M6229 Protects against Extracellular-Histone-Induced Liver Injury, Kidney Dysfunction, and Mortality in a Rat Model of Acute Hyperinflammation
Abstract
:1. Introduction
2. Results
2.1. M6229 Has Low Anticoagulant Activity
2.2. M6229 Rescues Rats from Extracellular-Histone-Induced Mortality
2.3. Circulating M6229 Levels in Plasma of M and HM Rats
2.4. M6229 Infusion Prolongs aPTT but Not PT of Platelet-Poor Plasma from M and HM Rats
2.5. Red Blood Cell and Platelet Count
2.6. M6229 Infusion Prevents Extracellular-Histone-Induced Liver Injury and Kidney Dysfunction
2.7. Histopathology
3. Discussion
4. Materials and Methods
4.1. Histone Preparation
4.2. M6229 Preparation
4.3. Thrombin Generation Assay
4.4. Ethics Statement
4.5. Animals and Housing
4.6. Induction of Acute Fulminant Inflammation and M6229 Treatment
4.7. Blood and Tissue Sampling during Experiments
4.8. Plasma Coagulation
4.9. Plasma M6229 Measurement
4.10. Platelet and Red Blood Cell Counts
4.11. Serum Biochemistry
4.12. Histopathology
4.13. Statistics
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- de Vries, F.; Huckriede, J.; Wichapong, K.; Reutelingsperger, C.; Nicolaes, G.A.F. The Role of Extracellular Histones in COVID-19. J. Intern. Med. 2023, 293, 275–292. [Google Scholar] [CrossRef]
- Xu, J.; Zhang, X.; Pelayo, R.; Monestier, M.; Ammollo, C.T.; Semeraro, F.; Taylor, F.B.; Esmon, N.L.; Lupu, F.; Esmon, C.T. Extracellular Histones Are Major Mediators of Death in Sepsis. Nat. Med. 2009, 15, 1318–1321. [Google Scholar] [CrossRef] [PubMed]
- Mena, H.A.; Carestia, A.; Scotti, L.; Parborell, F.; Schattner, M.; Negrotto, S. Extracellular Histones Reduce Survival and Angiogenic Responses of Late Outgrowth Progenitor and Mature Endothelial Cells. J. Thromb. Haemost. 2016, 14, 397–410. [Google Scholar] [CrossRef] [PubMed]
- Bosmann, M.; Grailer, J.J.; Ruemmler, R.; Russkamp, N.F.; Zetoune, F.S.; Sarma, J.V.; Standiford, T.J.; Ward, P.A. Extracellular Histones Are Essential Effectors of C5aR- and C5L2-Mediated Tissue Damage and Inflammation in Acute Lung Injury. FASEB J. 2013, 27, 5010–5021. [Google Scholar] [CrossRef]
- Zhang, Y.; Guan, L.; Yu, J.; Zhao, Z.; Mao, L.; Li, S.; Zhao, J. Pulmonary Endothelial Activation Caused by Extracellular Histones Contributes to Neutrophil Activation in Acute Respiratory Distress Syndrome. Respir. Res. 2016, 17, 155. [Google Scholar] [CrossRef] [PubMed]
- Lv, X.; Wen, T.; Song, J.; Xie, D.; Wu, L.; Jiang, X.; Jiang, P.; Wen, Z. Extracellular Histones Are Clinically Relevant Mediators in the Pathogenesis of Acute Respiratory Distress Syndrome. Respir. Res. 2017, 18, 165. [Google Scholar] [CrossRef]
- Xu, J.; Zhang, X.; Monestier, M.; Esmon, N.L.; Esmon, C.T. Extracellular Histones Are Mediators of Death through TLR2 and TLR4 in Mouse Fatal Liver Injury. J. Immunol. 2011, 187, 2626–2631. [Google Scholar] [CrossRef]
- Huang, H.; Evankovich, J.; Yan, W.; Nace, G.; Zhang, L.; Ross, M.; Liao, X.; Billiar, T.; Xu, J.; Esmon, C.T.; et al. Endogenous Histones Function as Alarmins in Sterile Inflammatory Liver Injury through Toll-like Receptor 9 in Mice. Hepatology 2011, 54, 999–1008. [Google Scholar] [CrossRef]
- Alhamdi, Y.; Abrams, S.T.; Cheng, Z.; Jing, S.; Su, D.; Liu, Z.; Lane, S.; Welters, I.; Wang, G.; Toh, C.-H. Circulating Histones Are Major Mediators of Cardiac Injury in Patients With Sepsis. Crit. Care Med. 2015, 43, 2094–2103. [Google Scholar] [CrossRef]
- Kalbitz, M.; Grailer, J.J.; Fattahi, F.; Jajou, L.; Herron, T.J.; Campbell, K.F.; Zetoune, F.S.; Bosmann, M.; Sarma, J.V.; Huber-Lang, M.; et al. Role of Extracellular Histones in the Cardiomyopathy of Sepsis. FASEB J. 2015, 29, 2185–2193. [Google Scholar] [CrossRef]
- Schumski, A.; Ortega-Gómez, A.; Wichapong, K.; Winter, C.; Lemnitzer, P.; Viola, J.R.; Pinilla-Vera, M.; Folco, E.; Solis-Mezarino, V.; Völker-Albert, M.; et al. Endotoxinemia Accelerates Atherosclerosis Through Electrostatic Charge-Mediated Monocyte Adhesion. Circulation 2021, 143, 254–266. [Google Scholar] [CrossRef] [PubMed]
- Silvestre-Roig, C.; Braster, Q.; Wichapong, K.; Lee, E.Y.; Teulon, J.M.; Berrebeh, N.; Winter, J.; Adrover, J.M.; Santos, G.S.; Froese, A.; et al. Externalized Histone H4 Orchestrates Chronic Inflammation by Inducing Lytic Cell Death. Nature 2019, 569, 236–240. [Google Scholar] [CrossRef] [PubMed]
- Allam, R.; Scherbaum, C.R.; Darisipudi, M.N.; Mulay, S.R.; Hägele, H.; Lichtnekert, J.; Hagemann, J.H.; Rupanagudi, K.V.; Ryu, M.; Schwarzenberger, C.; et al. Histones from Dying Renal Cells Aggravate Kidney Injury via TLR2 and TLR4. J. Am. Soc. Nephrol. 2012, 23, 1375–1388. [Google Scholar] [CrossRef]
- Nakazawa, D.; Kumar, S.V.; Marschner, J.; Desai, J.; Holderied, A.; Rath, L.; Kraft, F.; Lei, Y.; Fukasawa, Y.; Moeckel, G.W.; et al. Histones and Neutrophil Extracellular Traps Enhance Tubular Necrosis and Remote Organ Injury in Ischemic AKI. J. Am. Soc. Nephrol. 2017, 28, 1753–1768. [Google Scholar] [CrossRef] [PubMed]
- Esmon, C.T. Extracellular Histones Zap Platelets. Blood 2011, 118, 3456–3457. [Google Scholar] [CrossRef] [PubMed]
- Fuchs, T.A.; Bhandari, A.A.; Wagner, D.D. Histones Induce Rapid and Profound Thrombocytopenia in Mice. Blood 2011, 118, 3708–3714. [Google Scholar] [CrossRef] [PubMed]
- Giannitsis, D.J. Stimulatory Effect of Histone on Glutathione Reductase of Human Erythrocytes. Arzneimittelforschung 1978, 28, 300–301. [Google Scholar]
- Semeraro, F.; Ammollo, C.T.; Esmon, N.L.; Esmon, C.T. Histones Induce Phosphatidylserine Exposure and a Procoagulant Phenotype in Human Red Blood Cells. J. Thromb. Haemost. 2014, 12, 1697–1702. [Google Scholar] [CrossRef]
- Brinkmann, V.; Reichard, U.; Goosmann, C.; Fauler, B.; Uhlemann, Y.; Weiss, D.S.; Weinrauch, Y.; Zychlinsky, A. Neutrophil Extracellular Traps Kill Bacteria. Science 2004, 303, 1532–1535. [Google Scholar] [CrossRef]
- Goldmann, O.; Medina, E. The Expanding World of Extracellular Traps: Not Only Neutrophils but Much More. Front. Immunol. 2012, 3, 420. [Google Scholar] [CrossRef]
- Brinkmann, V. Neutrophil Extracellular Traps in the Second Decade. J. Innate Immun. 2018, 10, 414–421. [Google Scholar] [CrossRef] [PubMed]
- Wildhagen, K.C.A.A.; García de Frutos, P.; Reutelingsperger, C.P.; Schrijver, R.; Aresté, C.; Ortega-Gómez, A.; Deckers, N.M.; Hemker, H.C.; Soehnlein, O.; Nicolaes, G.A.F. Nonanticoagulant Heparin Prevents Histone-Mediated Cytotoxicity in Vitro and Improves Survival in Sepsis. Blood 2014, 123, 1098–1101. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Zhang, N.; Li, B.; Liu, L.; Ding, L.; Wang, Y.; Zhu, Y.; Mo, X.; Cao, Q. Heparin Defends against the Toxicity of Circulating Histones in Sepsis. Front. Biosci. 2015, 20, 1259–1270. [Google Scholar]
- Hemker, H.C. A Century of Heparin: Past, Present and Future. J. Thromb. Haemost. 2016, 14, 2329–2338. [Google Scholar] [CrossRef] [PubMed]
- Höök, M.; Björk, I.; Hopwood, J.; Lindahl, U. Anticoagulant Activity of Heparin: Separation of High-Activity and Low-Activity Heparin Species by Affinity Chromatography on Immobilized Antithrombin. FEBS Lett. 1976, 66, 90–93. [Google Scholar] [CrossRef]
- Loeffen, R.; Kleinegris, M.-C.F.; Loubele, S.T.B.G.; Pluijmen, P.H.M.; Fens, D.; van Oerle, R.; ten Cate, H.; Spronk, H.M.H. Preanalytic Variables of Thrombin Generation: Towards a Standard Procedure and Validation of the Method. J. Thromb. Haemost. 2012, 10, 2544–2554. [Google Scholar] [CrossRef] [PubMed]
- Chen, R.; Kang, R.; Fan, X.-G.; Tang, D. Release and Activity of Histone in Diseases. Cell Death Dis. 2014, 5, e1370–e1379. [Google Scholar] [CrossRef]
- Iba, T.; Hashiguchi, N.; Nagaoka, I.; Tabe, Y.; Kadota, K.; Sato, K. Heparins Attenuated Histone-Mediated Cytotoxicity in Vitro and Improved the Survival in a Rat Model of Histone-Induced Organ Dysfunction. Intensive Care Med. Exp. 2015, 3, 36. [Google Scholar] [CrossRef]
- Beurskens, D.M.H.; Huckriede, J.P.; Schrijver, R.; Hemker, H.C.; Reutelingsperger, C.P.; Nicolaes, G.A.F. The Anticoagulant and Nonanticoagulant Properties of Heparin. Thromb. Haemost. 2020, 120, 1371–1383. [Google Scholar] [CrossRef]
- Hirsh, J.; Anand, S.S.; Halperin, J.L.; Fuster, V. Mechanism of Action and Pharmacology of Unfractionated Heparin. Arterioscler. Thromb. Vasc. Biol. 2001, 21, 1094–1096. [Google Scholar] [CrossRef]
- Mullier, F.; Paridaens, M.-S.; Evrard, J.; Baudar, J.; Guldenpfennig, M.; Devroye, C.; Miller, L.; Chatelain, B.; Lessire, S.; Jacqmin, H. Evaluation of a New Thromboplastin Reagent STA-NeoPTimal on a STA R Max Analyzer for the Measurement of Prothrombin Time, International Normalized Ratio and Extrinsic Factor Levels. Int. J. Lab. Hematol. 2020, 42, 650–660. [Google Scholar] [CrossRef] [PubMed]
- Longstaff, C.; Hogwood, J.; Gray, E.; Komorowicz, E.; Varjú, I.; Varga, Z.; Kolev, K. Neutralisation of the Anti-Coagulant Effects of Heparin by Histones in Blood Plasma and Purified Systems. Thromb. Haemost. 2016, 115, 591–599. [Google Scholar] [PubMed]
- Gaudette, S.; Hughes, D.; Boller, M. The Endothelial Glycocalyx: Structure and Function in Health and Critical Illness. J. Vet. Emerg. Crit. Care 2020, 30, 117–134. [Google Scholar] [CrossRef] [PubMed]
- Chaaban, H.; Keshari, R.S.; Silasi-Mansat, R.; Popescu, N.I.; Mehta-D’Souza, P.; Lim, Y.-P.; Lupu, F. Inter-α Inhibitor Protein and Its Associated Glycosaminoglycans Protect against Histone-Induced Injury. Blood 2015, 125, 2286–2296. [Google Scholar] [CrossRef]
- Zhang, Y.; Xu, F.; Guan, L.; Chen, M.; Zhao, Y.; Guo, L.; Li, X.; Zheng, Y.; Gao, A.; Li, S. Histone H4 Induces Heparan Sulfate Degradation by Activating Heparanase in Chlorine Gas-Induced Acute Respiratory Distress Syndrome. Respir. Res. 2022, 23, 14. [Google Scholar] [CrossRef]
- Becker, B.F.; Chappell, D.; Bruegger, D.; Annecke, T.; Jacob, M. Therapeutic Strategies Targeting the Endothelial Glycocalyx: Acute Deficits, but Great Potential. Cardiovasc. Res. 2010, 87, 300–310. [Google Scholar] [CrossRef]
Experimental Group | Infusion Histones (mg/kg/h) Start Infusion on T = 0 | Infusion M6229 (mg/kg/h) Start Infusion on T = 60 min | n at Start |
---|---|---|---|
HC | 25 | 0 | 6 |
HM1 | 25 | 1 | 6 |
HM3 | 25 | 3 | 6 |
HM9 | 25 | 9 | 4 |
HM18 | 25 | 18 | 2 |
M1 | 0 | 1 | 2 |
M3 | 0 | 3 | 2 |
M9 | 0 | 9 | 2 |
M18 | 0 | 18 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Reutelingsperger, C.P.M.; Gijbels, M.J.; Spronk, H.; Van Oerle, R.; Schrijver, R.; Ekhart, P.; de Kimpe, S.; Nicolaes, G.A.F. M6229 Protects against Extracellular-Histone-Induced Liver Injury, Kidney Dysfunction, and Mortality in a Rat Model of Acute Hyperinflammation. Int. J. Mol. Sci. 2024, 25, 1376. https://doi.org/10.3390/ijms25031376
Reutelingsperger CPM, Gijbels MJ, Spronk H, Van Oerle R, Schrijver R, Ekhart P, de Kimpe S, Nicolaes GAF. M6229 Protects against Extracellular-Histone-Induced Liver Injury, Kidney Dysfunction, and Mortality in a Rat Model of Acute Hyperinflammation. International Journal of Molecular Sciences. 2024; 25(3):1376. https://doi.org/10.3390/ijms25031376
Chicago/Turabian StyleReutelingsperger, Chris P. M., Marion J. Gijbels, Henri Spronk, Rene Van Oerle, Roy Schrijver, Peter Ekhart, Sjef de Kimpe, and Gerry A. F. Nicolaes. 2024. "M6229 Protects against Extracellular-Histone-Induced Liver Injury, Kidney Dysfunction, and Mortality in a Rat Model of Acute Hyperinflammation" International Journal of Molecular Sciences 25, no. 3: 1376. https://doi.org/10.3390/ijms25031376
APA StyleReutelingsperger, C. P. M., Gijbels, M. J., Spronk, H., Van Oerle, R., Schrijver, R., Ekhart, P., de Kimpe, S., & Nicolaes, G. A. F. (2024). M6229 Protects against Extracellular-Histone-Induced Liver Injury, Kidney Dysfunction, and Mortality in a Rat Model of Acute Hyperinflammation. International Journal of Molecular Sciences, 25(3), 1376. https://doi.org/10.3390/ijms25031376