Adverse Childhood Experiences and the Risk of Multiple Sclerosis Development: A Review of Potential Mechanisms
Abstract
:1. Introduction
2. Search Strategy
3. Adverse Childhood Experiences Are Associated with Increased MS Risk
3.1. Experimental Studies
3.2. Epidemiological Studies
3.3. Case-Control and Cross-Sectional Studies
3.4. Cohort Studies
3.5. Systematic Reviews
3.6. ACEs and MS Risk: Summary of Evidence
4. Potential Mechanisms Underlying ACE-Related MS Risk
4.1. Neurodevelopment and Brain Structure
4.2. Dysregulation of Stress Responses and the Immune System
4.3. The Neuroimmune Network Hypothesis
4.4. EBV
4.5. Genetics and Epigenetics
4.6. Shortening of Telomere Lengths
4.7. Behavior and Lifestyle
5. Childhood Adversity: Moderating Factors
6. Limitations
7. Recommendations for Future Research
8. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Bjornevik, K.; Bjornevik, K.; Cortese, M.; Cortese, M.; Healy, B.C.; Healy, B.C.; Kuhle, J.; Kuhle, J.; Mina, M.J.; Mina, M.J.; et al. Longitudinal analysis reveals high prevalence of Epstein-Barr virus associated with multiple sclerosis. Science 2022, 375, 296–301. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Hiyoshi, A.; Smith, K.A.; Piehl, F.; Olsson, T.; Fall, K.; Montgomery, S. Association of Infectious Mononucleosis in Childhood and Adolescence With Risk for a Subsequent Multiple Sclerosis Diagnosis Among Siblings. JAMA Netw. Open 2021, 4, e2124932. [Google Scholar] [CrossRef] [PubMed]
- Loosen, S.H.; Doege, C.; Meuth, S.G.; Luedde, T.; Kostev, K.; Roderburg, C. Infectious mononucleosis is associated with an increased incidence of multiple sclerosis: Results from a cohort study of 32,116 outpatients in Germany. Front. Immunol. 2022, 13, 937583. [Google Scholar] [CrossRef]
- Belbasis, L.; Bellou, V.; Evangelou, E.; Tzoulaki, I. Environmental factors and risk of multiple sclerosis: Findings from meta-analyses and Mendelian randomization studies. Mult. Scler. 2020, 26, 397–404. [Google Scholar] [CrossRef]
- Hedstrom, A.K.; Olsson, T.; Kockum, I.; Hillert, J.; Alfredsson, L. Low sun exposure increases multiple sclerosis risk both directly and indirectly. J. Neurol. 2020, 267, 1045–1052. [Google Scholar] [CrossRef]
- Høglund, R.A.A.; Meyer, H.E.; Stigum, H.; Torkildsen, Ø.; Grytten, N.; Holmøy, T.; Nakken, O. Association of Body Mass Index in Adolescence and Young Adulthood and Long-term Risk of Multiple Sclerosis: A Population-Based Study. Neurology 2021, 97, e2253–e2261. [Google Scholar] [CrossRef] [PubMed]
- Cortese, M.; Riise, T.; Bjørnevik, K.; Holmøy, T.; Kampman, M.T.; Magalhaes, S.; Pugliatti, M.; Wolfson, C.; Myhr, K.-M. Timing of use of cod liver oil, a vitamin D source, and multiple sclerosis risk: The EnvIMS study. Mult. Scler. 2015, 21, 1856–1864. [Google Scholar] [CrossRef]
- Oturai, D.B.; Søndergaard, H.B.; Koch-Henriksen, N.; Andersen, C.; Laursen, J.H.; Gustavsen, S.; Kristensen, J.T.; Magyari, M.; Sørensen, P.S.; Sellebjerg, F.; et al. Exposure to passive smoking during adolescence is associated with an increased risk of developing multiple sclerosis. Mult. Scler. 2021, 27, 188–197. [Google Scholar] [CrossRef]
- Magalhaes, S.; Pugliatti, M.; Riise, T.; Myhr, K.-M.; Ciampi, A.; Bjornevik, K.; Wolfson, C. Shedding light on the link between early life sun exposure and risk of multiple sclerosis: Results from the EnvIMS Study. Int. J. Epidemiol. 2019, 48, 1073–1082. [Google Scholar] [CrossRef]
- Xu, Y.; Hiyoshi, A.; Brand, J.S.; Smith, K.A.; Bahmanyar, S.; Alfredsson, L.; Olsson, T.; Montgomery, S. Higher body mass index at ages 16 to 20 years is associated with increased risk of a multiple sclerosis diagnosis in subsequent adulthood among men. Mult. Scler. 2021, 27, 147–150. [Google Scholar] [CrossRef]
- Charcot, J.M. Lectures on the Diseases of the Nervous System. Lecture VIII; The New Sydenham Society: London, UK, 1877; Volume 1–2, p. 220. [Google Scholar]
- Briones-Buixassa, L.; Milà, R.; Aragonès, J.M.; Bufill, E.; Olaya, B.; Arrufat, F.X. Stress and multiple sclerosis: A systematic review considering potential moderating and mediating factors and methods of assessing stress. Health Psychol. Open 2015, 2, 2055102915612271. [Google Scholar] [CrossRef] [PubMed]
- Jiang, J.; Abduljabbar, S.; Zhang, C.; Osier, N. The relationship between stress and disease onset and relapse in multiple sclerosis: A systematic review. Mult. Scler. Relat. Disord. 2022, 67, 104142. [Google Scholar] [CrossRef] [PubMed]
- Jiang, X.; Olsson, T.; Hillert, J.; Kockum, I.; Alfredsson, L. Stressful life events are associated with the risk of multiple sclerosis. Eur. J. Neurol. 2020, 27, 2539–2548. [Google Scholar] [CrossRef]
- Saul, A.; Ponsonby, A.-L.; Lucas, R.M.; Taylor, B.V.; Simpson, S.; Valery, P.; Dwyer, T.; Kilpatrick, T.J.; Pender, M.P.; van der Mei, I.A. Stressful life events and the risk of initial central nervous system demyelination. Mult. Scler. 2017, 23, 1000–1007. [Google Scholar] [CrossRef]
- Makhani, N.; Tremlett, H. The multiple sclerosis prodrome. Nat. Rev. Neurol. 2021, 17, 515–521. [Google Scholar] [CrossRef]
- Jons, D.; Zetterberg, H.; Biström, M.; Alonso-Magdalena, L.; Gunnarsson, M.; Vrethem, M.; Blennow, K.; Nilsson, S.; Sundström, P.; Andersen, O. Axonal injury in asymptomatic individuals preceding onset of multiple sclerosis. Ann. Clin. Transl. Neurol. 2022, 9, 882–887. [Google Scholar] [CrossRef]
- Bjornevik, K.; Munger, K.L.; Cortese, M.; Barro, C.; Healy, B.C.; Niebuhr, D.W.; Scher, A.I.; Kuhle, J.; Ascherio, A. Serum Neurofilament Light Chain Levels in Patients With Presymptomatic Multiple Sclerosis. JAMA Neurol. 2020, 77, 58–64. [Google Scholar] [CrossRef]
- Rehan, S.T.; Khan, Z.; Shuja, S.H.; Salman, A.; Hussain, H.U.; Abbasi, M.S.; Razak, S.; Cheema, H.A.; Swed, S.; Surani, S. Association of adverse childhood experiences with adulthood multiple sclerosis: A systematic review of observational studies. Brain. Behav. 2023, 13, e3024. [Google Scholar] [CrossRef]
- Khaw, Y.M.; Majid, D.; Oh, S.; Kang, E.; Inoue, M. Early-life-trauma triggers interferon-beta resistance and neurodegeneration in a multiple sclerosis model via downregulated beta1-adrenergic signaling. Nat. Commun. 2021, 12, 105. [Google Scholar] [CrossRef]
- Polick, C.S.; Polick, S.R.; Stoddard, S.A. Relationships between childhood trauma and multiple sclerosis: A systematic review. J. Psychosom. Res. 2022, 160, 110981. [Google Scholar] [CrossRef]
- Faraji, J.; Bettenson, D.; Yong, V.W.; Metz, G.A.S. Early life stress aggravates disease pathogenesis in mice with experimental autoimmune encephalomyelitis: Support for a two-hit hypothesis of multiple sclerosis etiology. J. Neuroimmunol. 2023, 385, 578240. [Google Scholar] [CrossRef]
- Meagher, M.W.; Sieve, A.N.; Johnson, R.R.; Satterlee, D.; Belyavskyi, M.; Mi, W.; Prentice, T.W.; Welsh, T.H.; Welsh, C.J.R. Neonatal maternal separation alters immune, endocrine, and behavioral responses to acute Theiler’s virus infection in adult mice. Behav. Genet. 2010, 40, 233–249. [Google Scholar] [CrossRef]
- Felitti, V.J.; Anda, R.F.; Nordenberg, D.; Williamson, D.F.; Spitz, A.M.; Edwards, V.; Koss, M.P.; Marks, J.S. Relationship of childhood abuse and household dysfunction to many of the leading causes of death in adults. The Adverse Childhood Experiences (ACE) Study. Am. J. Prev. Med. 1998, 14, 245–258. [Google Scholar] [CrossRef] [PubMed]
- Hughes, K.; Bellis, M.A.; Hardcastle, K.A.; Sethi, D.; Butchart, A.; Mikton, C.; Jones, L.; Dunne, M.P. The effect of multiple adverse childhood experiences on health: A systematic review and meta-analysis. Lancet Public Health 2017, 2, e356–e366. [Google Scholar] [CrossRef]
- Berens, A.E.; Jensen, S.K.G.; Nelson, C.A. Biological embedding of childhood adversity: From physiological mechanisms to clinical implications. BMC Med. 2017, 15, 135. [Google Scholar] [CrossRef]
- Nelson, C.A.; Scott, R.D.; Bhutta, Z.A.; Harris, N.B.; Danese, A.; Samara, M. Adversity in childhood is linked to mental and physical health throughout life. BMJ 2020, 371, m3048. [Google Scholar] [CrossRef]
- Eid, K.; Torkildsen, Ø.; Aarseth, J.; Aalstad, M.; Bhan, A.; Celius, E.G.; Cortese, M.; Daltveit, A.K.; Holmøy, T.; Myhr, K.-M.; et al. Association of adverse childhood experiences with the development of multiple sclerosis. J. Neurol. Neurosurg. Psychiatry 2022, 93, 645–650. [Google Scholar] [CrossRef] [PubMed]
- Horton, M.K.; McCurdy, S.; Shao, X.; Bellesis, K.; Chinn, T.; Schaefer, C.; Barcellos, L.F. Case-control study of adverse childhood experiences and multiple sclerosis risk and clinical outcomes. PLoS ONE 2022, 17, e0262093. [Google Scholar] [CrossRef] [PubMed]
- Gatto, N.M.; Thordardottir, E.B.; Tomasson, G.; Rúnarsdóttir, H.; Song, H.; Jakobsdóttir, J.; Aspelund, T.; Valdimarsdóttir, U.A.; Hauksdóttir, A. Association between Adverse Childhood Experiences and Multiple Sclerosis in Icelandic Women—A Population-Based Cohort Study. Brain Sci. 2022, 12, 1559. [Google Scholar] [CrossRef] [PubMed]
- Wan, A.; Bernstein, C.N.; Graff, L.A.; Patten, S.B.; Sareen, J.; Fisk, J.D.; Bolton, J.M.; Hitchon, C.; Marriott, J.J.; Marrie, R.A.; et al. Childhood Maltreatment and Psychiatric Comorbidity in Immune-Mediated Inflammatory Disorders. Psychosom. Med. 2022, 84, 10–19. [Google Scholar] [CrossRef]
- Briones-Buixassa, L.; Milà, R.; Arrufat, F.X.; Aragonès, J.M.; Bufill, E.; Luminet, O.; Moss-Morris, R. A case-control study of psychosocial factors and their relationship to impairment and functionality in multiple sclerosis. J. Health Psychol. 2019, 24, 1023–1032. [Google Scholar] [CrossRef]
- Shaw, M.T.; Pawlak, N.O.; Frontario, A.; Sherman, K.; Krupp, L.B.; Charvet, L.E. Adverse Childhood Experiences Are Linked to Age of Onset and Reading Recognition in Multiple Sclerosis. Front. Neurol. 2017, 8, 242. [Google Scholar] [CrossRef] [PubMed]
- Eftekharian, M.M.; Ghannad, M.S.; Taheri, M.; Roshanaei, G.; Mazdeh, M.; Musavi, M.; Hormoz, M.B. Frequency of viral infections and environmental factors in multiple sclerosis. Hum. Antibodies 2016, 24, 17–23. [Google Scholar] [CrossRef]
- Nielsen, N.M.; Pedersen, B.V.; Stenager, E.; Koch-Henriksen, N.; Frisch, M. Stressful life-events in childhood and risk of multiple sclerosis: A Danish nationwide cohort study. Mult. Scler. 2014, 20, 1609–1615. [Google Scholar] [CrossRef] [PubMed]
- Spitzer, C.; Bouchain, M.; Winkler, L.Y.; Wingenfeld, K.; Gold, S.M.; Grabe, H.J.; Barnow, S.; Otte, C.; Heesen, C. Childhood trauma in multiple sclerosis: A case-control study. Psychosom. Med. 2012, 74, 312–318. [Google Scholar] [CrossRef] [PubMed]
- Riise, T.; Mohr, D.C.; Munger, K.L.; Rich-Edwards, J.W.; Kawachi, I.; Ascherio, A. Stress and the risk of multiple sclerosis. Neurology 2011, 76, 1866–1871. [Google Scholar] [CrossRef]
- Eid, K.; Torkildsen, Ø.; Aarseth, J.; Celius, E.G.; Cortese, M.; Holmøy, T.; Kapali, A.; Myhr, K.-M.; Torkildsen, C.F.; Wergeland, S.; et al. Abuse and revictimization in adulthood in multiple sclerosis: A cross-sectional study during pregnancy. J. Neurol. 2022, 269, 5901–5909. [Google Scholar] [CrossRef]
- Hardt, J.; Rutter, M. Validity of adult retrospective reports of adverse childhood experiences: Review of the evidence. J. Child Psychol. Psychiatry 2004, 45, 260–273. [Google Scholar] [CrossRef]
- Shonkoff, J.P.; Garner, A.S.; Committee on Psychosocial Aspects of Child and Family Health; Committee on Early Childhood, Adoption, and Dependent Care; Section on Developmental and Behavioral Pediatrics. The lifelong effects of early childhood adversity and toxic stress. Pediatrics 2012, 129, e232–e246. [Google Scholar] [CrossRef]
- Ibrahim, P.; Almeida, D.; Nagy, C.; Turecki, G. Molecular impacts of childhood abuse on the human brain. Neurobiol. Stress 2021, 15, 100343. [Google Scholar] [CrossRef]
- Teicher, M.H.; Samson, J.A.; Anderson, C.M.; Ohashi, K. The effects of childhood maltreatment on brain structure, function and connectivity. Nat. Rev. Neurosci. 2016, 17, 652–666. [Google Scholar] [CrossRef]
- Solarz, A.; Majcher-Maslanka, I.; Kryst, J.; Chocyk, A. Early-life stress affects peripheral, blood-brain barrier, and brain responses to immune challenge in juvenile and adult rats. Brain. Behav. Immun. 2023, 108, 1–15. [Google Scholar] [CrossRef]
- Filippi, M.; Rovaris, M.; Capra, R.; Gasperini, C.; Yousry, T.A.; Sormani, M.P.; Prandini, F.; Horsfield, M.A.; Martinelli, V.; Bastianello, S.; et al. A multi-centre longitudinal study comparing the sensitivity of monthly MRI after standard and triple dose gadolinium-DTPA for monitoring disease activity in multiple sclerosis. Implications for phase II clinical trials. Brain 1998, 121 Pt 10, 2011–2020. [Google Scholar] [CrossRef]
- Werring, D.J.; Brassat, D.; Droogan, A.G.; Clark, C.A.; Symms, M.R.; Barker, G.J.; MacManus, D.G.; Thompson, A.J.; Miller, D.H. The pathogenesis of lesions and normal-appearing white matter changes in multiple sclerosis: A serial diffusion MRI study. Brain 2000, 123 Pt 8, 1667–1676. [Google Scholar] [CrossRef] [PubMed]
- Goodkin, D.E.; Rooney, W.D.; Sloan, R.; Bacchetti, P.; Gee, L.; Vermathen, M.; Waubant, E.; Abundo, M.; Majumdar, S.; Nelson, S.; et al. A serial study of new MS lesions and the white matter from which they arise. Neurology 1998, 51, 1689–1697. [Google Scholar] [CrossRef] [PubMed]
- Nishihara, H.; Perriot, S.; Gastfriend, B.D.; Steinfort, M.; Cibien, C.; Soldati, S.; Matsuo, K.; Guimbal, S.; Mathias, A.; Palecek, S.P.; et al. Intrinsic blood-brain barrier dysfunction contributes to multiple sclerosis pathogenesis. Brain 2022, 145, 4334–4348. [Google Scholar] [CrossRef]
- Danese, A.; Baldwin, J.R. Hidden Wounds? Inflammatory Links Between Childhood Trauma and Psychopathology. Annu. Rev. Psychol. 2017, 68, 517–544. [Google Scholar] [CrossRef]
- Baumeister, D.; Akhtar, R.; Ciufolini, S.; Pariante, C.M.; Mondelli, V. Childhood trauma and adulthood inflammation: A meta-analysis of peripheral C-reactive protein, interleukin-6 and tumour necrosis factor-alpha. Mol. Psychiatry 2016, 21, 642–649. [Google Scholar] [CrossRef]
- Renna, M.E.; Peng, J.; Shrout, M.R.; Madison, A.A.; Andridge, R.; Alfano, C.M.; Povoski, S.P.; Lipari, A.M.; Malarkey, W.B.; Kiecolt-Glaser, J.K. Childhood abuse histories predict steeper inflammatory trajectories across time. Brain. Behav. Immun. 2021, 91, 541–545. [Google Scholar] [CrossRef]
- Kuhlmann, T.; Moccia, M.; Coetzee, T.; Cohen, J.A.; Correale, J.; Graves, J.; Marrie, R.A.; Montalban, X.; Yong, V.W.; Thompson, A.J.; et al. Multiple sclerosis progression: Time for a new mechanism-driven framework. Lancet Neurol. 2023, 22, 78–88. [Google Scholar] [CrossRef]
- Anagnostouli, M.; Markoglou, N.; Chrousos, G. Psycho-neuro-endocrino-immunologic issues in multiple sclerosis: A critical review of clinical and therapeutic implications. Hormones 2020, 19, 485–496. [Google Scholar] [CrossRef] [PubMed]
- Nusslock, R.; Miller, G.E. Early-Life Adversity and Physical and Emotional Health Across the Lifespan: A Neuroimmune Network Hypothesis. Biol. Psychiatry 2016, 80, 23–32. [Google Scholar] [CrossRef]
- Sausen, D.G.; Bhutta, M.S.; Gallo, E.S.; Dahari, H.; Borenstein, R. Stress-Induced Epstein-Barr Virus Reactivation. Biomolecules 2021, 11, 1380. [Google Scholar] [CrossRef]
- Hjalgrim, H.; Friborg, J.; Melbye, M. Chapter 53. The epidemiology of EBV and its association with malignant disease. In Human Herpesviruses: Biology, Therapy, and Immunoprophylaxis, 1st ed.; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
- Slopen, N.; McLaughlin, K.A.; Dunn, E.C.; Koenen, K.C. Childhood adversity and cell-mediated immunity in young adulthood: Does type and timing matter? Brain. Behav. Immun. 2013, 28, 63–71. [Google Scholar] [CrossRef] [PubMed]
- Slopen, N.; McLaughlin, K.A.; Dunn, E.C.; Koenen, K.C. Reply to letter Re: Childhood adversity and cell-mediated immunity in young adulthood. Brain. Behav. Immun. 2013, 34, 177–179. [Google Scholar] [CrossRef] [PubMed]
- Fagundes, C.P.; Glaser, R.; Malarkey, W.B.; Kiecolt-Glaser, J.K. Childhood adversity and herpesvirus latency in breast cancer survivors. Health Psychol. 2013, 32, 337–344. [Google Scholar] [CrossRef]
- Levin, L.I.; Munger, K.L.; Rubertone, M.V.; Peck, C.A.; Lennette, E.T.; Spiegelman, D.; Ascherio, A. Temporal relationship between elevation of epstein-barr virus antibody titers and initial onset of neurological symptoms in multiple sclerosis. JAMA 2005, 293, 2496–2500. [Google Scholar] [CrossRef]
- Munger, K.; Levin, L.; O’Reilly, E.; Falk, K.; Ascherio, A. Anti-Epstein–Barr virus antibodies as serological markers of multiple sclerosis: A prospective study among United States military personnel. Mult. Scler. J. 2011, 17, 1185–1193. [Google Scholar] [CrossRef]
- Afrasiabi, A.; Parnell, G.P.; Fewings, N.; Schibeci, S.D.; Basuki, M.A.; Chandramohan, R.; Zhou, Y.; Taylor, B.; Brown, D.A.; Swaminathan, S.; et al. Evidence from genome wide association studies implicates reduced control of Epstein-Barr virus infection in multiple sclerosis susceptibility. Genome Med. 2019, 11, 26. [Google Scholar] [CrossRef]
- Klengel, T.; Mehta, D.; Anacker, C.; Rex-Haffner, M.; Pruessner, J.C.; Pariante, C.M.; Pace, T.W.W.; Mercer, K.B.; Mayberg, H.S.; Bradley, B.; et al. Allele-specific FKBP5 DNA demethylation mediates gene-childhood trauma interactions. Nat. Neurosci. 2013, 16, 33–41. [Google Scholar] [CrossRef]
- Song, H.; Fang, F.; Tomasson, G.; Arnberg, F.K.; Mataix-Cols, D.; de la Cruz, L.F.; Almqvist, C.; Fall, K.; Valdimarsdóttir, U.A. Association of Stress-Related Disorders With Subsequent Autoimmune Disease. JAMA 2018, 319, 2388–2400. [Google Scholar] [CrossRef]
- Bookwalter, D.B.; Roenfeldt, K.A.; LeardMann, C.A.; Kong, S.Y.; Riddle, M.S.; Rull, R.P. Posttraumatic stress disorder and risk of selected autoimmune diseases among US military personnel. BMC Psychiatry 2020, 20, 23. [Google Scholar] [CrossRef]
- Jacobs, B.M.; Giovannoni, G.; Cuzick, J.; Dobson, R. Systematic review and meta-analysis of the association between Epstein-Barr virus, multiple sclerosis and other risk factors. Mult. Scler. 2020, 26, 1281–1297. [Google Scholar] [CrossRef]
- Hedström, A.K.; Hillert, J.; Brenner, N.; Butt, J.; Waterboer, T.; Strid, P.; Kockum, I.; Olsson, T.; Alfredsson, L. DRB1-environment interactions in multiple sclerosis etiology: Results from two Swedish case-control studies. J. Neurol. Neurosurg. Psychiatry 2021, 92, 717–722. [Google Scholar] [CrossRef]
- Hedström, A.K.; Hössjer, O.; Hillert, J.; Stridh, P.; Kockum, I.; Olsson, T.; Alfredsson, L. The influence of human leukocyte antigen-DRB1*15:01 and its interaction with smoking in MS development is dependent on DQA1*01:01 status. Mult. Scler. 2020, 26, 1638–1646. [Google Scholar] [CrossRef]
- Huynh, J.L.; Casaccia, P. Epigenetic mechanisms in multiple sclerosis: Implications for pathogenesis and treatment. Lancet Neurol. 2013, 12, 195–206. [Google Scholar] [CrossRef]
- Castro, K.; Casaccia, P. Epigenetic modifications in brain and immune cells of multiple sclerosis patients. Mult. Scler. 2018, 24, 69–74. [Google Scholar] [CrossRef]
- Chen, M.A.; LeRoy, A.S.; Majd, M.; Chen, J.Y.; Brown, R.L.; Christian, L.M.; Fagundes, C.P. Immune and Epigenetic Pathways Linking Childhood Adversity and Health Across the Lifespan. Front. Psychol. 2021, 12, 788351. [Google Scholar] [CrossRef]
- Bühring, J.; Hecker, M.; Fitzner, B.; Zettl, U.K. Systematic Review of Studies on Telomere Length in Patients with Multiple Sclerosis. Aging Dis. 2021, 12, 1272. [Google Scholar] [CrossRef]
- Hecker, M.; Buhring, J.; Fitzner, B.; Rommer, P.S.; Zettl, U.K. Genetic, Environmental and Lifestyle Determinants of Accelerated Telomere Attrition as Contributors to Risk and Severity of Multiple Sclerosis. Biomolecules 2021, 11, 1510. [Google Scholar] [CrossRef]
- Bjørnevik, K.; Riise, T.; Cortese, M.; Holmøy, T.; Kampman, M.T.; Magalhaes, S.; Myhr, K.-M.; Wolfson, C.; Pugliatti, M. Level of education and multiple sclerosis risk after adjustment for known risk factors: The EnvIMS study. Mult. Scler. 2016, 22, 104–111. [Google Scholar] [CrossRef] [PubMed]
- Wesnes, K.; Myhr, K.-M.; Riise, T.; Cortese, M.; Pugliatti, M.; Boström, I.; Landtblom, A.-M.; Wolfson, C.; Bjørnevik, K. Physical activity is associated with a decreased multiple sclerosis risk: The EnvIMS study. Mult. Scler. 2018, 24, 150–157. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Lin, J.; Yang, T.; Xiao, Y.; Jiang, Q.; Shang, H. Physical activity and risk of multiple sclerosis: A Mendelian randomization study. Front. Immunol. 2022, 13, 872126. [Google Scholar] [CrossRef]
- Wang, Y.; Chung, M.C.; Wang, N.; Yu, X.; Kenardy, J. Social support and posttraumatic stress disorder: A meta-analysis of longitudinal studies. Clin. Psychol. Rev. 2021, 85, 101998. [Google Scholar] [CrossRef]
- Gruhn, M.A.; Compas, B.E. Effects of maltreatment on coping and emotion regulation in childhood and adolescence: A meta-analytic review. Child Abuse Negl. 2020, 103, 104446. [Google Scholar] [CrossRef]
- Albott, C.S.; Forbes, M.K.; Anker, J.J. Association of Childhood Adversity With Differential Susceptibility of Transdiagnostic Psychopathology to Environmental Stress in Adulthood. JAMA Netw. Open 2018, 1, e185354. [Google Scholar] [CrossRef]
- Butler, N.; Quigg, Z.; Bellis, M.A. Cycles of violence in England and Wales: The contribution of childhood abuse to risk of violence revictimisation in adulthood. BMC Med. 2020, 18, 325. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. WHO Recommendations on Maternal and Newborn Care for a Positive Postnatal Experience. Updated March 30. Available online: https://www.who.int/publications/i/item/9789240045989 (accessed on 9 October 2023).
- Bush, N.R.; Aschbacher, K. Immune Biomarkers of Early-Life Adversity and Exposure to Stress and Violence-Searching Outside the Streetlight. JAMA Pediatr. 2020, 174, 17–19. [Google Scholar] [CrossRef]
- Rasmussen, L.J.H.; Moffitt, T.E.; Eugen-Olsen, J.; Belsky, D.W.; Danese, A.; Harrington, H.; Houts, R.M.; Poulton, R.; Sugden, K.; Williams, B.; et al. Cumulative childhood risk is associated with a new measure of chronic inflammation in adulthood. J. Child Psychol. Psychiatry 2019, 60, 199–208. [Google Scholar] [CrossRef]
- Rasmussen, L.J.H.; Moffitt, T.E.; Arseneault, L.; Danese, A.; Eugen-Olsen, J.; Fisher, H.L.; Harrington, H.; Houts, R.; Matthews, T.; Sugden, K.; et al. Association of Adverse Experiences and Exposure to Violence in Childhood and Adolescence With Inflammatory Burden in Young People. JAMA Pediatr. 2020, 174, 38–47. [Google Scholar] [CrossRef]
Author (Year) | Study Design | Location of Study | Number of Participants | Type of ACEs | Childhood Period | Mean Age When Exposure Was Assessed | Mode of ACE Assessment | Results | Confounder or Mediator Adjustment |
---|---|---|---|---|---|---|---|---|---|
Eid et al. (2022) [28] | Prospective cohort | Norway, population-based | 77,997 females 14,477 exposed to childhood abuse 63,520 unexposed to childhood abuse | Emotional, sexual, and physical abuse | 0–18 years | 29 years exposed 30 years unexposed | Self-reported questionnaire | 300 developed MS during follow up. Emotional abuse (HR 1.40, CI 1.03–1.90) and sexual abuse (HR 1.65, CI 0.83–2.06) were associated with MS development. Physical abuse (HR 1.31, CI 0.83–2.06) Dose–response relationship: One category (HR 1.1, CI 0.79–1.56), Two categories (HR 1.66, 1.04–2.67), Three categories (HR 1.93, CI 1.02–3.67) | Birth year, school drop-out (≤9 years of elementary school), low household income, non-cohabiting parent, smoking, overweight |
Horton et al. (2022) [29] | Case-control | Northern California | 2607 participants 1422 MS (298 male, 1124 female) 1185 controls (219 male, 966 female) | Parental death, remarriage, divorce, and severe illness. Physical or verbal abuse, or neglect. Adopted. Loss of home, victim of violent crime. | 0–10 years and 11–20 years | 49.7 years | Computed assisted telephone interview (CATI) with 9 ACE categories | No significant association between ACE and the risk of MS (OR 1.01, CI 0.87–1.18) | Sex, birth year, ethnicity |
Gatto et al. (2022) [30] | Cross-sectional | Iceland, population-based | 28,870 females 214 MS | Physical, emotional, and sexual abuse, physical and emotional neglect, household dysfunction, community violence, and bullying | 0–18 years | 44.9 years | ACE-international questionnaire with 13 ACE categories Web-based survey | No significant associations between ACEs and risk of MS. Prevalence ratios were higher for physical neglect (PR 1.32, CI 0.71–2.32), parental separation/divorce (PR 1.21, CI 0.86–1.68), and bullying (PR 1.27, CI 0.83–1.91) | Age, education, childhood deprivation, smoking, depression |
Wan et al. (2022) [31] | Case-control | Canada, Manitoba | 681 participants MS: 232 Inflammatory Bowel Disease: 216 Rheumatoid Arthritis: 130 Healthy controls: 103 | Emotional, physical, and sexual abuse, physical and emotional neglect | Age not specified “when I was growing up” | 53.6 years | Childhood Trauma Questionnaire—Short Form with 28 items | The prevalence of having ≥1 maltreatment was higher in immune-mediated disorders than in controls (MS, 63.8%; IBD, 61.6%; RA, 62.3%; healthy controls, 45.6%). The trauma scores were also higher for all types of abuse and neglect People with immune-mediated disorders had an OR of 2.37 (CI 1.15–4.89) for emotional abuse | Age, sex, ethnicity, smoking status, years of formal education, and annual household income |
Briones-Buixassa et al. (2019) [32] | Case-control | Spain | 41 MS 41 controlsFemale:Male ratio 70:30 | Emotional, physical, and sexual abuse, physical and emotional neglect | Age not specified“when I was growing up” | 48.5 years for MS 48.0 years for controls | Childhood Trauma Questionnaire- Short Form with 28-items | No significant association between early-life stress in MS (p = 0.65) People with MS had a higher mean score of emotional abuse and neglect than controls, but not significant (t-test, p = 0.08) | None |
Shaw et al. (2017) [33] | Cross-sectional | New York | 67 MS 15 males 52 females No control group | Emotional, physical, and sexual abuse. Household dysfunction and neglect | 0–18 years | 50.5 years | ACE-questionnaire with 10-items | Increased occurrence of experiencing >4 ACE compared to the Kaiser Permanente ACE-study | None |
Eftekharian et al. (2016) [34] | Case-control | Hamadan, Iran | 250 MS 64 males 186 females 250 controls 69 males 181 females | Physical child abuse, head trauma, stress and anxiety disorders, OCD, depression | Age not specified | Not reported | Interview with questionnaire | People with MS had increased risk of childhood physical abuse 2–3 times/week (OR 18.81, CI 4.46–79.38) | None |
Nielsen et al. (2014) [35] | Retrospective cohort | Denmark, population based | 2.9 million participants 3260 MS cases | Parental divorce, parental death, death of sibling | 0–18 years | n/a | Stressful life events obtained from the Danish Civil Registration System | Exposure to one stressful event gave increased risk of MS (RR 1.11, CI 1.03–1.20) Parental divorce gave 13% increased risk for MS (RR 1.13, CI 1.04–1.23). Exposure to parental or sibling death did not increase MS risk | Sex, age, calendar period |
Spitzer et al. (2012) [36] | Case-control | Germany | 1119 participants 234 MS170 females, 64 males 885 controls | Emotional, sexual, and physical abuse and emotional and physical neglect | Age not specified“when I was growing up” | 39.7 years for MS 41.2 years for controls | Childhood Trauma Questionnaire- Short Form with 28 items | Higher risk of emotional abuse (OR 3.4, CI 2.0–5.7), sexual abuse (OR 2.2, CI 1.1–4.2), and emotional neglect (OR 2.0, CI 1.2–3.2), among people with MS. The odds of physical abuse were 1.3 (CI 0.6–2.6) and 1.5 (CI 0.9–2.4) for physical neglect | Age, sex, educational level, and current depression |
Riise et al. (2011) [37] | Mixed cohort Mainly retrospective | United States, Nurses’ Health Study | 116,671 female participants 292 MS 49 MS individuals followed prospectively | Sexual and physical abuse | Childhood 0–10 years Adolescence 11–17 years | Not reported | Self-reported questionnaire | No significant associations. Elevated estimates for being repeatedly forced into sexual activity in childhood (OR 1.47, CI 0.87–2.48) or adolescence (OR 1.21, CI 0.68–2.17) | Age, ethnicity, latitude gradient, body mass index, smoking |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Eid, K.; Bjørk, M.-H.; Gilhus, N.E.; Torkildsen, Ø. Adverse Childhood Experiences and the Risk of Multiple Sclerosis Development: A Review of Potential Mechanisms. Int. J. Mol. Sci. 2024, 25, 1520. https://doi.org/10.3390/ijms25031520
Eid K, Bjørk M-H, Gilhus NE, Torkildsen Ø. Adverse Childhood Experiences and the Risk of Multiple Sclerosis Development: A Review of Potential Mechanisms. International Journal of Molecular Sciences. 2024; 25(3):1520. https://doi.org/10.3390/ijms25031520
Chicago/Turabian StyleEid, Karine, Marte-Helene Bjørk, Nils Erik Gilhus, and Øivind Torkildsen. 2024. "Adverse Childhood Experiences and the Risk of Multiple Sclerosis Development: A Review of Potential Mechanisms" International Journal of Molecular Sciences 25, no. 3: 1520. https://doi.org/10.3390/ijms25031520
APA StyleEid, K., Bjørk, M. -H., Gilhus, N. E., & Torkildsen, Ø. (2024). Adverse Childhood Experiences and the Risk of Multiple Sclerosis Development: A Review of Potential Mechanisms. International Journal of Molecular Sciences, 25(3), 1520. https://doi.org/10.3390/ijms25031520