Phytochemical Profile and In Vitro Cytotoxic, Genotoxic, and Antigenotoxic Evaluation of Cistus monspeliensis L. Leaf Extract
Abstract
:1. Introduction
2. Results
2.1. Chemical Characterization of Secondary Metabolites of C. monspeliensis Leaf Extract
2.2. Cytotoxicity and Dose Selection Evolution of C. monspeliensis Extract
2.3. Genotoxicity Assessment Using CBMN Assay
2.3.1. Cytotoxicity and Binucleated Cell Evaluation Under the CBMN Assay Analyzed Using Fluorescence Microscope
2.3.2. Micronuclei Scoring Using Fluorescence Microscope and CellProfiler Analysis
2.4. Anti-Genotoxicity Assessment of C. monspeliensis Extracts Using CBMN
2.4.1. Cytotoxicity Determination Under CBMN
2.4.2. Micronuclei Formation in Binucleated Cells
2.5. In Vitro CBMN Assay Using the ImagestreamX Imaging Flow Cytometer
3. Discussion
4. Materials and Methods
4.1. Chemicals
4.2. Plant Materials
4.2.1. Sample Collections
4.2.2. Preparation of C. monspeliensis Methanolic Leaf Extract
4.3. Chemical Characterization of C. monspeliensis Methanolic Extract
4.4. Cytotoxicity Determination and Dose Selection of C. monspeliensis Extract
4.4.1. Sample Preparation
4.4.2. Cells and Treatment
4.5. Genotoxicity Study Using Cytokinesis-Block Micronucleus Assay for Fluorescence Analysis
4.5.1. Cell Culture and Treatments
4.5.2. Fluorescence Microscope Imaging
4.5.3. Automated Detection of Binucleated Cells and Micronuclei Using the CellProfiler Software
4.6. Automation of the In Vitro CBMN Using the ImagestreamX Imaging Flow Cytometer
4.6.1. Treatment of the Cells
4.6.2. Nucleus and Micronucleus Counting Strategy in IDEAS Software
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tomou, E.M.; Lytra, K.; Rallis, S.; Tzakos, A.G.; Skaltsa, H. An Updated Review of Genus Cistus L. since 2014: Traditional Uses, Phytochemistry, and Pharmacological Properties. Phytochem. Rev. 2022, 21, 2049–2087. [Google Scholar] [CrossRef]
- Bouamama, H.; Noël, T.; Villard, J.; Benharref, M.; Jana, A. Antimicrobial activities of the leaf extracts of two Moroccan Cistus L. Species. J. Ethnopharmacol. 2006, 1041, 04–107. [Google Scholar] [CrossRef] [PubMed]
- Loizzo, M.R.; Ben Jemia, M.; Senatore, F.; Bruno, M.; Menichini, F.; Tundis, R. Chemistry and functional properties in pre-vention of neurodegenerative disorders of five Cistus species essential oils. Chem. Toxicol. 2013, 59, 586–594. [Google Scholar] [CrossRef]
- Ledrhem, M.; Nakamura, M.; Obitsu, M.; Hirae, K.; Kameyama, J.; Bouamama, H.; Gadhi, C.; Katakura, Y. Essential Oils De-rived from Cistus Species Activate Mitochondria by Inducing SIRT1 Expression in Human Keratinocytes, Leading to Senescence Inhibition. Molecules 2022, 27, 2053. [Google Scholar] [CrossRef]
- Sayah, K.; Chemlal, L.; Marmouzi, I.; El Jemli, M.; Cherrah, Y.; Faouzi, M.E.A. In Vivo Anti-Inflammatory and Analgesic Ac-tivities of Cistus salviifolius (L.) and Cistus monspeliensis (L.) Aqueous Extracts. S. Afr. J. Bot. 2017, 113, 160–163. [Google Scholar] [CrossRef]
- Robles, C.; Garzino, S. Infraspecific Variability in the Essential Oil Composition of Cistus monspeliensis Leaves. Phytochemistry 2000, 53, 71–75. [Google Scholar] [CrossRef] [PubMed]
- Cappadone, C.; Mandrone, M.; Chiocchio, I.; Sanna, C.; Malucelli, E.; Bassi, V.; Picone, G.; Poli, F. Antitumor Potential and Phytochemical Profile of Plants from Sardinia (Italy), a Hotspot for Biodiversity in the Mediterranean Basin. Plants 2020, 9, 26. [Google Scholar] [CrossRef]
- Nicoletti, M.; Toniolo, C.; Venditti, A.; Bruno, M.; Ben Jemia, M. Antioxidant Activity and Chemical Composition of Three Tunisian Cistus: Cistus monspeliensis, Cistus villosus and Cistus libanotis. Nat. Prod. Res. 2015, 29, 223–230. [Google Scholar] [CrossRef] [PubMed]
- Attaguile, G.; Russo, A.; Campisi, A.; Savoca, F.; Acquaviva, R.; Ragusa, N.; Vanella, A. Antioxidant Activity and Protective Effect on DNA Cleavage of Extracts from Cistus incanus L. and Cistus monspeliensis L. Cell Biol. Toxicol. 2000, 16, 83–90. [Google Scholar] [CrossRef] [PubMed]
- Shimoda, Y.; Han, J.; Kawada, K.; Smaoui, A.; Isoda, H. Metabolomics analysis of Cistus monspeliensis leaf extract on energy metabolism activation in human intestinal cells. J. Biomed. Biotechnol. 2012, 2012, 428514. [Google Scholar] [CrossRef] [PubMed]
- Mac Sweeney, E.; Chiocchio, I.; Mandrone, M.; Sanna, C.; Bilo, F.; Maccarinelli, G.; Popescu, V.S.; Pucci, M.; Morandini, S.; Memo, M.; et al. Exploring the Anti-Inflammatory and Antioxidant Potential, Metabolite Composition and Inorganic Profile of Cistus monspeliensis L. Aerial Parts and Roots. Antioxidants 2024, 13, 753. [Google Scholar] [CrossRef] [PubMed]
- Papaefthimiou, D.; Papanikolaou, A.; Falara, V.; Givanoudi, S.; Kostas, S.; Kanellis, A.K. Genus Cistus: A model for exploring labdane-type diterpenes’ biosynthesis and a natural source of high value products with biological, aromatic, and pharmaco-logical properties. Front. Chem. 2014, 2, 35. [Google Scholar] [CrossRef]
- Haida, S.; Bakkouche, K.; Kribii, A.R.; Kribii, A. Chemical Composition of Essential Oil, Phenolic Compounds Content, and Antioxidant Activity of Cistus monspeliensis from Northern Morocco. Biochem. Res. Int. 2021, 2021, 6669877. [Google Scholar] [CrossRef]
- Dimas, K.; Demetzos, C.; Angelopoulou, D.; Kolokouris, A.; Mavromoustakos, T. Biological activity of myricetin and its deriv-atives against human leukemic cell lines in vitro. Pharmacol. Res. 2000, 42, 475–478. [Google Scholar] [CrossRef] [PubMed]
- Demetzos, C.; Dimas, K.; Hatziantoniou, S.; Anastasaki, T.; Angelopoulou, D. Cytotoxic and Anti-Inflammatory Activity of Labdane and cis-Clerodane Type Diterpenes. Planta Medica 2001, 67, 614–618. [Google Scholar] [CrossRef] [PubMed]
- De Quadros, A.P.O.; Oshiiwa, B.; Petreanu, M.; Niero, R.; Rosa, P.C.P.; Sawaya, A.C.H.F.; Mantovani, M.S.; O’Neill De Mascarenhas Gaivão, I.; Maistro, E.L. Rubus rosifolius (Rosaceae) stem extract induces cell injury and apoptosis in human hepatoma cell line. Toxicology 2023, 86, e105485. [Google Scholar] [CrossRef]
- Quadros Gomes, A.R.; da Rocha Galucio, N.C.; de Albuquerque, K.C.O.; Brígido, H.P.C.; Varela, E.L.P.; Castro, A.L.G.; Vale, V.V.; Bahia, M.O.; Rodriguez Burbano, R.M.; de Molfeta, F.A.; et al. Toxicity evaluation of Eleutherine plicata Herb. extracts and possible cell death mechanism. Toxicol. Rep. 2021, 8, 1480–1487. [Google Scholar] [CrossRef] [PubMed]
- Hashimoto, K.; Nakajima, Y.; Matsumura, S.; Chatani, F. Comparison of four different treatment conditions of extended ex-posure in the in vitro micronucleus assay using TK6 lymphoblastoid cells. Regul. Toxicol. Pharmacol. 2011, 59, 28–36. [Google Scholar] [CrossRef] [PubMed]
- Kirsch-Volders, M. Towards a validation of the micronucleus test. Mutat. Res. 1997, 392, 1–4. [Google Scholar] [CrossRef]
- Bernardi, M.; Adami, V.; Albiero, E.; Madeo, D.; Rodeghiero, F.; Astori, G. Absence of micronucleus formation in CHO-K1 cells cultivated in platelet lysate enriched medium. Exp. Toxicol. Pathol. 2014, 66, 111–116. [Google Scholar] [CrossRef] [PubMed]
- Shahane, S.A.; Nishihara, K.; Xia, M. High-Throughput and High-Content Micronucleus Assay in CHO-K1 Cells. Methods Mol. Biol. 2016, 1473, 77–85. [Google Scholar] [PubMed]
- Bose, S.; Datta, R.; Kirlin, W.G. Toxicity Studies Related to Medicinal Plants. In Evidence Based Validation of Traditional Medicines; Springer: Singapore, 2021; pp. 621–647. [Google Scholar]
- Zalegh, I.; Akssira, M.; Bourhia, M.; Mellouki, F.; Rhallabi, N.; Salamatullah, A.M.; Alkaltham, M.S.; Khalil Alyahya, H.; Mhand, R.A. A Review on Cistus sp.: Phytochemical and Antimicrobial Activities. Plants 2021, 10, 1214. [Google Scholar] [CrossRef] [PubMed]
- Lukas, B.; Bragagna, L.; Starzyk, K.; Labedz, K.; Stolze, K.; Novak, J. Polyphenol Diversity and Antioxidant Activity of European Cistus creticus L. (Cistaceae) Compared to Six Further, Partly Sympatric Cistus Species. Plants 2021, 10, 615. [Google Scholar] [CrossRef] [PubMed]
- Yücel, E.; AK, A.; Şengün, İ.Y.; Genç, H.; Koparal, T.; Sivas, H. Potential therapeutic applications of Cistus laurifolius extract: Anti-proliferative, anti-cancer activity on MCF-7, and anti-microbial effects. S. Afr. J. Bot. 2024, 169, 499–505. [Google Scholar] [CrossRef]
- Tang, J.; Li, B.; Hong, S.; Liu, C.; Min, J.; Hu, M.; Li, Y.; Liu, Y.; Hong, L. Punicalagin suppresses the proliferation and invasion of cervical cancer cells through inhibition of the β-catenin pathway. Mol. Med. Rep. 2017, 16, 1439–1444. [Google Scholar] [CrossRef]
- Bialonska, D.; Ramnani, P.; Kasimsetty, S.G.; Muntha, K.R.; Gibson, G.R.; Ferreira, D. The influence of pomegranate by-product and punicalagins on selected groups of human intestinal microbiota. Int. J. Food Microbiol. 2010, 140, 175–182. [Google Scholar] [CrossRef]
- Imran, M.; Saeed, F.; Hussain, G.; Imran, A.; Mehmood, Z.; Gondal, T.A.; El-Ghorab, A.; Ahmad, I.; Pezzani, R.; Arshad, M.U.; et al. Myricetin: A comprehensive review on its biological potentials. Food Sci. Nutr. 2021, 9, 5854–5868. [Google Scholar] [CrossRef] [PubMed]
- Addepalli, V.; Suryavanshi, S.V. Catechin attenuates diabetic autonomic neuropathy in streptozotocin induced diabetic rats. Biomed. Pharmacother. 2018, 108, 1517–1523. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Wu, S.; Liu, S. Integration of (+)-catechin and β-sitosterol to achieve excellent radical-scavenging activity in emulsions. Food Chem. 2019, 272, 596–603. [Google Scholar] [CrossRef]
- Boada, L.D.; Henríquez-Hernández, L.A.; Luzardo, O.P. The impact of red and processed meat consumption on cancer and other health outcomes: Epidemiological evidences. Food Chem. Toxicol. 2016, 92, 236–244. [Google Scholar] [CrossRef]
- Fenech, M. The advantages and disadvantages of the cytokinesis-block micronucleus method. Mutat. Res. 1997, 392, 11–18. [Google Scholar] [CrossRef] [PubMed]
- Santos, G.S.; Tsutsumi, S.; Vieira, D.P.; Bartolini, P.; Okazaki, K. Effect of Brazilian propolis (AF-08) on genotoxicity, cytotoxicity and clonogenic death of Chinese hamster ovary (CHO-K1) cells irradiated with (60) Co gamma-radiation. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 2014, 762, 17–23. [Google Scholar] [CrossRef]
- El Hosry, L.; Di Giorgio, C.; Birer, C.; Habib, J.; Tueni, M.; Bun, S.S.; Herbette, G.; De Meo, M.; Ollivier, E.; Elias, R. In vitro cytotoxic and anticlastogenic activities of saxifragifolin B and cyclamin isolated from Cyclamen persicum and Cyclamen libanoticum. Pharm. Biol. 2014, 52, 1134–1140. [Google Scholar] [CrossRef] [PubMed]
- Kirkland, D.; Aardema, M.; Henderson, L.; Müller, L. Evaluation of the ability of a battery of three in vitro genotoxicity tests to discriminate rodent carcinogens and non-carcinogens I. Sensitivity, specificity and relative predictivity. Mutat. Res. 2005, 584, 1–256. [Google Scholar] [CrossRef]
- Hu, T.; Miller, C.M.; Ridder, G.M.; Aardema, M.J. Characterization of p53 in Chinese hamster cell lines CHO-K1, CHO-WBL, and CHL: Implications for genotoxicity testing. Mutat. Res. 1999, 426, 51–62. [Google Scholar] [CrossRef] [PubMed]
- Lorge, E.; Thybaud, V.; Aardema, M.J.; Oliver, J.; Wakata, A.; Lorenzon, G.; Marzin, D. SFTG international collaborative study on in vitro micronucleus test I. General conditions and overall conclusions of the study. Mutat. Res. 2006, 607, 13–36. [Google Scholar] [CrossRef]
- OECD. Test No. 487: In Vitro Mammalian Cell Micronucleus Test, OECD Guidelines for the Testing of Chemicals; Section 4; OECD Publishing: Paris, France, 2023. [Google Scholar] [CrossRef]
- Ben Jemia, M.; Kchouk, M.E.; Senatore, F.; Autore, G.; Marzocco, S.; De Feo, V.; Bruno, M. Antiproliferative activity of hexane extract from Tunisian Cistus libanotis, Cistus monspeliensis and Cistus villosus. Chem. Cent. J. 2013, 7, 47. [Google Scholar] [CrossRef] [PubMed]
- Bouothmany, K.; Bourhia, M.; Aoussar, N.; Attaleb, M.; Salamatullah, A.M.; Nafidi, H.-A.; Mellouki, F.; El Mzibri, M.; Aboul-Soud, M.A.M.; Benbacer, L. Leaf Extracts of Cistus ladanifer Exhibit Potent Antioxidant and Antiproliferative Activities against Liver, Prostate and Breast Cancer Cells. Appl. Sci. 2022, 12, 8603. [Google Scholar] [CrossRef]
- Gaweł-Bęben, K.; Kukula-Koch, W.; Hoian, U.; Czop, M.; Strzępek-Gomółka, M.; Antosiewicz, B. Characterization of Cistus × incanus L. and Cistus ladanifer L. Extracts as Potential Multifunctional Antioxidant Ingredients for Skin Protecting Cosmetics. Antioxidants 2020, 9, 202. [Google Scholar] [CrossRef]
- Hynes, L. Comparison of different methods for an accurate assessment of cytotoxicity in the in vitro micronucleus test without cytokinesis block. Mutat. Res. 2010, 702, 181–188. [Google Scholar] [CrossRef] [PubMed]
- Carneiro, C.C.; da Costa Santos, S.; de Souza Lino, R.; Bara, M.T., Jr.; Chaibub, B.A.; de Melo Reis, P.R.; Chaves, D.A.; da Silva, A.J.; Silva, L.S.; de Melo E Silva, D.; et al. Chemopreventive effect and angiogenic activity of punicalagin isolated from leaves of Lafoensia pacari A. St.-Hil. Toxicol. Appl. Pharmacol. 2016, 310, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Kalli, V.; Kollia, E.; Roidaki, A.; Proestos, C.; Markaki, P. Cistus incanus L. extract inhibits Aflatoxin B1 production by Aspergillus parasiticus in macadamia nuts. Ind. Crops Prod. 2018, 111, 63–68. [Google Scholar] [CrossRef]
- Moretti, M.; Cossignani, L.; Messina, F.; Dominici, L.; Villarini, M.; Curini, M.; Marcotullio, M.C. Antigenotoxic effect, composition and antioxidant activity of Dendrobium speciosum. Food Chem. 2013, 140, 660–665. [Google Scholar] [CrossRef] [PubMed]
- Rondini, T.; Branciari, R.; Franceschini, E.; Acito, M.; Fatigoni, C.; Roila, R.; Ranucci, D.; Villarini, M.; Galarini, R.; Moretti, M. Olive Mill Wastewater Extract: In Vitro Genotoxicity/Antigenotoxicity Assessment on HepaRG Cells. Int. J. Environ. Res. Public Health 2024, 21, 1050. [Google Scholar] [CrossRef] [PubMed]
- Cvetković, S.; Todorović, S.; Nastasijević, B.; Mitić-Ćulafić, D.; Đukanović, S.; Knežević-Vukčević, J.; Nikolić, B. Assessment of genoprotective effects of Gentiana lutea extracts prepared from plants grown in field and in vitro. Ind. Crops Prod. 2020, 154, 112690. [Google Scholar] [CrossRef]
- Chen, P.S.; Li, J.H.; Liu, T.Y.; Lin, T.C. Folk medicine Terminalia catappa and its major tannin component, punicalagin, are effective against bleomycin-induced genotoxicity in Chinese hamster ovary cells. Cancer Lett. 2000, 152, 115–122. [Google Scholar] [CrossRef] [PubMed]
- Zahin, M.; Ahmad, I.; Gupta, R.C.; Aqil, F. Punicalagin and ellagic acid demonstrate antimutagenic activity and inhibition of benzo[a]pyrene induced DNA adducts. Biomed. Res. Int. 2014, 2014, 467465. [Google Scholar] [CrossRef]
- Aloqbi, A.A.; Omar, U.M.; Yousr, M.; Grace, M.H.; Lila, M.A.; Howell, N.K. Antioxidant Activity of Pomegranate Juice and Punicalagin. Nat. Sci. 2016, 08, 235–246. [Google Scholar] [CrossRef]
- Hayder, N.; Bouhlel, I.; Skandrani, I.; Kadri, M.; Steiman, R.; Guiraud, P.; Mariotte, A.M.; Ghedira, K.; Dijoux-Franca, M.G.; Chekir-Ghedira, L. In vitro antioxidant and antigenotoxic potentials of myricetin-3-o-galactoside and myricetin-3-o-rhamnoside from Myrtus communis: Modulation of expression of genes involved in cell defence system using cDNA microarray. Toxicology 2008, 22, 567–581. [Google Scholar] [CrossRef]
- Zor, M.; Aydin, S.; Güner, N.D.; Başaran, N.; Başaran, A.A. Antigenotoxic properties of Paliurus spina-christi Mill fruits and their active compounds. BMC Complement. Altern. Med. 2017, 17, 229. [Google Scholar] [CrossRef]
- Wagner, H. Natural Products Chemistry and Phytomedicine in the 21st Century: New Developments and Challenges. Pure Appl. Chem. 2005, 77, 1–6. [Google Scholar] [CrossRef]
- Murakami, A.; Takahashi, D.; Koshimizu, K.; Ohigashi, H. Synergistic suppression of superoxide and nitric oxide generation from inflammatory cells by combined food factors. Mutat. Res. 2003, 523–524, 151–161. [Google Scholar] [CrossRef] [PubMed]
- Zorzi, G.; Gambini, S.; Negri, S.; Guzzo, F.; Commisso, M. Untargeted Metabolomics Analysis of the Orchid Species Oncidium sotoanum Reveals the Presence of Rare Bioactive C-Diglycosylated Chrysin Derivatives. Plants 2023, 12, 655. [Google Scholar] [CrossRef] [PubMed]
- Mosmann, T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods 1983, 5, 55–63. [Google Scholar] [CrossRef]
- Al-Naqeb, G.; Sidarovich, V.; Scrinzi, D.; Mazzeo, I.; Robbiati, S.; Pancher, M.; Fiori, L.; Adami, V. Hydrochar and hydrochar co-compost from OFMSW digestate for soil application: 3. Toxicological evaluation. Toxicol. Eval. J. Environ. Manag. 2022, 320, 115910. [Google Scholar] [CrossRef] [PubMed]
- Ramadhani, D.; Purnami, S. Automated Detection of Binucleated Cell and Micronuclei using CellProfiler 2.0 Software. Hayati J. Biosci. 2013, 20, 151–156. [Google Scholar] [CrossRef]
- Rodrigues, M.A. Automation of the in vitro micronucleus assay using the Imagestream® imaging flow cytometer. Cytom. Part A Cytom. A 2018, 93, 706–726. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, M.A.; Beaton-Green, L.A.; Wilkins, R.C. Validation of the Cytokinesis-block Micronucleus Assay Using Imaging Flow Cytometry for High Throughput Radiation Biodosimetry. Health Phys. 2016, 110, 29–36. [Google Scholar] [CrossRef]
- Rodrigues, M.A.; Beaton-Green, L.A.; Kutzner, B.C.; Wilkins, R.C. Automated analysis of the cytokinesis-block micronucleus assay for radiation biodosimetry using imaging flow cytometry. Radiat. Environ. Biophys. 2014, 53, 273–282. [Google Scholar] [CrossRef]
- Harte, D.S.G.; Lynch, A.M.; Verma, J.; Rees, P.; Filby, A.; Wills, J.W.; Johnson, G.E. A multi-biomarker micronucleus assay using imaging flow cytometry. Arch. Toxicol. 2014, 98, 3137–3153. [Google Scholar] [CrossRef] [PubMed]
Putative Identification | Retention Time (min) | Elemental Formula | Experimental m/z (−) | ESI (−) Main Adduct | Mass Error (−), (ppm) | Fragments (−) | |
---|---|---|---|---|---|---|---|
1 | HHDP-Hex | 1.76 | C20H18O14 | 481.0629 | [M−H+]− | −2.24503 | 229.0161; 275.0197; 300.9986 |
2 | Gallic acid-O-Hex | 2.25 | C13H16O10 | 331.0667 | [M−H+]− | −0.60411 | 125.0233; 151.0041; 169.0142; 211.0225; 271.0458 |
3 | UI | 2.6 | - | 647.2026 | [M−H+]− | - | 151.0595 |
4 | Prodelphinidin B2 | 2.65 | C30H26O14 | 609.123 | [M−H+]− | 2.298381 | 125.0233; 177.0204; 305.0674; 423.0743; 441.0827 |
5 | 4-hydroxybenzoic acid-4-O-glucoside | 3 | C13H16O8 | 345.0844 | [M+HCOOH−H+]− | −1.00309 | 93.0334; 123.0084; 137.0249; 299.0770 |
6 | Prodelphinidin B2 isomer | 3.05 | C30H26O14 | 609.123 | [M−H+]− | 2.298381 | - |
7 | Gallic acid-O-Hex isomer | 3.221 | C13H16O10 | 331.0668 | [M−H+]− | −0.99055 | 125.0256; 169.014 |
8 | Prodelphinidin B2 isomer | 3.28 | C30H26O14 | 609.123 | [M−H+]− | 2.298381 | - |
9 | Dihydroxybenzoic acid-O-Hex | 3.43 | C13H16O9 | 315.0722 | [M−H+]− | −3.67296 | 108.022; 152.012; 153.018; 315.074 |
10 | Gallocatechin | 3.54 | C15H14O7 | 305.0668 | [M−H+]− | −2.78206 | 109.028; 125.023; 137.024; 167.035; 179.033; 219.067; 261.075; 305.066 |
11 | [2-(4,5-Dihydroxy-3-oxocyclohexen-1-yl)-5,7-dihydroxy-4-oxo-2,3-dihydrochromen-3-yl] 3,4,5-trihydroxybenzoate | 3.69 | C22H18O12 | 473.0696 | [M−H+]− | 4.86184 | 125.0256; 153.0179; 167.035; 319.0483 |
12 | Gallic acid-O-pentoside | 3.76 | C12H14O9 | 301.0589 | [M+HCOOH−H+]− | 169.0142; 168.0072; 149.9972; 125.0256 | |
13 | Dihydroxybenzyl alcohol glucoside | 3.84 | C13H18O8 | 347.0981 | [M−H+]− | −2.32487 | 124.016; 139.040; 301.093 |
14 | Punicalagin isomer | 3.98 | C48H28O30 | 1083.06 | [M−2H+]− | −2.23979 | 300.997; 541.026; 600.992; 781.057; 1083.57 |
15 | Punicalagin-gallate isomer | 4.12 | C26H26O18 | 625.0292 | [M−H+]− | −1.98593 | 300.997; 600.987; 603.034; 905.074; 1083.057; 1207.078 |
16 | Dihydroxybenzoic acid-O-arabinoside | 4.21 | C12H14O8 | 285.0613 | [M−H+]− | −1.18525 | 108.022; 152.012; 153.024; 285.060 |
17 | bis-HHDP glucose (peduncalagin isomer) | 4.28 | C34H24O22 | 783.0698 | [M−H+]− | −2.24364 | 275.019; 481.062 |
18 | Punicalagin gallate isomer | 4.42 | C55H32O35 | 625.0291 | [M−2H+]− | −1.75626 | 300.997; 600.987; 603.034; 905.074; 1083.057; 1207.078 |
19 | Punicalagin isomer | 4.48 | C48H28O30 | 1083,06 | − | − | 169.014; 300.997; 541.026; 600.992; 781.057 |
20 | UI (S-containing compound) | 4.62 | - | 323.1165 | [M−H+]− | - | 96.9592 |
21 | UI (Hex of C6H12O3) | 4.66 | C12H22O8 | 293.1249 | [M−H+]− | - | 131.0725 |
22 | Catechin | 4.7 | C15H14O6 | 289.0712 | [M−H+]− | 0.121204 | - |
23 | UI (Hex of C6H12O3) isomer | 4,79 | C12H22O8 | 293,1249 | [M−H+]− | - | - |
24 | Catechin gallate | 4.83 | C22H18O11 | 457,0768 | [M−H+]− | 0.54092 | 169.014; 305.055 |
25 | UI (S-containing compound) | 4.91 | - | 307.1229 | [M−H+]− | - | 96.9592 |
26 | UI (putative chalcone derivative) | 5.07 | C22H26O11 | 511.1451 | [M+HCOOH−H+]− | 1.289935 | 125.0256; 137.0249; 286.0475; 301.0731; 465.1390 |
27 | 2-O-acetyl-alpha-D-abequopyranosyl-(1->3)- alpha-D-mannopyranose | 5.17 | C14H24O10 | 397.1343 | [M+HCOOH−H+]− | - | 85.066; 113.062; 157.050; 189.076; 351.1333 |
28 | Vicenin-2 | 5.24 | C27H30O15 | 593.1501 | [M−H+]− | 0.842956 | 297.0769; 353.069; 383.075; 473.1141 |
29 | Epigallocatechin gallate | 5.41 | C22H18O11 | 457.0767 | [M−H+]− | 0.80236 | 169.014; 305.055 |
30 | UI (S-containing compound isomer) | 5.54 | - | 30.1229 | [M−H+]− | - | 96.9592 |
31 | Myricetin-O-Hex | 5.77 | C21H20O13 | 479.085 | [M−H+]− | −5.21831 | 271.024; 287.019; 316.023; 317.028; 479.085 |
32 | UI (S-containing compound) | 5.81 | - | 30. 1068 | [M−H+]− | - | 96.9592 |
33 | Ellagic acid arabinoside | 5.83 | C19H14O12 | 433.0408 | [M−H+]− | −0.55953 | 299.989; 300.997; 433.042 |
34 | UI (S-containing compound) | 6.04 | - | 457.1172 | [M−H+]− | - | 245.013; 260.035; 273.042; 287.057; 457.117; 96,9592 |
35 | UI (S-containing compound isomer) | 6.2 | - | 457.1172 | [M−H+]− | - | 260.035; 457.117; 96,9592 |
36 | Myricetin-3-O-rhamnoside | 6,32 | C21H20O12 | 463.088 | [M−H+]− | −0.79413 | 271.024; 287.019; 316.023; 317.028; 463.088 |
37 | Myricetin-O-HExdHex | 6.5 | C30H26O15 | 625.1187 | [M−H+]− | 34.7122 | 479.0851; 317.0298; 316.0247; 287.0211; 271.029 |
38 | UI (putative lignan) | 6.58 | C25H32O10 | 537.1954 | [M+HCOOH−H+]− | −4.4789 | 359.1523; 491.1939 |
39 | Quercetin 3-O-rhamnoside | 7.01 | C21H20O11 | 447.0929 | [M−H+]− | −0.55733 | 255.026; 271.024; 300.024; 301.036 |
40 | UI (Putative Rhamnetin derivative) | 7.15 | - | 351.0183 | [M−H+]− | - | 107.0142; 151.0041; 229.0501; 230.9623; 271.0593 |
41 | Icariside E4 | 7.27 | C26H34O10 | 551.2138 | [M+HCOOH−H+]− | 22.88169 | 299.089; 314.108; 329.139; 341.144; 359.151; 373.227; 505.1958; 551.214 |
42 | UI-Hex of C26H48O8 | 7.32 | C32H58O13 | 695.3872 | [M+HCOOH−H+]− | −3.13408 | 291.125; 487.327; 649.382 |
43 | UI (S-containing compound) | 7,41 | - | 439,1066 | [M−H+]− | - | 96.9592; 314.116; 316.023; 317.028; 409.906; 439.107 |
44 | Putative Myricetin-O-Hex-dHex | 7.6 | C27H30O17 | 625.1207 | [M−H+]− | 31.57879 | 271.024; 316.023; 317.028; 479.085; 625.119 |
45 | UI (S-containing compound) | 7.81 | - | 289.1124 | [M−H+]− | - | 96.9592 |
46 | Quercetin-O-diHex | 8.05 | C30H26O14 | 609.128 | [M−H+]− | −5.87729 | 255.0309; 271.0256; 300.0264; 301.0376; 463.0886 |
47 | Kampferol-O-diHex | 8.52 | C30H26O13 | 593.1302 | [M−H+]− | −1.18018 | 227.0349; 255.0309; 284.0364; 285.0410; 447.0953 |
48 | UI | 8.85 | C26H48O8 | 533.331 | [M+HCOOH−H+]− | −1.23121 | 487,3276 |
49 | UI | 8.93 | - | 719.3511 | [M−H+]− | - | 179.0577; 291.2357; 335.2246; 511.2912 |
50 | UI | 9.9 | C26H30O15 | 581.1532 | [M−H+]− | −4.47388 | 343.0457; 358.0709; 373.0939 |
51 | 5,6,3′-Trihydroxy-7,8,4′-trimethoxyflavone | 10.47 | C18H16O8 | 359.0786 | [M−H+]− | −5.56984 | 174.0321; 202.0283; 230.0238; 286.0129; 301.0341; 329.0290 |
52 | Kaempferol-3-O-gal-rham-7-O-rham | 11.13 | C39H32O15 | 739.1657 | [M−H+]− | 0.676438 | 284.0329; 285.0410 |
53 | Casticin | 12.6 | C19H18O8 | 373.0924 | [M−H+]− | −0.26282 | 285.005; 343.048; 358.069 |
54 | DGMG (18:3) | 13.06 | C34H58O16 | 721.3616 | [M−H+]− | 4.158785 | 235.0833; 277.2168; 397.1346; 415.1508; 675.3598 |
55 | MGMG (18:3) | 14.08 | C28H48O11 | 559.3115 | [M+HCOOH−H+]− | −9.35114 | 253.0930; 277.2168; 513,3111 |
56 | UI (putative 3-Hydroxylabda-8(20), 13-dien-15-oic acid) | 14.1 | C20H32O3 | 319.2275 | [M−H+]− | −0.62651 | 275,2369 |
57 | UI (putative Diterpenoid of Labdane) | 14.8 | C20H36O3 | 323.261 | [M−H+]− | −7.4244 | 263.239; 279.2686 |
58 | UI (Traumatic acid derivative) | 14.9 | C45H74O17 | 885.4858 | [M−H+]− | - | 165.1279; 183.1396; 277.2168; 397.1386 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Naqeb, G.; Zorzi, G.; Oldani, A.; Azzalin, A.; Avesani, L.; Guzzo, F.; Pascale, A.; De Giuseppe, R.; Cena, H. Phytochemical Profile and In Vitro Cytotoxic, Genotoxic, and Antigenotoxic Evaluation of Cistus monspeliensis L. Leaf Extract. Int. J. Mol. Sci. 2024, 25, 13707. https://doi.org/10.3390/ijms252413707
Al-Naqeb G, Zorzi G, Oldani A, Azzalin A, Avesani L, Guzzo F, Pascale A, De Giuseppe R, Cena H. Phytochemical Profile and In Vitro Cytotoxic, Genotoxic, and Antigenotoxic Evaluation of Cistus monspeliensis L. Leaf Extract. International Journal of Molecular Sciences. 2024; 25(24):13707. https://doi.org/10.3390/ijms252413707
Chicago/Turabian StyleAl-Naqeb, Ghanya, Gianluca Zorzi, Amanda Oldani, Alberto Azzalin, Linda Avesani, Flavia Guzzo, Alessia Pascale, Rachele De Giuseppe, and Hellas Cena. 2024. "Phytochemical Profile and In Vitro Cytotoxic, Genotoxic, and Antigenotoxic Evaluation of Cistus monspeliensis L. Leaf Extract" International Journal of Molecular Sciences 25, no. 24: 13707. https://doi.org/10.3390/ijms252413707
APA StyleAl-Naqeb, G., Zorzi, G., Oldani, A., Azzalin, A., Avesani, L., Guzzo, F., Pascale, A., De Giuseppe, R., & Cena, H. (2024). Phytochemical Profile and In Vitro Cytotoxic, Genotoxic, and Antigenotoxic Evaluation of Cistus monspeliensis L. Leaf Extract. International Journal of Molecular Sciences, 25(24), 13707. https://doi.org/10.3390/ijms252413707