Comparative Binding Study of Gliptins to Bacterial DPP4-like Enzymes for the Treatment of Type 2 Diabetes Mellitus (T2DM)
Abstract
:1. Introduction
- Class I: These attach to S1 and S2 sites; vildagliptin and saxagliptin belong to this category.
- Class II: These bind to S1, S2, S1′, and S2′ sites; alogliptin and linagliptin are part of this group.
- Class III: These interact with the S2ext site along with S1, S2, and S1′; sitagliptin is representative of this class.
2. Results
2.1. DPP4 Homologs Sequence Selection and Comparison
2.2. DPP4 Homologs Structure Prediction and Evaluation
2.3. Computational Prediction of the Binding of Known Gliptins with Different DPP4s
3. Discussion
4. Materials and Methods
4.1. DPP4 Homologs Sequence Data
4.2. Data Retrieval
4.3. Sequence Alignment
4.4. Computational Prediction of DPP4 Homologs’ 3D Structure
4.5. Molecular Dynamics Simulation
4.6. Molecular Docking Calculation and Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zimmet, P.Z. Diabetes and Its Drivers: The Largest Epidemic in Human History? Clin. Diabetes Endocrinol. 2017, 3, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Defronzo, R.A. From the Triumvirate to the Ominous Octet: A New Paradigm for the Treatment of Type 2 Diabetes Mellitus. Diabetes 2009, 58, 773. [Google Scholar] [CrossRef] [PubMed]
- Solis-Herrera, C.C.; Triplitt, C.; Reasner, C.; DeFronzo, R.A.; Cersosimo, E. Classification of Diabetes Mellitus; Division of Diabetes , Department of Medicine, UTHSCSA: San Antonio, TX, USA, 2018. [Google Scholar]
- Zheng, Y.; Ley, S.H.; Hu, F.B. Global Aetiology and Epidemiology of Type 2 Diabetes Mellitus and Its Complications. Nat. Rev. Endocrinol. 2018, 14, 88–98. [Google Scholar] [CrossRef] [PubMed]
- Reaven, G.M. Banting Lecture 1988. Role of Insulin Resistance in Human Disease. Diabetes 1988, 37, 1595–1607. [Google Scholar] [CrossRef] [PubMed]
- Fan, Y.; Pedersen, O. Gut Microbiota in Human Metabolic Health and Disease. Nat. Rev. Microbiol. 2020, 19, 55–71. [Google Scholar] [CrossRef] [PubMed]
- Lynch, S.V.; Pedersen, O. The Human Intestinal Microbiome in Health and Disease. N. Engl. J. Med. 2016, 375, 2369–2379. [Google Scholar] [CrossRef] [PubMed]
- Koeth, R.A.; Wang, Z.; Levison, B.S.; Buffa, J.A.; Org, E.; Sheehy, B.T.; Britt, E.B.; Fu, X.; Wu, Y.; Li, L.; et al. Intestinal Microbiota Metabolism of L-Carnitine, a Nutrient in Red Meat, Promotes Atherosclerosis. Nat. Med. 2013, 19, 576–585. [Google Scholar] [CrossRef]
- Allin, K.H.; Tremaroli, V.; Caesar, R.; Jensen, B.A.H.; Damgaard, M.T.F.; Bahl, M.I.; Licht, T.R.; Hansen, T.H.; Nielsen, T.; Dantoft, T.M.; et al. Aberrant Intestinal Microbiota in Individuals with Prediabetes. Diabetologia 2018, 61, 810–820. [Google Scholar] [CrossRef] [PubMed]
- Qin, N.; Yang, F.; Li, A.; Prifti, E.; Chen, Y.; Shao, L.; Guo, J.; Le Chatelier, E.; Yao, J.; Wu, L.; et al. Alterations of the Human Gut Microbiome in Liver Cirrhosis. Nature 2014, 513, 59–64. [Google Scholar] [CrossRef]
- Wang, J.; Qin, J.; Li, Y.; Cai, Z.; Li, S.; Zhu, J.; Zhang, F.; Liang, S.; Zhang, W.; Guan, Y.; et al. A Metagenome-Wide Association Study of Gut Microbiota in Type 2 Diabetes. Nature 2012, 490, 55–60. [Google Scholar] [CrossRef]
- Cunningham, A.L.; Stephens, J.W.; Harris, D.A. Gut Microbiota Influence in Type 2 Diabetes Mellitus (T2DM). Gut Pathogens 2021, 13, 50. [Google Scholar] [CrossRef] [PubMed]
- Jensen, A.B.; Sørensen, T.I.A.; Pedersen, O.; Jess, T.; Brunak, S.; Allin, K.H. Increase in Clinically Recorded Type 2 Diabetes after Colectomy. Elife 2018, 7, e37420. [Google Scholar] [CrossRef] [PubMed]
- Thaiss, C.A.; Levy, M.; Grosheva, I.; Zheng, D.; Soffer, E.; Blacher, E.; Braverman, S.; Tengeler, A.C.; Barak, O.; Elazar, M.; et al. Hyperglycemia Drives Intestinal Barrier Dysfunction and Risk for Enteric Infection. Science 2018, 359, 1376–1383. [Google Scholar] [CrossRef] [PubMed]
- Romaní-Pérez, M.; López-Almela, I.; Bullich-Vilarrubias, C.; Rueda-Ruzafa, L.; Gómez Del Pulgar, E.M.; Benítez-Páez, A.; Liebisch, G.; Lamas, J.A.; Sanz, Y. Holdemanella Biformis Improves Glucose Tolerance and Regulates GLP-1 Signaling in Obese Mice. FASEB J. 2021, 35, e21734. [Google Scholar] [CrossRef] [PubMed]
- Forslund, K.; Hildebrand, F.; Nielsen, T.; Falony, G.; Le Chatelier, E.; Sunagawa, S.; Prifti, E.; Vieira-Silva, S.; Gudmundsdottir, V.; Krogh Pedersen, H.; et al. Disentangling Type 2 Diabetes and Metformin Treatment Signatures in the Human Gut Microbiota. Nature 2015, 528, 262–266. [Google Scholar] [CrossRef]
- Wu, H.; Esteve, E.; Tremaroli, V.; Khan, M.T.; Caesar, R.; Mannerås-Holm, L.; Ståhlman, M.; Olsson, L.M.; Serino, M.; Planas-Fèlix, M.; et al. Metformin Alters the Gut Microbiome of Individuals with Treatment-Naive Type 2 Diabetes, Contributing to the Therapeutic Effects of the Drug. Nat. Med. 2017, 23, 850–858. [Google Scholar] [CrossRef] [PubMed]
- Bryrup, T.; Thomsen, C.W.; Kern, T.; Allin, K.H.; Brandslund, I.; Jørgensen, N.R.; Vestergaard, H.; Hansen, T.; Hansen, T.H.; Pedersen, O.; et al. Metformin-Induced Changes of the Gut Microbiota in Healthy Young Men: Results of a Non-Blinded, One-Armed Intervention Study. Diabetologia 2019, 62, 1024–1035. [Google Scholar] [CrossRef]
- Mentlein, R. Dipeptidyl-Peptidase IV (CD26)-Role in the Inactivation of Regulatory Peptides. Regul. Pept. 1999, 85, 9–24. [Google Scholar] [CrossRef] [PubMed]
- Demuth, H.U.; McIntosh, C.H.S.; Pederson, R.A. Type 2 Diabetes—Therapy with Dipeptidyl Peptidase IV Inhibitors. Biochim. Biophys. Acta (BBA) Proteins Proteom. 2005, 1751, 33–44. [Google Scholar] [CrossRef]
- Yu, D.M.T.; Yao, T.W.; Chowdhury, S.; Nadvi, N.A.; Osborne, B.; Church, W.B.; McCaughan, G.W.; Gorrell, M.D. The Dipeptidyl Peptidase IV Family in Cancer and Cell Biology. FEBS J. 2010, 277, 1126–1144. [Google Scholar] [CrossRef]
- Lambeir, A.M.; Durinx, C.; Scharpé, S.; De Meester, I. Dipeptidyl-Peptidase IV from Bench to Bedside: An Update on Structural Properties, Functions, and Clinical Aspects of the Enzyme DPP IV. Crit. Rev. Clin. Lab. Sci. 2008, 40, 209–294. [Google Scholar] [CrossRef] [PubMed]
- Olivares, M.; Schüppel, V.; Hassan, A.M.; Beaumont, M.; Neyrinck, A.M.; Bindels, L.B.; Benítez-Páez, A.; Sanz, Y.; Haller, D.; Holzer, P.; et al. The Potential Role of the Dipeptidyl Peptidase-4-like Activity from the Gut Microbiota on the Host Health. Front. Microbiol. 2018, 9, 1900. [Google Scholar] [CrossRef] [PubMed]
- Bell, G.I.; Santerre, R.F.; Mullenbach, G.T. Hamster Preproglucagon Contains the Sequence of Glucagon and Two Related Peptides. Nature 1983, 302, 716–718. [Google Scholar] [CrossRef]
- Ørskov, C.; Holst, J.J.; Knuhtsen, S.; Baldissera, F.G.A.; Poulsen, S.S.; Nielsen, O.V. Glucagon-Like Peptides GLP-1 and GLP-2, Predicted Products of the Glucagon Gene, Are Secreted Separately from Pig Small Intestine but Not Pancreas. Endocrinology 1986, 119, 1467–1475. [Google Scholar] [CrossRef] [PubMed]
- MENTLEIN, R.; GALLWITZ, B.; SCHMIDT, W.E. Dipeptidyl-Peptidase IV Hydrolyses Gastric Inhibitory Polypeptide, Glucagon-like Peptide-1(7–36)Amide, Peptide Histidine Methionine and Is Responsible for Their Degradation in Human Serum. Eur. J. Biochem. 1993, 214, 829–835. [Google Scholar] [CrossRef] [PubMed]
- Deacon, C.F.; Johnsen, A.H.; Holst, J.J. Degradation of Glucagon-like Peptide-1 by Human Plasma In Vitro Yields an N-Terminally Truncated Peptide That Is a Major Endogenous Metabolite In Vivo. J. Clin. Endocrinol. Metab. 1995, 80, 952–957. [Google Scholar] [CrossRef] [PubMed]
- Deacon, C.F.; Nauck, M.A.; Toft-Nielsen, M.; Pridal, L.; Willms, B.; Holst, J.J. Both Subcutaneously and Intravenously Administered Glucagon-like Peptide I Are Rapidly Degraded From the NH2-Terminus in Type II Diabetic Patients and in Healthy Subjects. Diabetes 1995, 44, 1126–1131. [Google Scholar] [CrossRef] [PubMed]
- Kieffer, T.J.; Mc Intosh, C.H.S.; Pederson, R.A. Degradation of Glucose-Dependent Insulinotropic Polypeptide and Truncated Glucagon-like Peptide 1 In Vitro and In Vivo by Dipeptidyl Peptidase IV. Endocrinology 1995, 136, 3585–3596. [Google Scholar] [CrossRef] [PubMed]
- Carr, R.D. Drug Development from the Bench to the Pharmacy: With Special Reference to Dipeptidyl Peptidase-4 Inhibitor Development. Diabet. Med. 2016, 33, 718–722. [Google Scholar] [CrossRef]
- Deacon, C.F. Physiology and Pharmacology of DPP-4 in Glucose Homeostasis and the Treatment of Type 2 Diabetes. Front. Endocrinol. 2019, 10, 440649. [Google Scholar] [CrossRef]
- Karagiannis, T.; Boura, P.; Tsapas, A. Safety of Dipeptidyl Peptidase 4 Inhibitors: A Perspective Review. Ther. Adv. Drug Saf. 2014, 5, 138–146. [Google Scholar] [CrossRef] [PubMed]
- Scheen, A.J. Safety of Dipeptidyl Peptidase-4 Inhibitors for Treating Type 2 Diabetes. Expert. Opin. Drug Saf. 2015, 14, 505–524. [Google Scholar] [CrossRef] [PubMed]
- Scheen, A.J. The Safety of Gliptins: Updated Data in 2018. Expert. Opin. Drug Saf. 2018, 17, 387–405. [Google Scholar] [CrossRef]
- Carlson, C.J.; Santamarina, M.L. Update Review of the Safety of Sodium-Glucose Cotransporter 2 Inhibitors for the Treatment of Patients with Type 2 Diabetes Mellitus. Expert. Opin. Drug Saf. 2016, 15, 1401–1412. [Google Scholar] [CrossRef] [PubMed]
- Scheen, A.J. SGLT2 Inhibition: Efficacy and Safety in Type 2 Diabetes Treatment. Expert. Opin. Drug Saf. 2015, 14, 1879–1904. [Google Scholar] [CrossRef] [PubMed]
- Scheen, A.J. SGLT2 Inhibitors: Benefit/Risk Balance. Curr. Diab. Rep. 2016, 16, 92. [Google Scholar] [CrossRef] [PubMed]
- Villhauer, E.B.; Brinkman, J.A.; Naderi, G.B.; Burkey, B.F.; Dunning, B.E.; Prasad, K.; Mangold, B.L.; Russell, M.E.; Hughes, T.E. 1-[[(3-Hydroxy-1-Adamantyl)Amino]Acetyl]-2-Cyano-(S)-Pyrrolidine: A Potent, Selective, and Orally Bioavailable Dipeptidyl Peptidase IV Inhibitor with Antihyperglycemic Properties. J. Med. Chem. 2003, 46, 2774–2789. [Google Scholar] [CrossRef]
- Augeri, D.J.; Robl, J.A.; Betebenner, D.A.; Magnin, D.R.; Khanna, A.; Robertson, J.G.; Wang, A.; Simpkins, L.M.; Taunk, P.; Huang, Q.; et al. Discovery and Preclinical Profile of Saxagliptin (BMS-477118): A Highly Potent, Long-Acting, Orally Active Dipeptidyl Peptidase IV Inhibitor for the Treatment of Type 2 Diabetes. J. Med. Chem. 2005, 48, 5025–5037. [Google Scholar] [CrossRef] [PubMed]
- Rasmussen, H.B.; Branner, S.; Wiberg, F.C.; Wagtmann, N. Crystal Structure of Human Dipeptidyl Peptidase IV/CD26 in Complex with a Substrate Analog. Nat. Struct. Biol. 2003, 10, 19–25. [Google Scholar] [CrossRef]
- Kim, D.; Wang, L.; Beconi, M.; Eiermann, G.J.; Fisher, M.H.; He, H.; Hickey, G.J.; Kowalchick, J.E.; Leiting, B.; Lyons, K.; et al. (2R)-4-Oxo-4-[3-(Trifluoromethyl)-5,6-Dihydro[1,2,4]Triazolo[4,3-a] Pyrazin-7(8H)-Yl]-1-(2,4,5-Trifluorophenyl)Butan-2-Amine: A Potent, Orally Active Dipeptidyl Peptidase IV Inhibitor for the Treatment of Type 2 Diabetes. J. Med. Chem. 2005, 48, 141–151. [Google Scholar] [CrossRef]
- Feng, J.; Zhang, Z.; Wallace, M.B.; Stafford, J.A.; Kaldor, S.W.; Kassel, D.B.; Navre, M.; Shi, L.; Skene, R.J.; Asakawa, T.; et al. Discovery of Alogliptin: A Potent, Selective, Bioavailable, and Efficacious Inhibitor of Dipeptidyl Peptidase IV. J. Med. Chem. 2007, 50, 2297–2300. [Google Scholar] [CrossRef] [PubMed]
- Eckhardt, M.; Langkopf, E.; Mark, M.; Tadayyon, M.; Thomas, L.; Nar, H.; Pfrengle, W.; Guth, B.; Lotz, R.; Sieger, P.; et al. 8-(3-(R)-Aminopiperidin-1-Yl)-7-but-2-Ynyl-3-Methyl-1-(4-Methyl-Quinazolin-2-Ylmethyl)-3,7-Dihydropurine-2,6-Dione (BI 1356), a Highly Potent, Selective, Long-Acting, and Orally Bioavailable DPP-4 Inhibitor for the Treatment of Type 2 Diabetes. J. Med. Chem. 2007, 50, 6450–6453. [Google Scholar] [CrossRef]
- Deacon, C.F. Dipeptidyl Peptidase-4 Inhibitors in the Treatment of Type 2 Diabetes: A Comparative Review. Diabetes Obes. Metab. 2011, 13, 7–18. [Google Scholar] [CrossRef] [PubMed]
- Arulmozhiraja, S.; Matsuo, N.; Ishitsubo, E.; Okazaki, S.; Shimano, H.; Tokiwa, H. Comparative Binding Analysis of Dipeptidyl Peptidase IV (DPP-4) with Antidiabetic Drugs—An Ab Initio Fragment Molecular Orbital Study. PLoS ONE 2016, 11, e0166275. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Zhang, Z.; Hang, J.; Liu, J.; Guo, F.; Ding, Y.; Li, M.; Nie, Q.; Lin, J.; Zhuo, Y.; et al. Microbial-Host-Isozyme Analyses Reveal Microbial DPP4 as a Potential Antidiabetic Target. Science 2023, 381, eadd5787. [Google Scholar] [CrossRef]
- Cani, P.D. Gut Microbiota—At the Intersection of Everything? Nat. Rev. Gastroenterol. Hepatol. 2017, 14, 321–322. [Google Scholar] [CrossRef] [PubMed]
- Sommer, F.; Bäckhed, F. The Gut Microbiota--Masters of Host Development and Physiology. Nat. Rev. Microbiol. 2013, 11, 227–238. [Google Scholar] [CrossRef] [PubMed]
- Üstün-Aytekin, Ö.; Arisoy, S.; Aytekin, A.Ö.; Yildiz, E. Statistical Optimization of Cell Disruption Techniques for Releasing Intracellular X-Prolyl Dipeptidyl Aminopeptidase from Lactococcus lactis Spp. Lactis. Ultrason. Sonochem. 2016, 29, 163–171. [Google Scholar] [CrossRef] [PubMed]
- Fteita, D.; Könönen, E.; Gürsoy, M.; Söderling, E.; Gürsoy, U.K. Does Estradiol Have an Impact on the Dipeptidyl Peptidase IV Enzyme Activity of the Prevotella Intermedia Group Bacteria? Anaerobe 2015, 36, 14–18. [Google Scholar] [CrossRef]
- Stressler, T.; Eisele, T.; Schlayer, M.; Lutz-Wahl, S.; Fischer, L. Characterization of the Recombinant Exopeptidases PepX and PepN from Lactobacillus Helveticus ATCC 12046 Important for Food Protein Hydrolysis. PLoS ONE 2013, 8, e70055. [Google Scholar] [CrossRef]
- Cooper, K.G.; Woods, J.P. Secreted Dipeptidyl Peptidase IV Activity in the Dimorphic Fungal Pathogen Histoplasma capsulatum. Infect. Immun. 2009, 77, 2447–2454. [Google Scholar] [CrossRef]
- Walker, N.D.; McEwan, N.R.; Wallace, R.J. Cloning and Functional Expression of Dipeptidyl Peptidase IV from the Ruminal Bacterium Prevotella Albensis M384(T). Microbiology 2003, 149, 2227–2234. [Google Scholar] [CrossRef]
- Shibata, Y.; Miwa, Y.; Hirai, K.; Fujimura, S. Purification and Partial Characterization of a Dipeptidyl Peptidase from Prevotella Intermedia. Oral. Microbiol. Immunol. 2003, 18, 196–198. [Google Scholar] [CrossRef]
- Varmanen, P.; Savijoki, K.; Åvall, S.; Palva, A.; Tynkkynen, S. X-Prolyl Dipeptidyl Aminopeptidase Gene (PepX) Is Part of the GlnRA Operon in Lactobacillus rhamnosus. J. Bacteriol. 2000, 182, 146–154. [Google Scholar] [CrossRef]
- Matos, J.; Nardi, M.; Kumura, H.; Monnet, V. Genetic Characterization of PepP, Which Encodes an Aminopeptidase P Whose Deficiency Does Not Affect Lactococcus Lactis Growth in Milk, Unlike Deficiency of the X-Prolyl Dipeptidyl Aminopeptidase. Appl. Environ. Microbiol. 1998, 64, 4591–4595. [Google Scholar] [CrossRef]
- Wallace, R.J.; McKain, N.; Broderick, G.A.; Rode, L.M.; Walker, N.D.; Newbold, C.J.; Kopecny, J. Peptidases of the Rumen Bacterium, Prevotella Ruminicola. Anaerobe 1997, 3, 35–42. [Google Scholar] [CrossRef]
- Glaser, P.; Rusniok, C.; Buchrieser, C.; Chevalier, F.; Frangeul, L.; Msadek, T.; Zouine, M.; Couvé, E.; Lalioui, L.; Poyart, C.; et al. Genome Sequence of Streptococcus Agalactiae, a Pathogen Causing Invasive Neonatal Disease. Mol. Microbiol. 2002, 45, 1499–1513. [Google Scholar] [CrossRef]
- Anastasiou, R.; Papadelli, M.; Georgalaki, M.D.; Kalantzopoulos, G.; Tsakalidou, E. Cloning and Sequencing of the Gene Encoding X-Prolyl-Dipeptidyl Aminopeptidase (PepX) from Streptococcus thermophilus Strain ACA-DC 4. J. Appl. Microbiol. 2002, 93, 52–59. [Google Scholar] [CrossRef]
- Sanz, Y.; Toldrá, F. Purification and Characterization of an X-Prolyl-Dipeptidyl Peptidase from Lactobacillus sakei. Appl. Environ. Microbiol. 2001, 67, 1815–1820. [Google Scholar] [CrossRef]
- Goldstein, J.M.; Banbula, A.; Kordula, T.; Mayo, J.A.; Travis, J. Novel Extracellular X-Prolyl Dipeptidyl-Peptidase (DPP) from Streptococcus Gordonii FSS2: An Emerging Subfamily of Viridans Streptococcal x-Prolyl DPPs. Infect. Immun. 2001, 69, 5494–5501. [Google Scholar] [CrossRef]
- Olivares, M.; Neyrinck, A.M.; Pötgens, S.A.; Beaumont, M.; Salazar, N.; Cani, P.D.; Bindels, L.B.; Delzenne, N.M. The DPP-4 Inhibitor Vildagliptin Impacts the Gut Microbiota and Prevents Disruption of Intestinal Homeostasis Induced by a Western Diet in Mice. Diabetologia 2018, 61, 1838–1848. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, J.; Hu, J.; Chen, Y.; Dong, B.; Wang, Y. A Comparative Study of Acarbose, Vildagliptin and Saxagliptin Intended for Better Efficacy and Safety on Type 2 Diabetes Mellitus Treatment. Life Sci. 2021, 274, 119069. [Google Scholar] [CrossRef]
- Wang, D.; Liu, J.; Zhou, L.; Zhang, Q.; Li, M.; Xiao, X. Effects of Oral Glucose-Lowering Agents on Gut Microbiota and Microbial Metabolites. Front. Endocrinol. 2022, 13, 905171. [Google Scholar] [CrossRef]
- Krieger, E.; Vriend, G. YASARA View—Molecular Graphics for All Devices—From Smartphones to Workstations. Bioinformatics 2014, 30, 2981–2982. [Google Scholar] [CrossRef]
- Baek, M.; DiMaio, F.; Anishchenko, I.; Dauparas, J.; Ovchinnikov, S.; Lee, G.R.; Wang, J.; Cong, Q.; Kinch, L.N.; Dustin Schaeffer, R.; et al. Accurate Prediction of Protein Structures and Interactions Using a Three-Track Neural Network. Science 2021, 373, 871–876. [Google Scholar] [CrossRef]
- Roppongi, S.; Suzuki, Y.; Tateoka, C.; Fujimoto, M.; Morisawa, S.; Iizuka, I.; Nakamura, A.; Honma, N.; Shida, Y.; Ogasawara, W.; et al. Crystal Structures of a Bacterial Dipeptidyl Peptidase IV Reveal a Novel Substrate Recognition Mechanism Distinct from That of Mammalian Orthologues. Sci. Rep. 2018, 8, 1–18. [Google Scholar] [CrossRef]
- Benítez-Páez, A.; Kjølbæk, L.; Gómez del Pulgar, E.M.; Brahe, L.K.; Astrup, A.; Matysik, S.; Schött, H.-F.; Krautbauer, S.; Liebisch, G.; Boberska, J.; et al. A Multi-Omics Approach to Unraveling the Microbiome-Mediated Effects of Arabinoxylan Oligosaccharides in Overweight Humans. mSystems 2019, 4, 209–228. [Google Scholar] [CrossRef]
- Zerbino, D.R.; Birney, E. Velvet: Algorithms for de Novo Short Read Assembly Using de Bruijn Graphs. Genome Res. 2008, 18, 821–829. [Google Scholar] [CrossRef]
- Namiki, T.; Hachiya, T.; Tanaka, H.; Sakakibara, Y. MetaVelvet: An Extension of Velvet Assembler to de Novo Metagenome Assembly from Short Sequence Reads. Nucleic Acids Res. 2012, 40, e155. [Google Scholar] [CrossRef]
- Rho, M.; Tang, H.; Ye, Y. FragGeneScan: Predicting Genes in Short and Error-Prone Reads. Nucleic Acids Res. 2010, 38, e191. [Google Scholar] [CrossRef]
- Li, W.; Godzik, A. Cd-Hit: A Fast Program for Clustering and Comparing Large Sets of Protein or Nucleotide Sequences. Bioinformatics 2006, 22, 1658–1659. [Google Scholar] [CrossRef]
- Edgar, R.C.; Bateman, A. Search and Clustering Orders of Magnitude Faster than BLAST. Bioinformatics 2010, 26, 2460–2461. [Google Scholar] [CrossRef]
- Kim, S.; Chen, J.; Cheng, T.; Gindulyte, A.; He, J.; He, S.; Li, Q.; Shoemaker, B.A.; Thiessen, P.A.; Yu, B.; et al. PubChem 2019 Update: Improved Access to Chemical Data. Nucleic Acids Res. 2019, 47, D1102–D1109. [Google Scholar] [CrossRef]
- Sievers, F.; Wilm, A.; Dineen, D.; Gibson, T.J.; Karplus, K.; Li, W.; Lopez, R.; McWilliam, H.; Remmert, M.; Söding, J.; et al. Fast, Scalable Generation of High-Quality Protein Multiple Sequence Alignments Using Clustal Omega. Mol. Syst. Biol. 2011, 7, 539. [Google Scholar] [CrossRef]
- Ko, J.; Park, H.; Heo, L.; Seok, C. GalaxyWEB Server for Protein Structure Prediction and Refinement. Nucleic Acids Res. 2012, 40, W294. [Google Scholar] [CrossRef]
- SAVESv6.0—Structure Validation Server. Available online: https://saves.mbi.ucla.edu/ (accessed on 16 February 2023).
- Laskowski, R.A.; Rullmann, J.A.C.; MacArthur, M.W.; Kaptein, R.; Thornton, J.M. AQUA and PROCHECK-NMR: Programs for Checking the Quality of Protein Structures Solved by NMR. J. Biomol. NMR 1996, 8, 477–486. [Google Scholar] [CrossRef]
- Trott, O.; Olson, A.J. AutoDock Vina: Improving the Speed and Accuracy of Docking with a New Scoring Function, Efficient Optimization. J. Comput. Chem. 2010, 31, 455–461. [Google Scholar] [CrossRef]
- Bouysset, C.; Fiorucci, S. ProLIF: A Library to Encode Molecular Interactions as Fingerprints. J. Cheminform. 2021, 13, 72. [Google Scholar] [CrossRef]
- Van Rossum, G.; Drake, F.L.; Harris, C.R.; Millman, K.J.; van der Walt, S.J.; Gommers, R.; Virtanen, P.; Cournapeau, D.; Wieser, E.; Taylor, J.; et al. Python 3 Reference Manual. Nature 2009, 585, 357–362. [Google Scholar]
DPP4 Homolog | % Most Favored Regions | % Allowed Regions | % Generally Allowed Regions | % Disallowed Regions | Algorithm |
---|---|---|---|---|---|
S. copri | 92 | 7.4 | 0.3 | 0.3 | YASARA |
Alistipes sp. | 87.5 | 11.7 | 0.5 | 0.3 | YASARA |
B. uniformis | 90.1 | 9.4 | 0.3 | 0.2 | YASARA |
P. merdae | 92.2 | 7.2 | 0.3 | 0.3 | YASARA |
P. vulgatus | 91.9 | 6.9 | 0.5 | 0.8 | RosettaFold |
Gliptin | Human | S. copri | P. merdae | Alistipes sp. | B. uniformis | P. vulgatus |
---|---|---|---|---|---|---|
Sitagliptin | 9.23 | 7.92 | 9.01 | 7.45 | 8.23 | 7.87 |
Linalgliptin | 9.91 | 8.92 | 10.80 | 8.69 | 9.64 | 8.62 |
Alogliptin | 7.59 | 7.46 | 9.01 | 6.99 | 7.59 | 7.53 |
Teneligliptin | 7.77 | 7.66 | 9.02 | 7.30 | 8.42 | 7.52 |
Vildagliptin | 6.90 | 7.22 | 8.43 | 6.38 | 7.77 | 6.88 |
Saxagliptin | 7.57 | 7.22 | 8.2 | 6.3 | 7.93 | 6.94 |
Average | 8.20 ± 1.2 | 7.7 ± 0.6 | 9.1 ± 0.9 | 7.2 ± 0.9 | 8.3 ± 0.7 | 7.6 ± 0.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carpio, L.E.; Olivares, M.; Benítez-Paez, A.; Serrano-Candelas, E.; Barigye, S.J.; Sanz, Y.; Gozalbes, R. Comparative Binding Study of Gliptins to Bacterial DPP4-like Enzymes for the Treatment of Type 2 Diabetes Mellitus (T2DM). Int. J. Mol. Sci. 2024, 25, 5744. https://doi.org/10.3390/ijms25115744
Carpio LE, Olivares M, Benítez-Paez A, Serrano-Candelas E, Barigye SJ, Sanz Y, Gozalbes R. Comparative Binding Study of Gliptins to Bacterial DPP4-like Enzymes for the Treatment of Type 2 Diabetes Mellitus (T2DM). International Journal of Molecular Sciences. 2024; 25(11):5744. https://doi.org/10.3390/ijms25115744
Chicago/Turabian StyleCarpio, Laureano E., Marta Olivares, Alfonso Benítez-Paez, Eva Serrano-Candelas, Stephen J. Barigye, Yolanda Sanz, and Rafael Gozalbes. 2024. "Comparative Binding Study of Gliptins to Bacterial DPP4-like Enzymes for the Treatment of Type 2 Diabetes Mellitus (T2DM)" International Journal of Molecular Sciences 25, no. 11: 5744. https://doi.org/10.3390/ijms25115744
APA StyleCarpio, L. E., Olivares, M., Benítez-Paez, A., Serrano-Candelas, E., Barigye, S. J., Sanz, Y., & Gozalbes, R. (2024). Comparative Binding Study of Gliptins to Bacterial DPP4-like Enzymes for the Treatment of Type 2 Diabetes Mellitus (T2DM). International Journal of Molecular Sciences, 25(11), 5744. https://doi.org/10.3390/ijms25115744