa. PLoS ONE 2023, 18, e0286666. [Google Scholar] [CrossRef]
- Ali, A.S.M.; Anderson, C.S. Gepotidacin, a new first-in-class antibiotic for treating uncomplicated urinary tract infection. Lancet 2024, 403, 702–703. [Google Scholar] [CrossRef]
- Abdellati, S.; Laumen, J.G.E.; de Block, T.; De Baetselier, I.; Van Den Bossche, D.; Van Dijck, C.; Manoharan-Basil, S.S.; Kenyon, C. Gonococcal resistance to zoliflodacin could emerge via transformation from commensal Neisseria species. An in-vitro transformation study. Sci. Rep. 2024, 14, 1179. [Google Scholar] [CrossRef]
- Fernandes, P.; Craft, J.C. Phase 3 Trial of Treating Gonorrhoea with Solithromycin. Lancet Infect. Dis. 2019, 19, 928. [Google Scholar] [CrossRef]
- Lyu, M.; Moseng, M.A.; Reimche, J.L.; Holley, C.L.; Dhulipala, V.; Su, C.C.; Shafer, W.M.; Yu, E.W.; Gilmore, M.S. Cryo-EM Structures of a gonococcal multidrug efflux pump illuminate a mechanism of drug recognition and resistance. mBio 2020, 11, 10–1128. [Google Scholar] [CrossRef]
- Jain, N.; Sk, M.F.; Mishra, A.; Kar, P.; Kumar, A. Identification of novel efflux pump inhibitors for Neisseria gonorrhoeae via multiple ligand-based pharmacophores, e-pharmacophore, molecular docking, density functional theory, and molecular dynamics approaches. Comput. Biol. Chem. 2022, 98, 107682. [Google Scholar] [CrossRef]
- Hagman, K.E.; Lucas, C.E.; Balthazar, J.T.; Snyder, L.; Nilles, M.; Judd, R.C.; Shafer, W.M. The MtrD protein of Neisseria gonorrhaeae is a member of the resistance/nodulation/division protein family constituting part of an efflux system. Microbiology 1997, 143, 2117–2125. [Google Scholar] [CrossRef]
- Li, X.Z.; Plésiat, P.; Nikaido, H. The challenge of efflux-mediated antibiotic resistance in Gram-negative bacteria. Clin. Microbiol. Rev. 2015, 28, 337–418. [Google Scholar] [CrossRef]
- Seukep, A.J.; Kuete, V.; Nahar, L.; Sarker, S.D.; Guo, M. Plant-derived secondary metabolites as the main source of efflux pump inhibitors and methods for identification. J. Pharm. Anal. 2020, 10, 277–290. [Google Scholar] [CrossRef] [PubMed]
- Adeosun, I.J.; Baloyi, I.T.; Cosa, S. Anti-biofilm and associated anti-virulence activities of selected phytochemical compounds against Klebsiella pneumoniae. Plants 2022, 11, 1429. [Google Scholar] [CrossRef] [PubMed]
- Heyman, H.M.; Senejoux, F.; Seibert, I.; Klimkait, T.; Maharaj, V.J.; Meyer, J.J.M. Identification of anti-HIV active dicaffeoylquinic- and tricaffeoylquinic acids in Helichrysum populifolium by NMR-based metabolomic guided fractionation. Fitoterapia 2015, 10, 155–164. [Google Scholar] [CrossRef] [PubMed]
- DeRango-Adem, E.F.; Blay, J. Does oral apigenin have real potential for a therapeutic effect in the context of human gastrointestinal and other cancers? Front. Pharmacol. 2021, 12, 681477. [Google Scholar] [CrossRef]
- Jánosity, A.; Baranyi, J.; Surányi, B.B.; Možina, S.S.; Taczman-Brückner, A.; Kiskó, G.; Klančnik, A. Estimating the optimal efflux inhibitor concentration of carvacrol as a function of the bacterial physiological state. Front. Microbiol. 2023, 14, 1073798. [Google Scholar] [CrossRef]
- Adeosun, I.J.; Baloyi, I.; Aljoundi, A.K.; Salifu, E.Y.; Ibrahim, M.A.; Cosa, S. Molecular modelling of SdiA protein by selected flavonoid and terpenes compounds to attenuate virulence in Klebsiella pneumoniae. J. Biomol. Struct. Dyn. 2022, 41, 9938–9956. [Google Scholar] [CrossRef]
- Sadybekov, A.V.; Katritch, V. Computational approaches streamlining drug discovery. Nature 2023, 616, 7958. [Google Scholar] [CrossRef]
- Shimu, M.S.S.; Mahmud, S.; Tallei, T.E.; Sami, S.A.; Adam, A.A.; Acharjee, U.K.; Paul, G.K.; Emran, T.B.; Zaman, S.; Uddin, M.S. Phytochemical compound screening to identify novel small molecules against Dengue virus: A docking and dynamics study. Molecules 2022, 27, 653. [Google Scholar] [CrossRef]
- Lamers, R.P.; Cavallari, J.F.; Burrows, L.L. The efflux inhibitor phenylalanine-arginine beta-naphthylamide (PAβN) Permeabilizes the outer membrane of Gram-Negative bacteria. PLoS ONE 2013, 8, e60666. [Google Scholar] [CrossRef]
- Pal, A.; Tripathi, A. Quercetin inhibits carbapenemase and efflux pump activities among Carbapenem-resistant Gram-negative bacteria. Acta Pathol. Microbiol. Immunol. Scand. 2020, 128, 251–259. [Google Scholar] [CrossRef]
- Sharma, A.; Gupta, V.K.; Pathania, R. Efflux pump inhibitors for bacterial pathogens: From bench to bedside. Indian J. Med. Res. 2019, 149, 129–145. [Google Scholar] [PubMed]
- Alenazy, R. Drug Efflux Pump Inhibitors: A promising approach to counter multidrug resistance in Gram-negative pathogens by targeting AcrB protein from AcrAB-TolC multidrug efflux pump from Escherichia coli. Biology 2022, 11, 1328. [Google Scholar] [CrossRef] [PubMed]
- Gorlenko, C.L.; Kiselev, H.Y.; Budanova, E.V.; Zamyatnin, A.A.; Ikryannikova, L.N. Plant secondary metabolites in the battle of drugs and drug-resistant bacteria: New heroes or worse clones of antibiotics? Antibiotics 2020, 9, 170. [Google Scholar] [CrossRef] [PubMed]
- Gupta, S.; Bajaj, A.V. Extra precision glide docking, free energy calculation, and molecular dynamics studies of 1,2-Diarylethane derivatives as potent urease inhibitors. J. Mol. Model. 2018, 24, 261. [Google Scholar] [CrossRef] [PubMed]
- Celej, M.S.; Montich, G.G.; Fidelio, G.D. Protein stability induced by Ligand Binding Correlates with Changes in Protein Flexibility. Protein Sci. 2003, 12, 1496–1506. [Google Scholar] [CrossRef]
- Baloyi, I.T.; Adeosun, I.J.; Yusuf, A.A.; Cosa, S. In silico and in vitro screening of antipathogenic properties of Melianthus comosus (Vahl) against Pseudomonas aeruginosa. Antibiotics 2021, 10, 679. [Google Scholar] [CrossRef]
- Kastritis, P.L.; Bonvin, A.M.J.J. On the binding affinity of macromolecular interactions: Daring to ask why proteins interact. J. R. Soc. Interface 2013, 10, 20120835. [Google Scholar] [CrossRef]
- Meng, X.-Y.; Zhang, H.-X.; Mezei, M.; Cui, M. Molecular docking: A powerful approach for structure-based drug discovery. Curr. Comput. Aided-Drug Des. 2012, 7, 146–157. [Google Scholar] [CrossRef]
- Rácz, A.; Mihalovits, L.M.; Bajusz, D.; Héberger, K.; Miranda-Quintana, R.A. Molecular dynamics simulations, and diversity selection by extended continuous similarity indices. J. Chem. Inf. Model. 2022, 62, 3415–3425. [Google Scholar] [CrossRef]
- Lee, K.S.S.; Yang, J.; Niu, J.; Ng, C.J.; Wagner, K.M.; Dong, H.; Kodani, S.D.; Wan, D.; Morisseau, C.; Hammock, B.D. Drug-target residence time affects in vivo target occupancy through multiple pathways. Am. Chem. Soc. Cent. Sci. 2019, 5, 1614–1624. [Google Scholar] [CrossRef]
- Han, J. Two-dimensional six-body van der Waals interactions. Atoms 2022, 10, 12. [Google Scholar] [CrossRef]
- Ultee, A.; Bennik, M.H.J.; Moezelaar, R. The phenolic hydroxyl group of Carvacrol is essential for action against the food-borne pathogen Bacillus cereus. Appl. Environ. Microbiol. 2002, 68, 1561–1568. [Google Scholar] [CrossRef] [PubMed]
- Childers, M.C.; Daggett, V. Insights from molecular dynamics simulations for computational protein design. Mol. Syst. Des. Eng. 2017, 2, 9–33. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Chan, K.C.; Nickels, J.D.; Cheng, X. Electrostatic contributions to the binding free energy of nicotine to the acetylcholine binding protein. J. Phys. Chem. B 2022, 126, 8669–8679. [Google Scholar] [CrossRef]
- Zhang, S.; Wang, J.; Ahn, J. Advances in the discovery of efflux pump inhibitors as novel potentiators to control antimicrobial-resistant pathogens. Antibiotics 2023, 12, 1417. [Google Scholar] [CrossRef]
- Adewumi, A.T.; Oluyemi, W.M.; Adekunle, Y.A.; Adewumi, N.; Alahmdi, M.I.; Soliman, M.E.S.; Abo-Dya, N.E. Propitious indazole compounds as β-ketoacyl-ACP synthase inhibitors and mechanisms unfolded for TB cure: Integrated rational design and MD simulations. ChemistrySelect 2023, 8, e202203877. [Google Scholar] [CrossRef]
- Nguyen, T.H.T.; Nguyen, H.D.; Le, M.H.; Nguyen, T.T.H.; Nguyen, T.D.; Nguyen, D.L.; Nguyen, Q.H.; Nguyen, T.K.O.; Michalet, S.; Dijoux-Franca, M.G.; et al. Efflux pump inhibitors in controlling antibiotic resistance: Outlook under a heavy metal contamination context. Molecules 2023, 28, 2912. [Google Scholar] [CrossRef]
- Süzgeç-Selçuk, S.; Birteksöz, A.S. Flavonoids of Helichrysum chasmolycicum and its antioxidant and antimicrobial activities. S. Afr. J. Bot. 2011, 77, 170–174. [Google Scholar] [CrossRef]
- Bergström, C.A.S.; Larsson, P. Computational prediction of drug solubility in water-based systems: Qualitative and quantitative approaches used in the current drug discovery and development setting. Int. J. Pharm. 2018, 50, 185–193. [Google Scholar] [CrossRef]
- Tibbitts, J.; Canter, D.; Graff, R.; Smith, A.; Khawli, L.A. Key factors influencing ADME properties of therapeutic proteins: A need for ADME characterization in drug discovery and development. mAbs 2016, 8, 229–245. [Google Scholar] [CrossRef]
- Mao, F.; Ni, W.; Xu, X.; Wang, H.; Wang, J.; Ji, M.; Li, J. Chemical structure-related drug-like criteria of globally approved drugs. Molecules 2016, 21, 75. [Google Scholar] [CrossRef] [PubMed]
- Zotti, M.; Colaianna, M.; Morgese, M.G.; Tucci, P.; Schiavone, S.; Avato, P.; Trabace, L. Carvacrol: From ancient flavoring to neuromodulatory agent. Molecules 2013, 18, 6161–6172. [Google Scholar] [CrossRef] [PubMed]
- de Andrés, F.; Altamirano-Tinoco, C.; Ramírez-Roa, R.; Montes-Mondragón, C.F.; Dorado, P.; Peñas-Lledó, E.M.; LLerena, A. Relationships between CYP1A2, CYP2C9, CYP2C19, CYP2D6 and CYP3A4 metabolic phenotypes and genotypes in a Nicaraguan mestizo population. Pharmacogenomics J. 2021, 21, 140–151. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.Y.; Yang, Z.J.; He, J.H.; Lu, A.P.; Liu, S.; Hou, T.J.; Cao, D.S. Benchmarking the mechanisms of frequent hitters: Limitation of PAINS alerts. Drug Discov. Today 2021, 10, 1353–1358. [Google Scholar] [CrossRef] [PubMed]
- Pathania, S.; Singh, P.K. Analyzing FDA-approved drugs for compliance of pharmacokinetic principles: Should there be a critical screening parameter in drug designing protocols? Expert Opin. Drug Metab. Toxicol. 2021, 17, 351–354. [Google Scholar] [CrossRef]
- Alves, V.M.; Muratov, E.N.; Capuzzi, S.J.; Politi, R.; Low, Y.; Braga, R.C.; Zakharov, A.V.; Sedykh, A.; Mokshyna, E.; Farag, S.; et al. Alarms about structural alerts. Green Chem. 2016, 18, 4348–4360. [Google Scholar] [CrossRef]
- Ben Arfa, A.; Combes, S.; Preziosi-Belloy, L.; Gontard, N.; Chalier, P. Antimicrobial activity of carvacrol related to its chemical structure. Lett. Appl. Microbiol. 2006, 43, 149–154. [Google Scholar] [CrossRef]
- Wijesundara, N.M.; Lee, S.F.; Cheng, Z.; Davidson, R.; Rupasinghe, H.V. Carvacrol exhibits rapid bactericidal activity against Streptococcus pyogenes through cell membrane damage. Sci. Rep. 2021, 11, 1487. [Google Scholar] [CrossRef]
- Waditzer, M.; Bucar, F. Flavonoids as inhibitors of bacterial efflux pumps. Molecules 2021, 26, 6904. [Google Scholar] [CrossRef]
- Molina Bertrán, S.D.C.; Monzote, L.; Cappoen, D.; Escalona Arranz, J.C.; Gordillo Pérez, M.J.; Rodríguez-Ferreiro, A.O.; Chill Nuñez, I.; Novo, C.P.; Méndez, D.; Cos, P.; et al. Inhibition of bacterial adhesion and biofilm formation by seed-derived ethanol extracts from Persea americana mill. Molecules 2022, 2, 5009. [Google Scholar] [CrossRef]
- Martins, M.; McCusker, M.P.; Viveiros, M.; Couto, I.; Fanning, S.; Pagès, J.M.; Amaral, L. A simple method for assessment of MDR bacteria for over-expressed efflux pumps. Open Microbiol. J. 2013, 7, 72. [Google Scholar] [CrossRef] [PubMed]
- Sobhanipoor, M.H.; Ahmadrajabi, R.; Nave, H.H.; Saffari, F. Determination of efflux activity in Enterococci by Hoechst accumulation assay and the role of zinc oxide nanoparticles in inhibition of this activity. BMC Microbiol. 2022, 22, 195. [Google Scholar] [CrossRef] [PubMed]
- Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Couch, G.S.; Greenblatt, D.M.; Meng, E.C.; Ferrin, T.E. UCSF Chimera—A visualization system for exploratory research and analysis. J. Comput. Chem. 2004, 25, 1605–1612. [Google Scholar] [CrossRef] [PubMed]
- Genheden, S.; Ryde, U. The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities. Expert Opin. Drug Discov. 2015, 10, 449–461. [Google Scholar] [CrossRef] [PubMed]
- Deschenes, L.A.; David, A. Vanden BoutUniversity of Texas, Austin Origin 6.0: Scientific data analysis and graphing software origin lab corporation (formerly microcal software, Inc.). Web Site: Www.Originlab.Com. Commercial Price: $595. Academic Price: $446. J. Am. Chem. Soc. 2000, 122, 9567–9568. [Google Scholar] [CrossRef]
- Kowalska-Krochmal, B.; Dudek-Wicher, R. The minimum inhibitory concentration of antibiotics: Methods, interpretation, clinical relevance. Pathogens 2021, 10, 165. [Google Scholar] [CrossRef]
- Zhang, G.F.; Liu, X.; Zhang, S.; Pan, B.; Liu, M.L. Ciprofloxacin derivatives and their antibacterial activities. Eur. J. Med. Chem. 2018, 146, 599–612. [Google Scholar] [CrossRef]
Compound Name | Class | Smiles Designation of the Compounds | Docking Scores (kcal/mol) | Amino acid Residue Interaction |
---|---|---|---|---|
4,5-dicaffeoylquinic acid | Polyphenold | C1[C@H]([C@H]([C@@H](C[C@@]1(C(=O)O)O)OC(=O)/C=C/C2=CC(=C(C=C2)O)O)OC(=O)/C=C/C3=CC(=C(C=C3)O)O)O | −8.8 | GLN34, SER37, ARG133, PHE136, GLY295, ALA297, PHE612 |
Apigenin-7-glucoside | Flavonoid | C1=CC(=CC=C1C2=CC(=O)C3=C(C=C(C=C3O2)OC4[C@@H]([C@H]([C@@H]([C@H](O4)CO)O)O)O)O)O | −8.6 | GLN34, PHE136, TYR325, GLN566, MET570, GLN566, PHE612, PRO664, LEU668 |
Carvacrol | Terpenoid | CC1=C(C=C(C=C1)C(C)C)O | −6.0 | LYS329, GLY567, PHE568, ILE625, LEU626, TRP629 |
* PaβN | Peptidomimetic | C1=CC=C(C=C1)N[C@@H](CCCN=C(N)N)C(=O)NC2=CC3=CC=CC=C3C=C2 | −8.2 | GLN34, ASN135, LEU137, LEU291, THR327, PRO665, LEU668 |
* Quercetin | Flavonoid | C1=CC(=C(C=C1C2=C(C(=O)C3=C(C=C(C=C3O2)O)O)O)O)O | −8.1 | SER33, GLN34, TYR35, LEU137, ALA297, PRO666 |
Energy Composition (kcal/mol) | |||||||
---|---|---|---|---|---|---|---|
Complex | ΔEvdW | ΔEelec | ΔGgas | EGB | ESA | ΔGsol | ΔGbind |
Apo-INH1 | −6.07 ± 4.61 | −8.26 ± 2.02 | −53.04 ± 14.32 | −6.91 ± 11.78 | −8.29 ± 0.45 | −1.38 ± 11.6 | −54.08 ± 6.27 |
Apo-INH2 | −56.06 ± 2.81 | −33.15 ± 7.33 | −89.21 ± 7.09 | 47.92 ± 4.74 | −6.64 ± 0.22 | 41.28 ± 4.67 | −47.93 ± 4.10 |
Apo-INH3 | −18.10 ± 2.63 | −9.22 ± 3.46 | −27.30 ± 4.10 | 13.21 ± 2.20 | −2.60 ± 0.32 | 10.61 ± 2.10 | −16.69 ± 3.01 |
* Apo-STD1 | −42.42 ± 3.13 | −29.47 ± 5.08 | −7.89 ± 5.05 | 37.16 ± 3.00 | −5.61 ± 0.12 | 31.55 ± 3.01 | −40.34 ± 3.05 |
* Apo-STD2 | −46.74 ± 3.13 | −123.17 ± 5.08 | −169.91 ± 5.05 | 142.13 ± 3.00 | −6.38 ± 0.12 | 135.75 ± 3.01 | −34.16 ± 3.05 |
Physico-Chemical Properties | Lipophilicity | Water Solubility | Parmaco-kinetic | Drug-Likeness | Medicinal Chemistry | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Compounds | No. of Heavy Atoms | No. of Rotatable Bonds | No. of H. Bonds Acceptors | No. of H bond donors | Consensus log Po/W | LogS | Class | BBB Permeation | Lipinski | PAINS Alert | Brenk Alert |
Carvacrol | 11 | 1 | 1 | 1 | 2.82 | −3.31 | S | Y | Y-No 0 violation | 0 alerts | 0 alerts |
Apigenin-7-glucoside | 31 | 4 | 10 | 6 | 0.55 | −3.78 | S | N | Y-1 1 violation: NHorOH > 5 | 0 alerts | 0 alerts |
4,5-dicaffeoylquinic acid | 37 | 9 | 12 | 7 | 0.78 | −3.65 | S | N | N-3 Violations 3 MW > 500, NorO > 10, NHorOH > 5 | 1 alert: Catechol_A | 3 alerts: Catechol_A, michael_acceptor_1, more_than_2_esters |
* PaβN | 28 | 9 | 2 | 4 | 2.86 | −4.05 | MS | N | Y-No 0 violation | 0 alerts | 2 alerts: imine_1, imine_2 |
* Quercetin | 22 | 1 | 7 | 5 | 1.23 | −3.16 | S | N | Y-No 0 violation | 1 alert: Catechol_A | 1 alert: Catechol |
Compounds | Neisseria gonorrhoea ATCC 49981 |
---|---|
4,5-dicaffeoylquinic acid | 0.125 |
Apigenin-7-glucoside | 0.250 |
Carvacrol | 0.125 |
PaβN | 0.124 |
Controls | |
Quercetin | 0.063 |
Ciprofloxacin | 0.01 |
1% DMSO | 8.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mulaudzi, V.E.; Adeosun, I.J.; Adewumi, A.T.; Soliman, M.E.S.; Cosa, S. Helichrysum populifolium Compounds Inhibit MtrCDE Efflux Pump Transport Protein for the Potential Management of Gonorrhoea Infection. Int. J. Mol. Sci. 2024, 25, 13310. https://doi.org/10.3390/ijms252413310
Mulaudzi VE, Adeosun IJ, Adewumi AT, Soliman MES, Cosa S. Helichrysum populifolium Compounds Inhibit MtrCDE Efflux Pump Transport Protein for the Potential Management of Gonorrhoea Infection. International Journal of Molecular Sciences. 2024; 25(24):13310. https://doi.org/10.3390/ijms252413310
Chicago/Turabian StyleMulaudzi, Vhangani E., Idowu J. Adeosun, Adeniyi T. Adewumi, Mahmoud E. S. Soliman, and Sekelwa Cosa. 2024. "Helichrysum populifolium Compounds Inhibit MtrCDE Efflux Pump Transport Protein for the Potential Management of Gonorrhoea Infection" International Journal of Molecular Sciences 25, no. 24: 13310. https://doi.org/10.3390/ijms252413310
APA StyleMulaudzi, V. E., Adeosun, I. J., Adewumi, A. T., Soliman, M. E. S., & Cosa, S. (2024). Helichrysum populifolium Compounds Inhibit MtrCDE Efflux Pump Transport Protein for the Potential Management of Gonorrhoea Infection. International Journal of Molecular Sciences, 25(24), 13310. https://doi.org/10.3390/ijms252413310