Grid-Based Structural and Dimensional Skin Cancer Classification with Self-Featured Optimized Explainable Deep Convolutional Neural Networks
Abstract
:1. Introduction
- Develop a novel Grid-Based Structural Feature Extraction approach that captures the spatial relationships between lesion pixels within a grid structure, enabling the model to learn complex patterns and context-aware features. The grid-based structural patterns contain nine gray level values, which reduce the intensity variations and improve the model’s performance.
- Construct a Dimensional Feature Learning to extract relevant features from different image channels, such as color and texture, enriching the model’s lesion representation and improving discrimination between cancer types.
- Construct a Self-Featured Optimized Explainability technique that dynamically adjusts the network architecture by selecting the most informative features for each image, leading to a more interpretable model and improved classification accuracy. The self-feature selected ECNN model detects and classifies skin cancer; the model’s hyperparameters are tuned by the novel AICO optimization algorithm, which aims to detect skin cancer accurately.
- Develop an adaptive intelligent coney optimization algorithm (AICO) by combining the adaptive intelligent hunt characteristics of coyotes with the intelligent survival trait characteristics of coneys to improve convergence speed and enhance classification accuracy.
- The utilization of the adaptive intelligent coney optimization algorithm enables the self-feature selected ECNN to adjust the classifier parameters effectively. The self-feature selected ECNN leverages the AICO algorithm. It leads to an improved capability of the classifier in detecting skin cancer; the system can handle a wide range of skin cancer manifestations and improve diagnostic accuracy by using the AICO algorithm.
2. Results
2.1. Experimental Setup
2.2. Dataset Description
- (a)
- Skin Care MNIST; HAM1000 [30]: The dataset comprises 10,015 dermascope images, encompassing a comprehensive range of significant diagnostic categories.
- (b)
- The skin cancer ISIC dataset [31] comprises 2357 images of malignant and benign oncological diseases from The International Skin Imaging Collaboration (ISIC). The images were categorized based on the ISIC classification, and each subset contains an equal number of images, except for melanomas and moles, which have a slightly higher representation.
2.3. Performance Metrics
- (a)
- Accuracy
- (b)
- Critical Success Index (CSI)
- (c)
- False Positive Rate (FPR)
- (d)
- False Negative Rate (FNR)
2.4. Experimental Outcomes
2.5. Feature Extraction Phase Using VGG 16
2.6. Performance Analysis of AICO Self-Feature Selected ECNN Model with TP
2.7. Comparative Analysis with the Current State-of-the-Art Methods
2.7.1. Comparative Analysis with TP for the ISIC Dataset
2.7.2. Comparative Analysis with K-Fold for the ISIC Dataset
2.7.3. Comparative Analysis with TP for the MNIST Dataset
2.7.4. Comparative Analysis with k-Fold for the MNIST Dataset
2.8. Ablation Study
2.8.1. Ablation Study on VGG-16 Model with ISIC and MNIST Dataset
2.8.2. Ablation Study on the AICO Self-Feature Selected ECNN with and without Feature Extraction
2.9. Time Complexity Analysis
3. Discussion
4. Materials and Methods
4.1. AICO Self-Feature Selected ECNN
4.2. Image Input
4.3. Pre-Processing: Adaptive Thresholding-Based ROI Extraction
4.4. Feature Extraction
4.4.1. Grid-Based Structural Pattern-LBP Shape-Based Descriptors
4.4.2. Grid-Based Directional Pattern-Local Directional Pattern
4.4.3. Statistical Features
- (a)
- Mean: The mean represents the average intensity value of the pixels within an image.
- (b)
- Median (): The median is a statistical measure that represents the mid-value in a dataset when the data are organized in ascending or descending order. When there is an even number of values in the dataset, the median is calculated as the average of the two middle values.
- (c)
- Mode (): mode is defined as the value that occurs in a pixel the maximum number of times.
4.4.4. VGG 16
4.5. Self-Feature Selected Optimized Explainable CNN
4.6. Adaptive Intelligent Coney Optimization Algorithm
4.6.1. Solution Initialization
4.6.2. Fitness Evaluation
4.6.3. Primary Predation Phase
Deviated Search Phase:
Stashing Phase
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Behara, K.; Bhero, E.; Agee, J.T. Skin Lesion Synthesis and Classification Using an Improved DCGAN Classifier. Diagnostics 2023, 13, 2635. [Google Scholar] [CrossRef]
- International Agency for Research on Cancer. 2022. Available online: https://www.iarc.who.int/cancer-type/skin-cancer/ (accessed on 10 December 2023).
- Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer statistics, 2022. CA Cancer J. Clin. 2022, 72, 7–33. [Google Scholar] [CrossRef] [PubMed]
- Waseh, S.; Lee, J.B. Advances in melanoma: Epidemiology, diagnosis, and prognosis. Front. Med. 2023, 10, 1268479. [Google Scholar] [CrossRef] [PubMed]
- Viknesh, C.K.; Kumar, P.N.; Seetharaman, R.; Anitha, D. Detection and Classification of Melanoma Skin Cancer Using Image Processing Technique. Diagnostics 2023, 13, 3313. [Google Scholar] [CrossRef] [PubMed]
- Melarkode, N.; Srinivasan, K.; Qaisar, S.M.; Plawiak, P. AI-Powered Diagnosis of Skin Cancer: A Contemporary Review, Open Challenges and Future Research Directions. Cancers 2023, 15, 1183. [Google Scholar] [CrossRef] [PubMed]
- Nisal, P.; Michelle, R. A comprehensive review of dermoscopy in melasma. Clin. Exp. Dermatol. 2023, 266, llad266. [Google Scholar] [CrossRef]
- Ankad, B.; Sakhare, P.; Prabhu, M. Dermoscopy of non-melanocytic and pink tumors in Brown skin: A descriptive study. Indian J. Dermatopathol. Diagn. Dermatol. 2017, 4, 41. [Google Scholar] [CrossRef]
- Ali, K.; Shaikh, Z.A.; Khan, A.A.; Laghari, A.A. Multiclass skin cancer classification using EfficientNets—A first step towards preventing skin cancer. Neurosci. Inform. 2022, 2, 100034. [Google Scholar] [CrossRef]
- Li, W.; Zhuang, J.; Wang, R.; Zhang, J.; Zheng, W.S. Fusing metadata and dermoscopy images for skin disease diagnosis. In Proceedings of the 2020 IEEE 17th International Symposium on Biomedical Imaging (ISBI), Iowa City, IA, USA, 3–7 April 2020; pp. 1996–2000. [Google Scholar]
- Garrison, Z.R.; Hall, C.M.; Fey, R.M.; Clister, T.; Khan, N.; Nichols, R.; Kulkarni, R.P. Advances in Early Detection of Melanoma and the Future of At-Home Testing. Life 2023, 13, 974. [Google Scholar] [CrossRef]
- Babino, G.; Lallas, A.; Agozzino, M.; Alfano, R.; Apalla, Z.; Brancaccio, G.; Giorgio, C.M.; Fulgione, E.; Kittler, H.; Kyrgidis, A.; et al. Melanoma diagnosed on digital dermoscopy monitoring: A side-by-side image comparison is needed to improve early detection. J. Am. Acad. Dermatol. 2021, 85, 619–625. [Google Scholar] [CrossRef]
- Khater, T.; Sam, A.; Soliman, M.; Abir, H.; Hissam, T. Skin cancer classification using explainable artificial intelligence on pre-extracted image features. Intell. Syst. Appl. 2023, 20, 200275. [Google Scholar] [CrossRef]
- Magdy, A.; Hadeer, H.; Rehab, F.; Abdel-Kader; Khaled, A.E.S. Performance Enhancement of Skin Cancer Classification using Computer Vision. IEEE Access 2023, 11, 72120–72133. [Google Scholar] [CrossRef]
- Dildar, M.; Akram, S.; Irfan, M.; Khan, H.U.; Ramzan, M.; Mahmood, A.R.; Alsaiari, S.A.; Saeed, A.H.M.; Alraddadi, M.O.; Mahnashi, M.H. Skin cancer detection: A review using deep learning techniques. Int. J. Environ. Res. Public Health 2021, 18, 5479. [Google Scholar] [CrossRef]
- Wei, L.; Ding, K.; Hu, H. Automatic skin cancer detection in dermoscopy images based on ensemble lightweight deep learning network. IEEE Access 2020, 8, 99633–99647. [Google Scholar] [CrossRef]
- Pacheco, A.G.; Krohling, R.A. An attention-based mechanism to combine images and metadata in deep learning models applied to skin cancer classification. IEEE J. Biomed. Health Inform. 2021, 25, 3554–3563. [Google Scholar] [CrossRef] [PubMed]
- Jiang, S.; Li, H.; Jin, Z. A visually interpretable deep learning framework for histopathological image-based skin cancer diagnosis. IEEE J. Biomed. Health Inform. 2021, 25, 1483–1494. [Google Scholar] [CrossRef] [PubMed]
- Imran, A.; Nasir, A.; Bilal, M.; Sun, G.; Alzahrani, A.; Almuhaimeed, A. Skin cancer detection using a combined decision of deep learners. IEEE Access 2022, 10, 118198–118212. [Google Scholar] [CrossRef]
- Adegun, A.A.; Viriri, S. FCN-based DenseNet framework for automated detection and classification of skin lesions in dermoscopy images. IEEE Access 2020, 8, 150377–150396. [Google Scholar] [CrossRef]
- Mridha, K.; Uddin, M.M.; Shin, J.; Khadka, S.; Mridha, M.F. An Interpretable Skin Cancer Classification Using Optimized Convolutional Neural Network for a Smart Healthcare System. IEEE Access 2023, 11, 41003–41018. [Google Scholar] [CrossRef]
- Riaz, L.; Qadir, H.M.; Ali, G.; Ali, M.; Raza, M.A.; Jurcut, A.D.; Ali, J. A Comprehensive Joint Learning System to Detect Skin Cancer. IEEE Access 2023, 11, 79434–79444. [Google Scholar] [CrossRef]
- Mehmood, A.; Gulzar, Y.; Ilyas, Q.M.; Jabbari, A.; Ahmad, M.; Iqbal, S. SBXception: A Shallower and Broader Xception Architecture for Efficient Classification of Skin Lesions. Cancers 2023, 15, 3604. [Google Scholar] [CrossRef]
- Gulzar, Y.; Khan, S.A. Skin Lesion Segmentation Based on Vision Transformers and Convolutional Neural Networks—A Comparative Study. Appl. Sci. 2022, 12, 5990. [Google Scholar] [CrossRef]
- Khan, S.A.; Gulzar, Y.; Turaev, S.; Peng, Y.S. A Modified HSIFT Descriptor for Medical Image Classification of Anatomy Objects. Symmetry 2021, 13, 1987. [Google Scholar] [CrossRef]
- Ayoub, S.; Gulzar, Y.; Rustamov, J.; Jabbari, A.; Reegu, F.A.; Turaev, S. Adversarial Approaches to Tackle Imbalanced Data in Machine Learning. Sustainability 2023, 15, 7097. [Google Scholar] [CrossRef]
- Nahata, H.; Singh, S.P. Deep Learning Solutions for Skin Cancer Detection and Diagnosis. In Machine Learning with Health Care Perspective. Learning and Analytics in Intelligent Systems; Jain, V., Chatterjee, J., Eds.; Springer: Cham, Switzerland, 2020; Volume 13. [Google Scholar] [CrossRef]
- Zghal, N.S.; Derbel, N. Melanoma Skin Cancer Detection based on Image Processing. Curr. Med. Imaging 2020, 16, 50–58. [Google Scholar] [CrossRef]
- Srividhya, V.; Sujatha, K.; Ponmagal, R.S.; Durgadevi, G.; Madheshwaran, L. Vision-based Detection and Categorization of Skin lesions using Deep Learning Neural networks. Procedia Comput. Sci. 2020, 171, 1726–1735. [Google Scholar] [CrossRef]
- Skin Cancer MNIST: HAM10000. Available online: https://www.kaggle.com/code/mohamedkhaledidris/skin-cancer-classification-cnn-tensorflow/input (accessed on 16 November 2023).
- Skin Cancer ISIC Dataset. Available online: https://www.kaggle.com/datasets/nodoubttome/skin-cancer9-classesisic (accessed on 16 November 2023).
- Behara, K.; Bhero, E.; Agee, J.T.; Gonela, V. Artificial Intelligence in Medical Diagnostics: A Review from a South African Context. Sci. Afr. 2022, 17, e01360. [Google Scholar] [CrossRef]
- Rehman, M.; Ali, M.; Obayya, M.; Asghar, J.; Hussain, L.K.; Nour, M.; Negm, N.; Mustafa, H.A. Machine learning based skin lesion segmentation method with novel borders and hair removal techniques. PLoS ONE 2022, 17, e0275781. [Google Scholar] [CrossRef]
- Kou, Q.; Cheng, D.; Chen, L.; Zhao, K. A Multiresolution Gray-Scale and Rotation Invariant Descriptor for Texture Classification. IEEE Access 2018, 6, 30691–30701. [Google Scholar] [CrossRef]
- Gudigar, A.; Raghavendra, U.; Samanth, J.; Dharmik, C.; Gangavarapu, M.R.; Nayak, K.; Ciaccio, E.J.; Tan, R.S.; Molinari, F.; Acharya, U.R. Novel hypertrophic cardiomyopathy diagnosis index using deep features and local directional pattern techniques. J. Imaging 2022, 8, 102. [Google Scholar] [CrossRef]
- Sukanya, S.; Jerine, S. Deep Learning-Based Melanoma Detection with Optimized Features via Hybrid Algorithm. Int. J. Image Graph. 2022, 23, 2350056. [Google Scholar] [CrossRef]
- Jabid, T.; Kabir, M.H.; Chae, O. Local directional pattern (LDP)—A robust image descriptor for object recognition. In Proceedings of the 2010 7th IEEE International Conference on Advanced Video and Signal Based Surveillance, Boston, MA, USA, 29 August 2010–1 September 2010; pp. 482–487. [Google Scholar]
- Rahman, M.M.; Nasir, M.K.; Nur-A-Alam, M.; Khan, M.S.I. Proposing a hybrid technique of feature fusion and convolutional neural network for melanoma skin cancer detection. J. Pathol. Inform. 2023, 14, 100341. [Google Scholar] [CrossRef]
- Mutlag, W.; Ali, S.; Mosad, Z.; Ghrabat, B.H. Feature Extraction Methods: A Review. J. Phys. Conf. Ser. 2020, 1591, 012028. [Google Scholar] [CrossRef]
- Sharma, S.; Guleria, K.; Tiwari, S.; Kumar, S. A deep learning-based convolutional neural network model with VGG16 feature extractor for the detection of Alzheimer Disease using MRI scans. Meas. Sens. 2022, 24, 100506. [Google Scholar] [CrossRef]
- Tammina, S. Transfer learning using vgg-16 with deep convolutional neural network for classifying images. Int. J. Sci. Res. Publ. (IJSRP) 2019, 9, 143–150. [Google Scholar] [CrossRef]
- Chattopadhay, A.; Sarkar, A.; Howlader, P.; Balasubramanian, V.N. Grad-cam++: Generalized gradient-based visual explanations for deep convolutional networks. In Proceedings of the 2018 IEEE Winter Conference on Applications of Computer Vision (WACV), Lake Tahoe, NV, USA, 12–15 March 2018; pp. 839–847. [Google Scholar]
- Srinivas, S.; Fleuret, F. Full-gradient representation for neural network visualization. Adv. Neural Inf. Process. Syst. 2019, 32, 4124–4133. [Google Scholar]
- Kusuma, P.; Kallista, M. Adaptive Cone Algorithm. Int. J. Adv. Sci. Eng. Inf. Technol. 2023, 13, 1605. [Google Scholar] [CrossRef]
- Khalil, A.E.; Boghdady, T.A.; Alham, M.H.; Ibrahim, D.K. Enhancing the conventional controllers for load frequency control of isolated microgrids using proposed multi-objective formulation via artificial rabbits optimization algorithm. IEEE Access 2023, 11, 3472–3493. [Google Scholar] [CrossRef]
- Yuan, Z.; Wang, W.; Wang, H.; Yildizbasi, A. Developed coyote optimization algorithm and its application to optimal parameters estimation of PEMFC model. Energy Rep. 2020, 6, 1106–1117. [Google Scholar] [CrossRef]
- Pierezan, J.; Leandro, D.S.C. Coyote optimization algorithm: A new metaheuristic for global optimization problems. In Proceedings of the 2018 IEEE Congress on Evolutionary Computation (CEC), Rio de Janeiro, Brazil, 8–13 July 2018; pp. 1–8. [Google Scholar]
- Elshahed, M.; Tolba, M.A.; El-Rifaie, A.M.; Ginidi, A.; Shaheen, A.; Mohamed, S.A. An Artificial Rabbits’ Optimization to Allocate PVSTATCOM for Ancillary Service Provision in Distribution. Systems. Mathematics 2023, 11, 339. [Google Scholar] [CrossRef]
Epochs | ISIC | MNIST | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
ResNet101 | AlexNet | MobileNetV2 | Xception | VGG16 | ResNet101 | AlexNet | MobileNetV2 | Xception | VGG16 | |
40 | 0.82 | 0.73 | 0.79 | 0.81 | 0.86 | 0.83 | 0.72 | 0.81 | 0.84 | 0.84 |
50 | 0.83 | 0.74 | 0.80 | 0.82 | 0.87 | 0.84 | 0.73 | 0.82 | 0.85 | 0.85 |
60 | 0.84 | 0.76 | 0.81 | 0.83 | 0.88 | 0.85 | 0.74 | 0.82 | 0.86 | 0.86 |
70 | 0.85 | 0.78 | 0.82 | 0.84 | 0.89 | 0.86 | 0.77 | 0.83 | 0.87 | 0.87 |
80 | 0.86 | 0.80 | 0.83 | 0.85 | 0.92 | 0.86 | 0.78 | 0.84 | 0.87 | 0.90 |
100 | 0.87 | 0.81 | 0.84 | 0.86 | 0.95 | 0.87 | 0.79 | 0.84 | 0.88 | 0.95 |
Datasets | Methods | TP 80 | |||
---|---|---|---|---|---|
Accuracy | CSI | FPR | FNR | ||
ISIC | AICO self-feature selected ECNN with Epoch = 20 | 0.91 | 0.92 | 0.09 | 0.07 |
AICO self-feature selected ECNN with Epoch = 40 | 0.92 | 0.93 | 0.07 | 0.06 | |
AICO self-feature selected ECNN with Epoch = 60 | 0.94 | 0.95 | 0.06 | 0.04 | |
AICO self-feature selected ECNN with Epoch = 80 | 0.95 | 0.96 | 0.05 | 0.03 | |
AICO self-feature selected ECNN with Epoch = 100 | 0.96 | 0.97 | 0.03 | 0.02 | |
Skin Cancer MNIST | AICO self-feature selected ECNN with Epoch = 20 | 0.90 | 0.91 | 0.09 | 0.08 |
AICO self-feature selected ECNN with Epoch = 40 | 0.92 | 0.93 | 0.08 | 0.06 | |
AICO self-feature selected ECNN with Epoch = 60 | 0.93 | 0.94 | 0.06 | 0.05 | |
AICO self-feature selected ECNN with Epoch = 80 | 0.95 | 0.96 | 0.05 | 0.03 | |
AICO self-feature selected ECNN with Epoch = 100 | 0.96 | 0.97 | 0.04 | 0.02 |
Methods/Analysis | Lightweight CNN | DenseNet | CNN | Efficient Net-B0 | ECNN | COA-CAN | ARO-ECNN | AICO Self-Feature Selected ECNN | ||
---|---|---|---|---|---|---|---|---|---|---|
ISIC dataset | TP 80 | Accuracy | 0.79 | 0.76 | 0.78 | 0.90 | 0.91 | 0.94 | 0.91 | 0.96 |
CSI | 0.81 | 0.78 | 0.80 | 0.91 | 0.92 | 0.95 | 0.92 | 0.97 | ||
FPR | 0.21 | 0.24 | 0.22 | 0.10 | 0.08 | 0.05 | 0.08 | 0.03 | ||
FNR | 0.18 | 0.21 | 0.19 | 0.08 | 0.07 | 0.04 | 0.07 | 0.02 | ||
K-fold 10 | Accuracy | 0.78 | 0.76 | 0.77 | 0.90 | 0.90 | 0.91 | 0.90 | 0.95 | |
CSI | 0.21 | 0.24 | 0.22 | 0.10 | 0.09 | 0.08 | 0.09 | 0.96 | ||
FPR | 0.21 | 0.24 | 0.22 | 0.10 | 0.09 | 0.08 | 0.09 | 0.04 | ||
FNR | 0.19 | 0.22 | 0.20 | 0.09 | 0.09 | 0.08 | 0.09 | 0.04 | ||
MNIST dataset | TP 80 | Accuracy | 0.79 | 0.75 | 0.78 | 0.90 | 0.90 | 0.93 | 0.92 | 0.96 |
CSI | 0.82 | 0.78 | 0.80 | 0.91 | 0.91 | 0.94 | 0.93 | 0.97 | ||
FPR | 0.21 | 0.25 | 0.22 | 0.10 | 0.09 | 0.06 | 0.08 | 0.04 | ||
FNR | 0.17 | 0.21 | 0.19 | 0.08 | 0.08 | 0.05 | 0.06 | 0.02 | ||
K-fold 10 | Accuracy | 0.78 | 0.75 | 0.77 | 0.89 | 0.91 | 0.91 | 0.91 | 0.95 | |
CSI | 0.80 | 0.77 | 0.79 | 0.90 | 0.91 | 0.91 | 0.91 | 0.95 | ||
FPR | 0.21 | 0.24 | 0.23 | 0.10 | 0.08 | 0.08 | 0.08 | 0.04 | ||
FNR | 0.19 | 0.22 | 0.20 | 0.09 | 0.08 | 0.08 | 0.08 | 0.04 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Behara, K.; Bhero, E.; Agee, J.T. Grid-Based Structural and Dimensional Skin Cancer Classification with Self-Featured Optimized Explainable Deep Convolutional Neural Networks. Int. J. Mol. Sci. 2024, 25, 1546. https://doi.org/10.3390/ijms25031546
Behara K, Bhero E, Agee JT. Grid-Based Structural and Dimensional Skin Cancer Classification with Self-Featured Optimized Explainable Deep Convolutional Neural Networks. International Journal of Molecular Sciences. 2024; 25(3):1546. https://doi.org/10.3390/ijms25031546
Chicago/Turabian StyleBehara, Kavita, Ernest Bhero, and John Terhile Agee. 2024. "Grid-Based Structural and Dimensional Skin Cancer Classification with Self-Featured Optimized Explainable Deep Convolutional Neural Networks" International Journal of Molecular Sciences 25, no. 3: 1546. https://doi.org/10.3390/ijms25031546
APA StyleBehara, K., Bhero, E., & Agee, J. T. (2024). Grid-Based Structural and Dimensional Skin Cancer Classification with Self-Featured Optimized Explainable Deep Convolutional Neural Networks. International Journal of Molecular Sciences, 25(3), 1546. https://doi.org/10.3390/ijms25031546