Sodium Channel β Subunits—An Additional Element in Animal Tetrodotoxin Resistance?
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Sequence Alignment and Curation
4.2. Testing for Signatures of Positive Selection
4.3. Testing for Signatures of Convergent Evolution
D Protein Reconstruction and Labelling
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Miyazawa, K.; Noguchi, T. Distribution and Origin of Tetrodotoxin. J. Toxicol. Toxin Rev. 2001, 20, 11–33. [Google Scholar] [CrossRef]
- Katikou, P.; Gokbulut, C.; Kosker, A.R.; Campàs, M.; Ozogul, F. An Updated Review of Tetrodotoxin and Its Peculiarities. Mar. Drugs 2022, 20, 47. [Google Scholar] [CrossRef]
- Melnikova, D.I.; Magarlamov, T.Y. An Overview of the Anatomical Distribution of Tetrodotoxin in Animals. Toxins 2022, 14, 576. [Google Scholar] [CrossRef]
- Whitelaw, B.L.; Cooke, I.R.; Finn, J.; Zenger, K.; Strugnell, J.M. The Evolution and Origin of Tetrodotoxin Acquisition in the Blue-Ringed Octopus (Genus Hapalochlaena). Aquat. Toxicol. 2019, 206, 114–122. [Google Scholar] [CrossRef]
- Makarova, M.; Rycek, L.; Hajicek, J.; Baidilov, D.; Hudlicky, T. Tetrodotoxin: History, Biology, and Synthesis. Angew. Chem. Int. Ed. 2019, 58, 18338–18387. [Google Scholar] [CrossRef]
- Catterall, W.A.; Cestèle, S.; Yarov-Yarovoy, V.; Yu, F.H.; Konoki, K.; Scheuer, T. Voltage-Gated Ion Channels and Gating Modifier Toxins. Toxicon 2007, 49, 124–141. [Google Scholar] [CrossRef]
- Catterall, W.A. Voltage-Gated Sodium Channels at 60: Structure, Function and Pathophysiology. J. Physiol. 2012, 590, 2577–2589. [Google Scholar] [CrossRef]
- Catterall, W.A. Forty Years of Sodium Channels: Structure, Function, Pharmacology, and Epilepsy. Neurochem. Res. 2017, 42, 2495–2504. [Google Scholar] [CrossRef]
- Ruben, P.C. (Ed.) Voltage Gated Sodium Channels; Handbook of Experimental Pharmacology Series; Volume 221.
- William, A. Catterall From Ionic Currents to Molecular Review Mechanisms: The Structure and Function of Voltage-Gated Sodium Channels. Neuron 2000, 26, 13–25. [Google Scholar]
- Noda, M.; Suzuki, H.; Numa, S.; Stühmer, W. A Single Point Mutation Confers Tetrodotoxin and Saxitoxin Insensitivity on the Sodium Channel II. FEBS Lett. 1989, 259, 213–216. [Google Scholar] [CrossRef]
- Terlau, H.; Heinemann, S.H.; Stühmer, W.; Pusch, M.; Conti, F.; Imoto, K.; Numa, S. Mapping the Site of Block by Tetrodotoxin and Saxitoxin of Sodium Channel II. FEBS Lett. 1991, 293, 93–96. [Google Scholar] [CrossRef]
- Catterall, W.A.; Goldin, A.L.; Waxman, S.G. International Union of Pharmacology. XLVII. Nomenclature and Structure-Function Relationships of Voltage-Gated Sodium Channels. Pharmacol. Rev. 2005, 57, 397–409. [Google Scholar] [CrossRef] [PubMed]
- Shen, H.; Liu, D.; Wu, K.; Lei, J.; Yan, N. Structures of Human Nav1.7 Channel in Complex with Auxiliary Subunits and Animal Toxins. Science 2019, 1308, 1303–1308. [Google Scholar] [CrossRef] [PubMed]
- Pan, X.; Li, Z.; Zhou, Q.; Shen, H.; Wu, K.; Huang, X.; Chen, J.; Zhang, J.; Zhu, X.; Lei, J.; et al. Structure of the Human Voltage-Gated Sodium Channel Nav1.4 in Complex with Β1. Science 2018, 362, eaau2486. [Google Scholar] [CrossRef] [PubMed]
- Salvage, S.C.; Jeevaratnam, K.; Huang, C.L.H.; Jackson, A.P. Cardiac Sodium Channel Complexes and Arrhythmia: Structural and Functional Roles of the Β1 and Β3 Subunits. J. Physiol. 2023, 601, 923–940. [Google Scholar] [CrossRef]
- Shen, H.; Li, Z.; Jiang, Y.; Pan, X.; Wu, J.; Cristofori-Armstrong, B.; Smith, J.J.; Chin, Y.K.Y.; Lei, J.; Zhou, Q.; et al. Structural Basis for the Modulation of Voltage-Gated Sodium Channels by Animal Toxins. Science 2018, 362, eaau2596. [Google Scholar] [CrossRef]
- Jin, A.H.; Muttenthaler, M.; Dutertre, S.; Himaya, S.W.A.; Kaas, Q.; Craik, D.J.; Lewis, R.J.; Alewood, P.F. Conotoxins: Chemistry and Biology; ACS Publications: Washington, DC, USA, 2019; Volume 119, ISBN 1323883894. [Google Scholar]
- Venkatesh, B.; Lu, S.Q.; Dandona, N.; See, S.L.; Brenner, S.; Soong, T.W. Genetic Basis of Tetrodotoxin Resistance in Pufferfishes. Curr. Biol. 2005, 15, 2069–2072. [Google Scholar] [CrossRef]
- Jost, M.C.; Hillis, D.M.; Lu, Y.; Kyle, J.W.; Fozzard, H.A.; Zakon, H.H. Toxin-Resistant Sodium Channels: Parallel Adaptive Evolution across a Complete Gene Family. Mol. Biol. Evol. 2008, 25, 1016–1024. [Google Scholar] [CrossRef]
- Hanifin, C.T.; Gilly, W.F. Evolutionary History of a Complex Adaptation: Tetrodotoxin Resistance in Salamanders. Evolution 2015, 69, 232–244. [Google Scholar] [CrossRef]
- Brodie, E.D.; Feldman, C.R.; Hanifin, C.T.; Motychak, J.E.; Mulcahy, D.G.; Williams, B.L.; Brodie, E.D. Parallel Arms Races between Garter Snakes and Newts Involving Tetrodotoxin as the Phenotypic Interface of Coevolution. J. Chem. Ecol. 2005, 31, 343–356. [Google Scholar] [CrossRef]
- Bucciarelli, G.M.; Alsalek, F.; Kats, L.B.; Green, D.B.; Shaffer, H.B. Toxic Relationships and Arms-Race Coevolution Revisited. Annu. Rev. Anim. Biosci. 2022, 10, 63–80. [Google Scholar] [CrossRef]
- Feldman, C.R.; Brodie, E.D.; Brodie, E.D.; Pfrender, M.E. Constraint Shapes Convergence in Tetrodotoxinresistant Sodium Channels of Snakes. Proc. Natl. Acad. Sci. USA 2012, 109, 4556–4561. [Google Scholar] [CrossRef]
- Isom, L.L. Sodium Channel β Subunits: Anything but Auxiliary. Neuroscientist 2001, 7, 42–54. [Google Scholar] [CrossRef] [PubMed]
- O’Malley, H.A.; Isom, L.L. Sodium Channel β Subunits: Emerging Targets in Channelopathies. Annu. Rev. Physiol. 2015, 77, 481–504. [Google Scholar] [CrossRef] [PubMed]
- Namadurai, S.; Yereddi, N.R.; Cusdin, F.S.; Huang, C.L.H.; Chirgadze, D.Y.; Jackson, A.P. A New Look at Sodium Channel β Subunits. Open Biol. 2015, 5, 140192. [Google Scholar] [CrossRef]
- Angsutararux, P.; Zhu, W.; Voelker, T.L.; Silva, J.R. Molecular Pathology of Sodium Channel Beta-Subunit Variants. Front. Pharmacol. 2021, 12, 761275. [Google Scholar] [CrossRef]
- Xiao, Z.C.; Ragsdale, D.S.; Malhotra, J.D.; Mattei, L.N.; Braun, P.E.; Schachner, M.; Isom, L.L. Tenascin-R Is a Functional Modulator of Sodium Channel β Subunits. J. Biol. Chem. 1999, 274, 26511–26517. [Google Scholar] [CrossRef] [PubMed]
- Yereddi, N.R.; Cusdin, F.S.; Namadurai, S.; Packman, L.C.; Monie, T.P.; Slavny, P.; Clare, J.J.; Powell, A.J.; Jackson, A.P. The Immunoglobulin Domain of the Sodium Channel Β3 Subunit Contains a Surface-Localized Disulfide Bond That Is Required for Homophilic Binding. FASEB J. 2013, 27, 568–580. [Google Scholar] [CrossRef]
- Zhang, M.M.; Wilson, M.J.; Azam, L.; Gajewiak, J.; Rivier, J.E.; Bulaj, G.; Olivera, B.M.; Yoshikami, D. Co-Expression of NaVβ Subunits Alters the Kinetics of Inhibition of Voltage-Gated Sodium Channels by Pore-Blocking μ-Conotoxins. Br. J. Pharmacol. 2013, 168, 1597–1610. [Google Scholar] [CrossRef]
- Wilson, M.J.; Zhang, M.M.; Gajewiak, J.; Azam, L.; Rivier, J.E.; Olivera, B.M.; Yoshikami, D. α- And β-Subunit Composition of Voltage-Gated Sodium Channels Investigated with µ-Conotoxins and the Recently Discovered ΜO§-Conotoxin GVIIJ. J. Neurophysiol. 2015, 113, 2289–2301. [Google Scholar] [CrossRef]
- Gilchrist, J.; Das, S.; van Petegem, F.; Bosmans, F. Crystallographic Insights into Sodium-Channel Modulation by the Β4 Subunit. Proc. Natl. Acad. Sci. USA 2013, 110, E5016–E5024. [Google Scholar] [CrossRef]
- Salvage, S.C.; Rahman, T.; Eagles, D.A.; Rees, J.S.; King, G.F.; Huang, C.L.H.; Jackson, A.P. The Β3-Subunit Modulates the Effect of Venom Peptides ProTx-II and OD1 on NaV1.7 Gating. J. Cell. Physiol. 2023, 238, 1354–1367. [Google Scholar] [CrossRef]
- Das, S.; Gilchrist, J.; Bosmans, F.; van Petegem, F. Binary Architecture of the Nav 1.2-Β2 Signaling Complex. eLife 2016, 5, e10960. [Google Scholar] [CrossRef]
- Priest, B.T.; Blumenthal, K.M.; Smith, J.J.; Warren, V.A.; Smith, M.M. ProTx-I and ProTx-II: Gating Modifiers of Voltage-Gated Sodium Channels. Toxicon 2007, 49, 194–201. [Google Scholar] [CrossRef]
- Akondi, K.B.; Muttenthaler, M.; Dutertre, S.; Kaas, Q.; Craik, D.J.; Lewis, R.J.; Alewood, P.F. Discovery, Synthesis, and Structure-Activity Relationships of Conotoxins. Chem. Rev. 2014, 114, 5815–5847. [Google Scholar] [CrossRef]
- Fukushima, K.; Pollock, D.D. Detecting Macroevolutionary Genotype–Phenotype Associations Using Error-Corrected Rates of Protein Convergence. Nat. Ecol. Evol. 2023, 7, 155–170. [Google Scholar] [CrossRef]
- Maruta, S.; Yamaoka, K.; Yotsu-Yamashita, M. Two Critical Residues in P-Loop Regions of Puffer Fish Na+ Channels on TTX Sensitivity. Toxicon 2008, 51, 381–387. [Google Scholar] [CrossRef]
- Van Thiel, J.; Khan, M.A.; Wouters, R.M.; Harris, R.J.; Casewell, N.R.; Fry, B.G.; Kini, R.M.; Mackessy, S.P.; Vonk, F.J.; Wüster, W.; et al. Convergent Evolution of Toxin Resistance in Animals. Biol. Rev. 2022, 97, 1823–1843. [Google Scholar] [CrossRef] [PubMed]
- Brackenbury, W.J.; Isom, L.L. Na+ Channel β Subunits: Overachievers of the Ion Channel Family. Front. Pharmacol. 2011, 2, 53. [Google Scholar] [CrossRef] [PubMed]
- Ferrera, L.; Moran, O. Β1-Subunit Modulates the Nav1.4 Sodium Channel by Changing the Surface Charge. Exp. Brain Res. 2006, 172, 139–150. [Google Scholar] [CrossRef] [PubMed]
- Yan, Z.; Zhou, Q.; Wang, L.; Wu, J.; Zhao, Y.; Huang, G.; Peng, W.; Shen, H.; Lei, J.; Yan, N. Structure of the Nav1.4-Β1 Complex from Electric Eel. Cell 2017, 170, 470–482.e11. [Google Scholar] [CrossRef] [PubMed]
- Reimche, J.S.; del Carlo, R.E.; Brodie, E.D.; McGlothlin, J.W.; Schlauch, K.; Pfrender, M.E.; Brodie, E.D.; Leblanc, N.; Feldman, C.R. The Road Not Taken: Evolution of Tetrodotoxin Resistance in the Sierra Garter Snake (Thamnophis couchii) by a Path Less Travelled. Mol. Ecol. 2022, 31, 3827–3843. [Google Scholar] [CrossRef] [PubMed]
- Geffeney, S.L.; Cordingley, J.A.; Mitchell, K.; Hanifin, C.T. In Silico Analysis of Tetrodotoxin Binding in Voltage-Gated Sodium Ion Channels from Toxin-Resistant Animal Lineages. Mar. Drugs 2022, 20, 723. [Google Scholar] [CrossRef]
- Ganguly, H.K.; Basu, G. Conformational Landscape of Substituted Prolines. Biophys. Rev. 2020, 12, 25–39. [Google Scholar] [CrossRef] [PubMed]
- Pan, X.; Li, Z.; Huang, X.; Huang, G.; Gao, S.; Shen, H.; Liu, L.; Lei, J.; Yan, N. Molecular Basis for Pore Blockade of Human Na + Channel Na v 1.2 by the m-Conotoxin KIIIA. Science 2019, 363, 1309–1313. [Google Scholar] [CrossRef]
- Lopez-Santiago, L.F.; Pertin, M.; Morisod, X.; Chen, C.; Hong, S.; Wiley, J.; Decosterd, I.; Isom, L.L. Sodium Channel Β2 Subunits Regulate Tetrodotoxin-Sensitive Sodium Channels in Small Dorsal Root Ganglion Neurons and Modulate the Response to Pain. J. Neurosci. 2006, 26, 7984–7994. [Google Scholar] [CrossRef]
- Namadurai, S.; Balasuriya, D.; Rajappa, R.; Wiemhöfer, M.; Stott, K.; Klingauf, J.; Edwardson, J.M.; Chirgadze, D.Y.; Jackson, A.P. Crystal Structure and Molecular Imaging of the Nav Channelβ3 Subunit Indicates a Trimeric Assembly. J. Biol. Chem. 2014, 289, 10797–10811. [Google Scholar] [CrossRef]
- Hartshornes, R.P.; Messnerg, D.J. Sodium Channel from Rat Brain. J. Biol. Chem. 1982, 257, 13888–13891. [Google Scholar] [CrossRef]
- Abderemane-Ali, F.; Rossen, N.D.; Kobiela, M.E.; Craig, R.A.; Garrison, C.E.; Chen, Z.; Colleran, C.M.; O’connell, L.A.; Du Bois, J.; Dumbacher, J.P.; et al. Evidence That Toxin Resistance in Poison Birds and Frogs Is Not Rooted in Sodium Channel Mutations and May Rely on “Toxin Sponge” Proteins. J. Gen. Physiol. 2021, 153, e202112872. [Google Scholar] [CrossRef]
- Portugal, S.J.; Murn, C.P.; Sparkes, E.L.; Daley, M.A. The Fast and Forceful Kicking Strike of the Secretary Bird. Curr. Biol. 2016, 26, R58–R59. [Google Scholar] [CrossRef]
- Parrott, M.L.; Doody, J.S.; McHenry, C.; Clulow, S.; Parrott, M.L.; Doody, J.S.; McHenry, C.; Clulow, S. Eat Your Heart out: Choice and Handling of Novel Toxic Prey by Predatory Water Rats. Aust. Mammal. 2019, 42, 235–239. [Google Scholar] [CrossRef]
- Yang, Z. PAML 4: Phylogenetic Analysis by Maximum Likelihood. Mol. Biol. Evol. 2007, 24, 1586–1591. [Google Scholar] [CrossRef] [PubMed]
- Jumper, J.; Evans, R.; Pritzel, A.; Green, T.; Figurnov, M.; Ronneberger, O.; Tunyasuvunakool, K.; Bates, R.; Žídek, A.; Potapenko, A.; et al. Highly Accurate Protein Structure Prediction with AlphaFold. Nature 2021, 596, 583–589. [Google Scholar] [CrossRef] [PubMed]
- Varadi, M.; Anyango, S.; Deshpande, M.; Nair, S.; Natassia, C.; Yordanova, G.; Yuan, D.; Stroe, O.; Wood, G.; Laydon, A.; et al. AlphaFold Protein Structure Database: Massively Expanding the Structural Coverage of Protein-Sequence Space with High-Accuracy Models. Nucleic Acids Res. 2022, 50, D439–D444. [Google Scholar] [CrossRef]
- Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Couch, G.S.; Greenblatt, D.M.; Meng, E.C.; Ferrin, T.E. UCSF Chimera—A Visualization System for Exploratory Research and Analysis. J. Comput. Chem. 2004, 25, 1605–1612. [Google Scholar] [CrossRef]
Species | Class | TTX-Resistant |
---|---|---|
Homo sapiens | Mammal | No |
Mus musculus | Mammal | No |
Gallus gallus | Bird | No |
Anolis carolinensis | Reptile | No |
Thamnophis sirtalis | Reptile | Yes |
Thamnophis elegans | Reptile | Yes |
Pseudonaja textilis | Reptile | No |
Bufo bufo | Amphibian | No |
Xenopus tropicalis | Amphibian | No |
Takifugu rubripes | Fish | Yes |
Danio rerio | Fish | No |
Electrophorus electricus | Fish | No |
Maximum Sequence Length (without Signal Peptide) | Positions under Positive Selection | Substitutions | Prob (ω > 1) | |
---|---|---|---|---|
SCN1B | 201 | 15 | G33N | 95.6% |
SCN2B | 197 | 6 | P35V, P35S | 99.5% |
SCN3B * | 199 | 70 | Q93E, Q93F, Q93T | 98.6% |
174 | D197N, D197S | 99.2% | ||
SCN4B | 208 | - | - | - |
Combinatorial Substitution Categories | SCN1B | SCN2B | SCN3B * | SCN4B |
---|---|---|---|---|
Convergence | 0.019 | 0.004 | 0.108 | 0.088 |
Discordant Convergence | 0.023 | 0.001 | 0.095 | 0.752 |
Congruent Convergence | 0.020 | 0.008 | 0.134 | 0.088 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Seneci, L.; Mikheyev, A.S. Sodium Channel β Subunits—An Additional Element in Animal Tetrodotoxin Resistance? Int. J. Mol. Sci. 2024, 25, 1478. https://doi.org/10.3390/ijms25031478
Seneci L, Mikheyev AS. Sodium Channel β Subunits—An Additional Element in Animal Tetrodotoxin Resistance? International Journal of Molecular Sciences. 2024; 25(3):1478. https://doi.org/10.3390/ijms25031478
Chicago/Turabian StyleSeneci, Lorenzo, and Alexander S. Mikheyev. 2024. "Sodium Channel β Subunits—An Additional Element in Animal Tetrodotoxin Resistance?" International Journal of Molecular Sciences 25, no. 3: 1478. https://doi.org/10.3390/ijms25031478
APA StyleSeneci, L., & Mikheyev, A. S. (2024). Sodium Channel β Subunits—An Additional Element in Animal Tetrodotoxin Resistance? International Journal of Molecular Sciences, 25(3), 1478. https://doi.org/10.3390/ijms25031478