Peptides Evaluated In Silico, In Vitro, and In Vivo as Therapeutic Tools for Obesity: A Systematic Review
Abstract
:1. Introduction
2. Methods
2.1. Protocol and Registration
2.2. Search Question
2.3. Inclusion Criteria
2.4. Exclusion Criteria
2.5. Search Strategies
2.6. Data Selection and Extration
2.7. Data Analysis and Synthesis
2.8. Risk of Bias and Assessment of Study Quality
3. Results and Discussion
3.1. Selection and Characteristics of Studies
3.2. Bias Risk Assessment
3.3. Characteristics of Research, Extraction, and Synthesis of Study Data
3.3.1. In Silico Studies of Anti-Obesity Peptides
3.3.2. Anti-Obesity Peptides: Pancreatic Lipase (PL) and Cholesterol Esterase (CE) Inhibitors
3.3.3. Anti-Obesity Peptides: Peroxisome Proliferator-Activated Receptor Alpha Type (PPARα) and Peroxisome Proliferator-Activated Receptor Gamma Type (PPARγ) Agonists
3.3.4. Reassessment of In Silico Studies Using In Vitro Models
3.3.5. Reassessment of In Silico Studies Using In Vivo Models
3.4. Limitations of the Study
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Ruze, R.; Liu, T.; Zou, X.; Song, J.; Chen, Y.; Xu, R.; Yin, X.; Xu, Q. Obesity and Type 2 Diabetes Mellitus: Connections in Epidemiology, Pathogenesis, and Treatments. Front. Endocrinol. 2023, 14, 1161521. [Google Scholar] [CrossRef] [PubMed]
- Lobstein, T.; Jackson-Leach, R.; Powis, J.; Brinsden, H.; Gray, M. World Obesity Atlas 2023; World Obesity Federation: London, UK, 2023; Volume 385, pp. 2510–2520. [Google Scholar]
- Bray, G.A.; Heisel, W.E.; Afshin, A.; Jensen, M.D.; Dietz, W.H.; Long, M.; Kushner, R.F.; Daniels, S.R.; Wadden, T.A.; Tsai, A.G.; et al. The Science of Obesity Management: An Endocrine Society Scientific Statement. Endocr. Rev. 2018, 39, 79–132. [Google Scholar] [CrossRef] [PubMed]
- Yárnoz-Esquiroz, P.; Olazarán, L.; Aguas-Ayesa, M.; Perdomo, C.M.; García-Goñi, M.; Silva, C.; Fernández-Formoso, J.A.; Escalada, J.; Montecucco, F.; Portincasa, P.; et al. ‘Obesities’: Position Statement on a Complex Disease Entity with Multifaceted Drivers. Eur. J. Clin. Investig. 2022, 52, e13811. [Google Scholar] [CrossRef]
- Chakhtoura, M.; Haber, R.; Ghezzawi, M.; Rhayem, C.; Tcheroyan, R.; Mantzoros, C.S. Pharmacotherapy of Obesity: An Update on the Available Medications and Drugs under Investigation. eClinicalMedicine 2023, 58, 101882. [Google Scholar] [CrossRef]
- Perdomo, C.M.; Cohen, R.V.; Sumithran, P.; Clément, K.; Frühbeck, G. Contemporary Medical, Device, and Surgical Therapies for Obesity in Adults. Lancet 2023, 401, 1116–1130. [Google Scholar] [CrossRef]
- Ahern, A.L.; Wheeler, G.M.; Aveyard, P.; Boyland, E.J.; Halford, J.C.G.; Mander, A.P.; Woolston, J.; Thomson, A.M.; Tsiountsioura, M.; Cole, D.; et al. Extended and Standard Duration Weight-Loss Programme Referrals for Adults in Primary Care (WRAP): A Randomised Controlled Trial. Lancet 2017, 389, 2214–2225. [Google Scholar] [CrossRef]
- Gupta, S.; Chen, M. Medical Management of Obesity. Clin. Med. 2023, 23, 323–329. [Google Scholar] [CrossRef]
- Elmaleh-Sachs, A.; Schwartz, J.L.; Bramante, C.T.; Nicklas, J.M.; Gudzune, K.A.; Jay, M. Obesity Management in Adults: A Review. JAMA 2023, 330, 2000–2015. [Google Scholar] [CrossRef]
- Greenway, F.L. Physiological Adaptations to Weight Loss and Factors Favouring Weight Regain. Int. J. Obes. 2015, 39, 1188–1196. [Google Scholar] [CrossRef]
- Saad, B. A Review of the Anti-Obesity Effects of Wild Edible Plants in the Mediterranean Diet and Their Active Compounds: From Traditional Uses to Action Mechanisms and Therapeutic Targets. Int. J. Mol. Sci. 2023, 24, 12641. [Google Scholar] [CrossRef]
- Dai, Z.; Zhang, Y.; Meng, Y.; Li, S.; Suonan, Z.; Sun, Y.; Ji, J.; Shen, Q.; Zheng, H.; Xue, Y. Targeted Delivery of Nutraceuticals Derived from Food for the Treatment of Obesity and Its Related Complications. Food Chem. 2023, 418, 135980. [Google Scholar] [CrossRef] [PubMed]
- Maia, E.H.B.; Assis, L.C.; de Oliveira, T.A.; da Silva, A.M.; Taranto, A.G. Structure-Based Virtual Screening: From Classical to Artificial Intelligence. Front. Chem. 2020, 8, 343. [Google Scholar] [CrossRef] [PubMed]
- Burley, S.K.; Bhikadiya, C.; Bi, C.; Bittrich, S.; Chen, L.; Crichlow, G.V.; Duarte, J.M.; Dutta, S.; Fayazi, M.; Feng, Z.; et al. RCSB Protein Data Bank: Celebrating 50 Years of the PDB with New Tools for Understanding and Visualizing Biological Macromolecules in 3D. Protein Sci. 2022, 31, 187–208. [Google Scholar] [CrossRef]
- Santos, K.B.; Guedes, I.A.; Karl, A.L.M.; Dardenne, L.E. Highly Flexible Ligand Docking: Benchmarking of the DockThor Program on the LEADS-PEP Protein–Peptide Data Set. J. Chem. Inf. Model 2020, 60, 667–683. [Google Scholar] [CrossRef]
- Vincenzi, M.; Mercurio, F.A.; Leone, M. Virtual Screening of Peptide Libraries: The Search for Peptide-Based Therapeutics Using Computational Tools. Int. J. Mol. Sci. 2024, 25, 1798. [Google Scholar] [CrossRef] [PubMed]
- Romero-Molina, S.; Ruiz-Blanco, Y.B.; Mieres-Perez, J.; Harms, M.; Münch, J.; Ehrmann, M.; Sanchez-Garcia, E. PPI-Affinity: A Web Tool for the Prediction and Optimization of Protein–Peptide and Protein–Protein Binding Affinity. J. Proteome. Res. 2022, 21, 1829–1841. [Google Scholar] [CrossRef]
- Chai, T.-T.; Ee, K.-Y.; Kumar, D.T.; Manan, F.A.; Wong, F.-C. Plant Bioactive Peptides: Current Status and Prospects Towards Use on Human Health. Protein Pept. Lett. 2020, 28, 623–642. [Google Scholar] [CrossRef]
- Matos, F.M.; de Castro, R.J.S. Edible insects as potential sources of proteins for obtaining bioactive peptides. Braz. J. Food Technol. 2021, 24, 04420. [Google Scholar] [CrossRef]
- Hanh, V.T.; Kobayashi, Y.; Maebuchi, M.; Nakamori, T.; Tanaka, M.; Matsui, T. Quantitative mass spectrometric analysis of dipeptides in protein hydrolysate by a TNBS derivatization-aided standard addition method. Food Chem. 2016, 190, 345–350. [Google Scholar] [CrossRef]
- Li, X.; Guo, M.; Chi, J.; Ma, J. Bioactive peptides from walnut residue protein. Molecules 2020, 25, 1285. [Google Scholar] [CrossRef]
- Madsen, C.T.; Refsgaard, J.C.; Teufel, F.G.; Kjærulff, S.K.; Wang, Z.; Meng, G.; Jessen, C.; Heljo, P.; Jiang, Q.; Zhao, X.; et al. Combining mass spectrometry and machine learning to discover bioactive peptides. Nat. Commun. 2022, 13, 1285. [Google Scholar] [CrossRef] [PubMed]
- Nawaz, M.A.; Buckow, R.; Jegasothy, H.; Stockmann, R. Enzymatic hydrolysis improves the stability of UHT treated faba bean protein emulsions. Food Bioprod. Process. 2022, 132, 200–210. [Google Scholar] [CrossRef]
- Nwachukwu, I.D.; Aluko, R.E. A systematic evaluation of various methods for quantifying food protein hydrolysate peptides. Food Chem. 2019, 270, 25–31. [Google Scholar] [CrossRef]
- Qi, Y.; Zhou, J.; Shen, X.; Chalamaiah, M.; Lv, S.; Luo, H.; Chen, L. Bioactive properties of peptides and polysaccharides derived from peanut worms: A review. Mar. Drugs 2022, 20, 10. [Google Scholar] [CrossRef]
- Medeiros, I.; Aguiar, A.J.F.C.; Fortunato, W.M.; Teixeira, A.F.G.; Oliveira, E.; Silva, E.G.; Bezerra, I.W.L.; Maia, J.K.D.S.; Piuvezam, G.; Morais, A.H.D.A. In Silico Structure-Based Design of Peptides or Proteins as Therapeutic Tools for Obesity or Diabetes Mellitus: A Protocol for Systematic Review and Meta Analysis. Medicine 2023, 102, e33514. [Google Scholar] [CrossRef]
- Moher, D.; Shamseer, L.; Clarke, M.; Ghersi, D.; Liberati, A.; Petticrew, M.; Shekelle, P.; Stewart, L.A.; Estarli, M.; Barrera, E.S.A.; et al. Preferred Reporting Items for Systematic Review and Meta-Analysis Protocols (PRISMA-P) 2015 Statement. Rev. Esp. Nutr. Humana Y. Diet. 2016, 20, 148–160. [Google Scholar] [CrossRef] [PubMed]
- Ouzzani, M.; Hammady, H.; Fedorowicz, Z.; Elmagarmid, A. Rayyan—A Web and Mobile App for Systematic Reviews. Syst. Rev. 2016, 5, 210. [Google Scholar] [CrossRef]
- Taldaev, A.; Terekhov, R.; Nikitin, I.; Zhevlakova, A.; Selivanova, I. Insights into the Pharmacological Effects of Flavonoids: The Systematic Review of Computer Modeling. Int. J. Mol. Sci. 2022, 23, 6023. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Qi, X.; Guan, K.; Gu, Y.; Wang, R.; Li, Q.; Ma, Y. Peptides Released from Bovine α-Lactalbumin by Simulated Digestion Alleviated Free Fatty Acids-Induced Lipid Accumulation in HepG2 Cells. J. Funct. Foods 2021, 85, 104618. [Google Scholar] [CrossRef]
- Coronado-Cáceres, L.J.; Rabadán-Chávez, G.; Mojica, L.; Hernández-Ledesma, B.; Quevedo-Corona, L.; Cervantes, E.L. Cocoa Seed Proteins’ (Theobroma cacao L.) Anti-Obesity Potential through Lipase Inhibition Using in Silico, in Vitro and in Vivo Models. Foods 2020, 9, 1359. [Google Scholar] [CrossRef]
- Grancieri, M.; Martino, H.S.D.; de Mejia, E.G. Protein Digests and Pure Peptides from Chia Seed Prevented Adipogenesis and Inflammation by Inhibiting Pparγ and Nf-Κb Pathways in 3t3l-1 Adipocytes. Nutrients 2021, 13, 176. [Google Scholar] [CrossRef] [PubMed]
- Ketprayoon, T.; Noitang, S.; Sangtanoo, P.; Srimongkol, P.; Saisavoey, T.; Reamtong, O.; Choowongkomon, K.; Karnchanatat, A. Anin Vitrostudy of Lipase Inhibitory Peptides Obtained from De-Oiled Rice Bran. RSC Adv. 2021, 11, 18915–18929. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Ai, X.; Zhu, Z.; Zhang, M.; Pan, F.; Yang, Z.; Wang, O.; Zhao, L.; Zhao, L. Pancreatic Lipase Inhibitory Effects of Peptides Derived from Sesame Proteins: In Silico and in Vitro Analyses. Int. J. Biol. Macromol. 2022, 222, 1531–1537. [Google Scholar] [CrossRef]
- Xiang, H.; Waterhouse, D.S.; Liu, P.; Waterhouse, G.I.N.; Li, J.; Cui, C. Pancreatic Lipase-Inhibiting Protein Hydrolysate and Peptides from Seabuckthorn Seed Meal: Preparation Optimization and Inhibitory Mechanism. LWT 2020, 134, 109870. [Google Scholar] [CrossRef]
- Zhao, Q.; Fan, Y.; Zhao, L.; Zhu, Y.; Jiang, Y.; Gu, J.; Xue, Y.; Hao, Z.; Shen, Q. Identification and Molecular Binding Mechanism of Novel Pancreatic Lipase and Cholesterol Esterase Inhibitory Peptides from Heat-Treated Adzuki Bean Protein Hydrolysates. Food Chem. 2024, 439, 138129. [Google Scholar] [CrossRef]
- de Medeiros, W.F.; Gomes, A.F.T.; Aguiar, A.J.F.C.; de Queiroz, J.L.C.; Bezerra, I.W.L.; da Silva-Maia, J.K.; Piuvezam, G.; Morais, A.H. de A. Anti-Obesity Therapeutic Targets Studied In Silico and In Vivo: A Systematic Review. Int. J. Mol. Sci. 2024, 25, 4699. [Google Scholar] [CrossRef]
- Talevi, A. Computer-Aided Drug Discovery and Design: Recent Advances and Future Prospects. In Computational Drug Discovery and Design; Methods in Molecular Biology Volume 2714; Humana: New York, NY, USA, 2024; pp. 1–20. [Google Scholar] [CrossRef]
- Mirzaei, M.; Shavandi, A.; Mirdamadi, S.; Soleymanzadeh, N.; Motahari, P.; Mirdamadi, N.; Moser, M.; Subra, G.; Alimoradi, H.; Goriely, S. Bioactive Peptides from Yeast: A Comparative Review on Production Methods, Bioactivity, Structure-Function Relationship, and Stability. Trends Food Sci. Technol. 2021, 118, 297–315. [Google Scholar] [CrossRef]
- Jia, L.; Wang, L.; Liu, C.; Liang, Y.; Lin, Q. Bioactive Peptides from Foods: Production, Function, and Application. Food Funct. 2021, 12, 7108–7125. [Google Scholar] [CrossRef]
- Shen, W.; Matsui, T. Current knowledge of intestinal absorption of bioactive peptides. Food Funct. 2017, 8, 4306–4314. [Google Scholar] [CrossRef]
- Dini, I.; Mancusi, A. Food Peptides for the Nutricosmetic Industry. Antioxidants 2023, 12, 788. [Google Scholar] [CrossRef]
- Tran, T.T.N.; Tran, D.P.; Nguyen, V.C.; Tran, T.D.T.; Bui, T.T.T.; Bowie, J.H. Antioxidant Activities of Major Tryptophyllin L Peptides: A Joint Investigation of Gaussian-Based 3D-QSAR and Radical Scavenging Experiments. J. Pept. Sci. 2021, 27, e3295. [Google Scholar] [CrossRef] [PubMed]
- Pearman, N.A.; Ronander, E.; Smith, A.M.; Morris, G.A. The Identification and Characterisation of Novel Bioactive Peptides Derived from Porcine Liver. Curr. Res. Food. Sci. 2020, 3, 314–321. [Google Scholar] [CrossRef] [PubMed]
- Davis, I.W.; Leaver-Fay, A.; Chen, V.B.; Block, J.N.; Kapral, G.J.; Wang, X.; Murray, L.W.; Arendall, W.B.; Snoeyink, J.; Richardson, J.S.; et al. MolProbity: All-atom contacts and structure validation for proteins and nucleic acids. Nucleic Acids Res. 2007, 35, W375–W383. [Google Scholar] [CrossRef]
- Luz, A.B.S.; de Medeiros, A.F.; Bezerra, L.L.; Lima, M.S.R.; Pereira, A.S.; e Silva, E.G.O.; Passos, T.S.; Monteiro, N.d.K.V.; Morais, A.H.d.A. Prospecting native and analogous peptides with anti-SARS-CoV-2 potential derived from the trypsin inhibitor purified from tamarind seeds. Arab. J. Chem. 2023, 16, 104886. [Google Scholar] [CrossRef]
- Minkiewicz, P.; Iwaniak, A.; Darewicz, M. BIOPEP-UWM database of bioactive peptides: Current opportunities. Int. J. Mol. Sci. 2019, 20, 5978. [Google Scholar] [CrossRef]
- Lakhera, S.; Devlal, K.; Ghosh, A.; Rana, M. In Silico Investigation of Phytoconstituents of Medicinal Herb ‘Piper Longum’ against SARS-CoV-2 by Molecular Docking and Molecular Dynamics Analysis. Results Chem. 2021, 3, 100199. [Google Scholar] [CrossRef]
- Verma, D.; Mitra, D.; Paul, M.; Chaudhary, P.; Kamboj, A.; Thatoi, H.; Janmeda, P.; Jain, D.; Panneerselvam, P.; Shrivastav, R.; et al. Potential Inhibitors of SARS-CoV-2 (COVID 19) Proteases PLpro and Mpro/ 3CLpro: Molecular Docking and Simulation Studies of Three Pertinent Medicinal Plant Natural Components. Curr. Res. Pharmacol. Drug Discov. 2021, 2, 100038. [Google Scholar] [CrossRef]
- Silvério, R.; Barth, R.; Heimann, A.S.; Reckziegel, P.; dos Santos, G.J.; Romero-Zerbo, S.Y.; Bermúdez-Silva, F.J.; Rafacho, A.; Ferro, E.S. Pep19 Has a Positive Effect on Insulin Sensitivity and Ameliorates Both Hepatic and Adipose Tissue Phenotype of Diet-Induced Obese Mice. Int. J. Mol. Sci. 2022, 23, 4082. [Google Scholar] [CrossRef]
- Pezhman, L.; Hopkin, S.J.; Begum, J.; Heising, S.; Nasteska, D.; Wahid, M.; Rainger, G.E.; Hodson, D.J.; Iqbal, A.J.; Chimen, M.; et al. PEPITEM modulates leukocyte trafficking to reduce obesity-induced inflammation. Clin. Exp. Immunol. 2023, 212, 1–10. [Google Scholar] [CrossRef]
- Reckziegel, P.; Festuccia, W.T.; Britto, L.R.G.; Jang, K.L.L.; Romão, C.M.; Heimann, J.C.; Fogaça, M.V.; Rodrigues, N.S.; Silva, N.R.; Guimarães, F.S.; et al. A novel peptide that improves metabolic parameters without adverse central nervous system effects. Sci. Rep. 2017, 7, 14781. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.-Y.; Wang, Q.-W.; Yang, X.-Y.; Yang, W.; Li, D.-R.; Jin, J.-Y.; Zhang, H.-C.; Zhang, X.-F. GLP−1 receptor agonists for the treatment of obesity: Role as a promising approach. Front. Endocrinol. 2023, 14, 1085799. [Google Scholar] [CrossRef] [PubMed]
- Vohra, M.S.; Benchoula, K.; Serpell, C.J.; Hwa, W.E. AgRP/NPY and POMC neurons in the arcuate nucleus and their potential role in treatment of obesity. Eur. J. Pharmacol. 2022, 915, 174611. [Google Scholar] [CrossRef]
- Obradovic, M.; Sudar-Milovanovic, E.; Soskic, S.; Essack, M.; Arya, S.; Stewart, A.J.; Gojobori, T.; Isenovic, E.R. Leptin and Obesity: Role and Clinical Implication. Front. Endocrinol. 2021, 12, 585887. [Google Scholar] [CrossRef] [PubMed]
- Parida, S.; Siddharth, S.; Sharma, D. Adiponectin, obesity, and cancer: Clash of the bigwigs in health and disease. Int. J. Mol. Sci. 2019, 20, 2519. [Google Scholar] [CrossRef]
- Yadav, N.; Paul, A.T. Pancreatic Lipase and Its Related Proteins: Where Are We Now? Drug Discov. Today 2024, 29, 103855. [Google Scholar] [CrossRef]
- Rajan, L.; Palaniswamy, D.; Mohankumar, S.K. Targeting Obesity with Plant-Derived Pancreatic Lipase Inhibitors: A Comprehensive Review. Pharmacol. Res. 2020, 155, 104681. [Google Scholar] [CrossRef]
- Liu, T.-T.; Liu, X.-T.; Chen, Q.-X.; Shi, Y. Lipase Inhibitors for Obesity: A Review. Biomed. Pharmacother. 2020, 128, 110314. [Google Scholar] [CrossRef]
- Poustforoosh, A.; Faramarz, S.; Nematollahi, M.H.; Hashemipour, H.; Tüzün, B.; Pardakhty, A.; Mehrabani, M. 3D-QSAR, molecular docking, molecular dynamics, and ADME/T analysis of marketed and newly designed flavonoids as inhibitors of Bcl-2 family proteins for targeting U-87 glioblastoma. J. Cell Biochem. 2022, 123, 390–405. [Google Scholar] [CrossRef]
- Cavasotto, C.N.; Aucar, M.G.; Adler, N.S. Computational chemistry in drug lead discovery and design. Int. J. Quantum Chem. 2019, 119, e25678. [Google Scholar] [CrossRef]
- Castro-Alvarez, A.; Costa, A.M.; Vilarrasa, J. The Performance of several docking programs at reproducing protein-macrolide-like crystal structures. Molecules 2017, 22, 136. [Google Scholar] [CrossRef] [PubMed]
- Nelson, D.L.; Cox, M.M. Princípios de Bioquímica de Lehninger, 8th ed.; Artmed Editora: Artmed, Brazil, 2022; pp. 1–1278. [Google Scholar]
- de Medeiros, A.F.; Costa, I.d.S.; de Carvalho, F.M.C.; Kiyota, S.; de Souza, B.B.P.; Sifuentes, D.N.; Serquiz, R.P.; Maciel, B.L.L.; Uchôa, A.F.; dos Santos, E.A.; et al. Biochemical characterisation of a Kunitz-type inhibitor from Tamarindus indica L. seeds and its efficacy in reducing plasma leptin in an experimental model of obesity. J. Enzym. Inhib. Med. Chem. 2018, 33, 334–348. [Google Scholar] [CrossRef] [PubMed]
- Ninomiya, K.; Ina, S.; Hamada, A.; Yamaguchi, Y.; Akao, M.; Shinmachi, F.; Kumagai, H.; Kumagai, H. Suppressive Effect of the α-Amylase Inhibitor Albumin from Buckwheat (Fagopyrum esculentum Moench) on Postprandial Hyperglycaemia. Nutrients 2018, 10, 1503. [Google Scholar] [CrossRef]
- Zhao, S.; Wu, Y.; Hu, L. Identification and Synthesis of Selective Cholesterol Esterase Inhibitor Using Dynamic Combinatorial Chemistry. Bioorg. Chem. 2022, 119, 105520. [Google Scholar] [CrossRef] [PubMed]
- Wei, Y.; Peng, A.-Y.; Wang, B.; Ma, L.; Peng, G.; Du, Y.; Tang, J. Synthesis and biological evaluation of phosphorylated flavonoids as potent and selective inhibitors of cholesterol esterase. Eur. J. Med. Chem. 2014, 74, 751–758. [Google Scholar] [CrossRef]
- Shi, Y.; Burn, P. Lipid metabolic enzymes: Emerging drug targets for the treatment of obesity. Nat. Rev. Drug. Discov. 2004, 3, 695–710. [Google Scholar] [CrossRef]
- Mansbach, C.M.; Siddiqi, S.A. The biogenesis of chylomicrons. Annu. Rev. Physiol. 2009, 72, 315–333. [Google Scholar] [CrossRef]
- Iqbal, J.; Hussain, M.M. Intestinal lipid absorption. Am. J. Physiol. Endocrinol. Metab. 2009, 296, 1183–1194. [Google Scholar] [CrossRef]
- Wang, S.; Lin, Y.; Gao, L.; Yang, Z.; Lin, J.; Ren, S.; Li, F.; Chen, J.; Wang, Z.; Dong, Z.; et al. PPAR-γ Integrates Obesity and Adipocyte Clock through Epigenetic Regulation of Bmal1. Theranostics 2022, 12, 1589–1606. [Google Scholar] [CrossRef]
- Devan, A.R.; Nair, B.; Kumar, A.R.; Nath, L.R. An Insight into the Role of Telmisartan as PPAR-γ/α Dual Activator in the Management of Nonalcoholic Fatty Liver Disease. Biotechnol. Appl. Biochem. 2022, 69, 461–468. [Google Scholar] [CrossRef]
- Giordano, D.; Biancaniello, C.; Argenio, M.A.; Facchiano, A. Drug Design by Pharmacophore and Virtual Screening Approach. Pharmaceuticals 2022, 15, 646. [Google Scholar] [CrossRef] [PubMed]
- Szkopek, D.; Pierzynowski, S.G.; Pierzynowska, K.; Zaworski, K.; Kondej, A.; Wychowański, P.; Konieczka, P.; Seklecka, B.; Donaldson, J.; Jank, M.; et al. A review: Pancreatic enzymes in the treatment of chronic pancreatic insufficiency in companion animals. J. Vet. Intern. Med. 2024, 38, 2026–2033. [Google Scholar] [CrossRef]
- Jiang, H.; Horiuchi, Y.; Hironao, K.; Kitakaze, T.; Yamashita, Y.; Ashida, H. Prevention effect of quercetin and its glycosides on obesity and hyperglycemia through activating AMPKα in highhfat diettfed ICR mice. J. Clin. Biochem. Nutr. 2020, 67, 74–83. [Google Scholar] [CrossRef] [PubMed]
- Jiao, W.; Mi, S.; Sang, Y.; Jin, Q.; Chitrakar, B.; Wang, X.; Wang, S. Integrated network pharmacology and cellular assay for the investigation of an anti-obesity effect of 6-shogaol. Food Chem. 2022, 374, 131755. [Google Scholar] [CrossRef]
- Radheshyam, G.P.; Semalty, M.; Semalty, A. Antiobesity Drug Discovery Research: In vitro Models for Shortening the Drug Discovery Pipeline. Curr. Drug Targets 2024. [Google Scholar] [CrossRef]
- Koszła, O.; Targowska-Duda, K.M.; Kędzierska, E.; Kaczor, A.A. In Vitro and in Vivo Models for the Investigation of Potential Drugs against Schizophrenia. Biomolecules 2020, 10, 160. [Google Scholar] [CrossRef]
- Saeidnia, S.; Manayi, A.; Abdollahi, M. From in vitro Experiments to in vivo and Clinical Studies; Pros and Cons. Curr. Drug Discov. Technol. 2015, 12, 218–224. [Google Scholar] [CrossRef]
- Suleiman, J.B.; Mohamed, M.; Bakar, A.B.A. A Systematic Review on Different Models of Inducing Obesity in Animals: Advantages and Limitations. J. Adv. Vet. Anim. Res. 2020, 7, 103–114. [Google Scholar] [CrossRef] [PubMed]
Abbreviation | Descriptor | Elements of the Question |
---|---|---|
P: | Problem | Peptides and/or proteins used in the treatment of obesity |
E: | Exposure | Obesity |
Co: | Context | In silico studies |
Database | Search Equation |
---|---|
PUBMED Selected filter: Title/Abstract | (((protein[Title/Abstract] OR peptide[Title/Abstract] OR treatment[Title/Abstract]) AND (in silico[Title/Abstract] OR computer simulation[Title/Abstract])) AND (molecular dynamic simulation[Title/Abstract] OR molecular dynamic[Title/Abstract] OR molecular docking simulation[Title/Abstract] OR molecular docking[Title/Abstract]) AND (Obesity[Title/Abstract] OR Obese[Title/Abstract])) |
SCOPUS Selected filter: Article title, abstract, keywords | TITLE-ABS-KEY (“protein” OR peptide OR treatment) AND TITLE-ABS-KEY (“in siilico” OR “computer simulation”) AND TITLE-ABS-KEY (“molecular dynamic simulation” OR “molecular dynamic” OR “molecular docking simulation” OR “molecular docking”) AND TITLE-ABS-KEY (“obesity” OR “obese”) |
SCIENCE DIRECT Selected filter: Title, abstract or author-specified keywords | (Protein OR peptide) AND (in silico OR computer simulation OR molecular dynamic simulation OR molecular dynamic OR molecular docking simulation OR molecular docking) AND (obesity) |
EMBASE Selected filter: Title, abstract or author keywords | (protein*:ti,ab,kw OR peptide*:ti,ab,kw) AND (‘in silico*’:ti,ab,kw OR ‘computer simulation*’:ti,ab,kw) AND (‘molecular dynamic* simulation*’:ti,ab,kw OR ‘molecular dynamic*’:ti,ab,kw OR ‘molecular docking* simulation*’:ti,ab,kw OR ‘molecular docking*’:ti,ab,kw) AND (obesity*:ti,ab,kw OR obese*:ti,ab,kw) |
VIRTUAL HEALTH LIBRARY Selected filter: Title, abstract, subject | (protein* OR peptide* OR treatment*) AND (in silico* OR computer simulation*) AND (molecular dynamic* simulation* OR molecular dynamic* OR molecular docking* simulation* OR molecular docking*) AND (obesity* OR obese*) |
WEB OF SCIENCE | (((ALL = (protein* OR peptide*)) AND ALL = (in silico* OR computer simulation*)) AND ALL = (molecular dynamic* simulation* OR molecular dynamic* OR molecular docking* simulation* OR molecular docking*)) AND ALL = (Obesity* OR Obese*) |
Authors/Year | Peptides/ Sequence * | Origin | Original Protein | Software for Obtaining Proteins/Projecting Peptides |
---|---|---|---|---|
Chen et al. (2021) [30] | P2 (GINY) P8 (DQW) P13 (DQWL) P14 (LFQ) | Bovine alpha-lactalbumin | Alpha-lactalbumin fraction 3 | UniProt (https://www.uniprot.org/) |
Coronado-Cáceres et al. (2020) [31] | EEQR GGER TIAV AGRP VTDG NTQR EQCQR VTDG NQGAI QTGVQ VSTDVNIE HSDDDGQIR SDNE CSTSTV | Cocoa beans (Theobroma cacao L.) | Vincilin: EEQR GGER TIAV AGRP VTDG NTQR EQCQR VTDG NQGAI Albumin: QTGVQ VSTDVNIE HSDDDGQIR SDNE CSTSTV | UniProt (https://www.uniprot.org/) PeptideCutter (https://web.expasy.org/peptide_cutter/) MarvinSketch (ChemAxon Ltd., Boston, MA, EUA) (https://chemaxon.com/marvin) |
Grancieri et al. (2021) [32] | NSPGPHDVALDQ (PEP1) RMVLPEYELLYE (PEP2) | Chia seed (Salvia hispanica L.) | Glutelin fraction | MarvinSketch (ChemAxon Ltd., Boston, MA, EUA) (https://chemaxon.com/marvin) |
Ketprayoon et al. (2021) [33] | FYLGYCDY | Rice bran (Oryza sativa) defatted (DORB) | DORB Fraction 5 through the use of Alcalase® | Discovery Studio 2019 (https://www.3ds.com/products/biovia/discovery-studio) |
Wang et al. (2022) [34] | EW NIF AGY PIF QWM TF | Sesame (Sesamum indicum L.) | 11S globulin and 2S albumin | UniProt (https://www.uniprot.org/) ExPASy PeptideCutter (https://web.expasy.org/peptide_cutter/) |
Xiang et al. (2020) [35] | LR VR APYR DR EEAASLR ELR EWR FLR FMDR FR ALR LLR MR NLLHR PECR PR QR RDR SDR TR WR WRN | Sea buckthorn seed flour (Hippophae rhamnoides) | Hawthorn seed hydrolyzate identified by HPLC/MS/MS | ChemBio3D (https://biochemia.uwm.edu.pl/biopep-uwm/) |
Zhao et al. (2024) [36] | LLGGLDSSLLPH FDTGSSFYNKPAG IWVGGSGMDM YLQGFGKNIL IFNNDPNNHP | Adzuki beans (Vigna angularis) | Fraction 1 (<3 kDa) of adzuki bean protein hydrolysate | UniProt (https://www.uniprot.org/) |
IN SILICO STUDIES | IN VITRO/IN VIVO REASSESSMENT | ||||||
---|---|---|---|---|---|---|---|
Reference | Methodology | Origin of Peptides | In Silico Target | Main Residues in the Interaction Interface of the Most Promising Agent/Main Results of Docking or Molecular Dynamics | Technique/Types of Culture/Strain/Diet | Treatment/Main Effects | Possible Molecular Mechanism of Application |
Chen et al. (2021) [30] | Docking Software AutoDock Vina (https://vina.scripps.edu/) | Bovine alpha-lactalbumin | PPARα | Met355 P8 (His440, Tyr464, Tyr314, and Ser280) and highest theoretical affinity (−7.86 kcal/mol) | 1. Cell viability 2. Oil Red O staining and TG levels 3. Intracellular content assay 4. Gene expression by quantitative real-time PCR (qRT-PCR) (Effects of P2 and P8) 5. Western blot Cell model: HepG2 cells | ↑ Cellular viability ↓ FFA and TG content ↑ PPARα gene and protein expression | Agonist |
Coronado-Cáceres et al. (2020) * [31] | Docking Software AutoDock Vina (https://vina.scripps.edu/) | Cocoa beans (Theobroma cacao L.) | HPL | Highest theoretical affinity: EEQR (−6.5 kcal/mol), GGER (−6.3 kcal/mol), QTGVQ (−6.2 kcal/mol), and VSTDVNIE (−6.1 kcal/mol) EEQR at Lys239, Arg265, Tre271, Asp88, Tyr267, Asn92, Ser333, Asp331, and Lys268 | 1. Pancreatic Lipase Inhibition (PPL) 2. Male Sprague Dawley Rats Fed HF Diet | × PPL ↑ Total fecal lipids and fecal TG ↓ Fat absorption rate Ø Body weight and fecal TC | Inhibitor |
Grancieri et al. (2021) [32] | Docking Software AutoDock Vina (https://vina.scripps.edu/) | Chia seed (Salvia hispanica L.) | PPARγ FAS MAGL | PPARγ PEP1 = Lys230; Ala235; Lys232; Ala231; Tyr219; Glu378; Arg234 PEP2 = GLN420; TYR219; LYS224; ILE223; LYS232; THR241; ALA231; ARG234; GLU378; ASP380; HIS425 MAGL PEP1 = ARG98; ASP26; SER91; VAL90; VAL95; VAL78; CYS208; ILE211; SER218; LYS160 PEP2 = MET123; SER122; SER155; LEU148; LEU213; ALA151; ALA156; LEU214; LEU150; PRO153; SER218; ARG222; LYS160; ALA164; ALA163; ILE211; LEU167; CYS208; VAL207 FAS PEP1 = GLU2227; GLY2228; TYR2288; PRO2229; CYS2292; LYS2436; ASP2291; THR2434; ARG2275; ARG2421; ARG2428; TYR2433; ILE2282; HIS2283; SER2281; LEU2279; ASP2280 PEP2 = SER2281; GLU2227; LYS2436; TYR2288; THR2230; PRO2229; GLN2432 PEP2 = greater interaction with PPARγ with ELL (−6.9 kcal/mol) and with MAGL with ELL (−7.3 kcal/mol) PEP1 = greater interaction with FAS (−7.3 kcal/mol) | 1. Cell viability 2. Inhibition of BPL 3. Effects of peptides on 3T3-L1 adipocytes during the differentiation process 4. Effect of peptides on cellular lipid accumulation by Oil Red O 5. Influence of peptides on the expression of proteins related to adipogenesis and inflammatory processes (Western Blot) 6. Effects of peptides on TG content | ↑ Cellular viability × LPB ↓ FFA and TG content ↓ PPARγ ↓ TNFα (Pep2) ↓ NFκβ ↓ LPL ↓ SREBP-1 (Pep2) ↓ IL-6 and IL-10 | Agonist |
Ketprayoon et al. (2021) [33] | Docking Software GOLD 5.7.1 (https://www.ccdc.cam.ac.uk/solutions/software/gold/) | Rice bran (Oryza sativa) defatted (DORB) | PPL | Phe216, Ser153, Asp177, and His264 Docking score = 122.54 | 1. Pancreatic Lipase Inhibition (PPL) | × PPL | Inhibitor |
Wang et al. (2022) [34] | Docking Software AutoDock Vina (https://vina.scripps.edu/) | Sesame (Sesamum indicum L.) | HPL | The 6 peptides can interact with Phe77, His151, Ser152, Phe215, and His263 They have high theoretical affinity (−7.4 to −8.1 kcal/mol) | 1. Pancreatic Lipase Inhibition (PPL) | × PPL | Inhibitor |
Xiang et al. (2020) [35] | Docking Software AutoDock Vina (https://vina.scripps.edu/) | Sea buckthorn seed flour (Hippophae rhamnoides) | PPL | EEAASLR (Val322, Gln324, and Gln188); NLLHR (His224 and Asn320); RDR (Ser323, Val322, and Gln 324) and VR (Pro194) VR had at least one type of interaction with LPP High theoretical affinity for LPP. VR (−5.2 kcal/mol); EEAASLR (−5.5 kcal/mol); RDR (−5.4 kcal/mol); NLLHR (−4.8 kcal/mol) | 1. Determination of the inhibitory rate of SSPH against PPL 2. Determination of kinetics and mode of inhibition in PPL 3. Thermal stability of SSPH inhibitory activity against PPL SSPH 4. The inhibitory activity of SSPH against PPL before and after GIS | × PPL under normal conditions × PPL with temperature rise and after GIS | Inhibitor |
Zhao et al. (2024) [36] | Docking Software Dock (https://dock.compbio.ucsf.edu/) | Adzuki beans (Vigna angularis) | PPL CE | PPL = LLGGLDSSLLPH, FDTGSSFYNKPAG and IFNNDPNNHP (Ser153, His264, Ala261, Phe259, and Val260) CE = LLGGLDSSLLPH, FDTGSSFYNKPAG, and IWVGGSGMDM (Ser194, His435, and Ala108) YLQGFGKNIL (Ser194 and His435) IFNNDPNNHP (Ala108) High theoretical affinity for PPL (from −116.5371 to 126.7088 kcal/mol) and CE (from −132.1017 to −148.9364 kcal/mol) | 1. Pancreatic Lipase Inhibition (PL) ** 2. CE inhibition assay | × PL × CE | Inhibitor |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aguiar, A.J.F.C.; de Medeiros, W.F.; da Silva-Maia, J.K.; Bezerra, I.W.L.; Piuvezam, G.; Morais, A.H.d.A. Peptides Evaluated In Silico, In Vitro, and In Vivo as Therapeutic Tools for Obesity: A Systematic Review. Int. J. Mol. Sci. 2024, 25, 9646. https://doi.org/10.3390/ijms25179646
Aguiar AJFC, de Medeiros WF, da Silva-Maia JK, Bezerra IWL, Piuvezam G, Morais AHdA. Peptides Evaluated In Silico, In Vitro, and In Vivo as Therapeutic Tools for Obesity: A Systematic Review. International Journal of Molecular Sciences. 2024; 25(17):9646. https://doi.org/10.3390/ijms25179646
Chicago/Turabian StyleAguiar, Ana Júlia Felipe Camelo, Wendjilla Fortunato de Medeiros, Juliana Kelly da Silva-Maia, Ingrid Wilza Leal Bezerra, Grasiela Piuvezam, and Ana Heloneida de Araújo Morais. 2024. "Peptides Evaluated In Silico, In Vitro, and In Vivo as Therapeutic Tools for Obesity: A Systematic Review" International Journal of Molecular Sciences 25, no. 17: 9646. https://doi.org/10.3390/ijms25179646
APA StyleAguiar, A. J. F. C., de Medeiros, W. F., da Silva-Maia, J. K., Bezerra, I. W. L., Piuvezam, G., & Morais, A. H. d. A. (2024). Peptides Evaluated In Silico, In Vitro, and In Vivo as Therapeutic Tools for Obesity: A Systematic Review. International Journal of Molecular Sciences, 25(17), 9646. https://doi.org/10.3390/ijms25179646