Mutual Effects of Orexin and Bone Morphogenetic Proteins on Catecholamine Regulation Using Adrenomedullary Cells
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Experimental Reagents
4.2. Quantitative Real-Time PCR Analysis
4.3. Western Immunoblotting Analysis
4.4. Statistics
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Sakurai, T. The role of orexin in motivated behaviours. Nat. Rev. Neurosci. 2014, 15, 719–731. [Google Scholar] [CrossRef]
- Xu, T.R.; Yang, Y.; Ward, R.; Gao, L.; Liu, Y. Orexin receptors: Multi-functional therapeutic targets for sleeping disorders, eating disorders, drug addiction, cancers and other physiological disorders. Cell. Signal. 2013, 25, 2413–2423. [Google Scholar] [CrossRef]
- Heinonen, M.V.; Purhonen, A.K.; Mäkelä, K.A.; Herzig, K.H. Functions of orexins in peripheral tissues. Acta Physiol. 2008, 192, 471–485. [Google Scholar] [CrossRef]
- Kagerer, S.M.; Jöhren, O. Interactions of orexins/hypocretins with adrenocortical functions. Acta Physiol. 2010, 198, 361–371. [Google Scholar] [CrossRef]
- Spinazzi, R.; Andreis, P.G.; Rossi, G.P.; Nussdorfer, G.G. Orexins in the regulation of the hypothalamic-pituitary-adrenal axis. Pharmacol. Rev. 2006, 58, 46–57. [Google Scholar] [CrossRef]
- López, M.; Tena-Sempere, M.; Diéguez, C. Cross-talk between orexins (hypocretins) and the neuroendocrine axes (hypothalamic-pituitary axes). Front. Neuroendocrinol. 2010, 31, 113–127. [Google Scholar] [CrossRef]
- Malendowicz, L.K.; Tortorella, C.; Nussdorfer, G.G. Orexins stimulate corticosterone secretion of rat adrenocortical cells, through the activation of the adenylate cyclase-dependent signaling cascade. J. Steroid Biochem. Mol. Biol. 1999, 70, 185–188. [Google Scholar] [CrossRef]
- Malendowicz, L.K.; Hochol, A.; Ziolkowska, A.; Nowak, M.; Gottardo, L.; Nussdorfer, G.G. Prolonged orexin administration stimulates steroid-hormone secretion, acting directly on the rat adrenal gland. Int. J. Mol. Med. 2001, 7, 401–404. [Google Scholar] [CrossRef] [PubMed]
- Ziolkowska, A.; Spinazzi, R.; Albertin, G.; Nowak, M.; Malendowicz, L.K.; Tortorella, C.; Nussdorfer, G.G. Orexins stimulate glucocorticoid secretion from cultured rat and human adrenocortical cells, exclusively acting via the OX1 receptor. J. Steroid Biochem. Mol. Biol. 2005, 96, 423–429. [Google Scholar] [CrossRef] [PubMed]
- Nanmoku, T.; Isobe, K.; Sakurai, T.; Yamanaka, A.; Takekoshi, K.; Kawakami, Y.; Goto, K.; Nakai, T. Effects of orexin on cultured porcine adrenal medullary and cortex cells. Regul. Pept. 2002, 104, 125–130. [Google Scholar] [CrossRef] [PubMed]
- Mazzocchi, G.; Malendowicz, L.K.; Gottardo, L.; Aragona, F.; Nussdorfer, G.G. Orexin A stimulates cortisol secretion from human adrenocortical cells through activation of the adenylate cyclase-dependent signaling cascade. J. Clin. Endocrinol. Metab. 2001, 86, 778–782. [Google Scholar] [CrossRef]
- López, M.; Señarís, R.; Gallego, R.; García-Caballero, T.; Lago, F.; Seoane, L.; Casanueva, F.; Diéguez, C. Orexin receptors are expressed in the adrenal medulla of the rat. Endocrinology 1999, 140, 5991–5994. [Google Scholar] [CrossRef]
- Nanmoku, T.; Isobe, K.; Sakurai, T.; Yamanaka, A.; Takekoshi, K.; Kawakami, Y.; Ishii, K.; Goto, K.; Nakai, T. Orexins suppress catecholamine synthesis and secretion in cultured PC12 cells. Biochem. Biophys. Res. Commun. 2000, 274, 310–315. [Google Scholar] [CrossRef]
- Otsuka, F. Multiple endocrine regulation by bone morphogenetic protein system. Endocr. J. 2010, 57, 3–14. [Google Scholar] [CrossRef]
- Kano, Y.; Otsuka, F.; Takeda, M.; Suzuki, J.; Inagaki, K.; Miyoshi, T.; Miyamoto, M.; Otani, H.; Ogura, T.; Makino, H. Regulatory roles of bone morphogenetic proteins and glucocorticoids in catecholamine production by rat pheochromocytoma cells. Endocrinology 2005, 146, 5332–5340. [Google Scholar] [CrossRef]
- Goto, J.; Otsuka, F.; Yamashita, M.; Suzuki, J.; Otani, H.; Takahashi, H.; Miyoshi, T.; Mimura, Y.; Ogura, T.; Makino, H. Enhancement of aldosterone-induced catecholamine production by bone morphogenetic protein-4 through activating Rho and SAPK/JNK pathway in adrenomedullar cells. Am. J. Physiol. Endocrinol. Metab. 2009, 296, E904–E916. [Google Scholar] [CrossRef]
- Soejima, Y.; Iwata, N.; Nishioka, R.; Honda, M.; Nakano, Y.; Yamamoto, K.; Suyama, A.; Otsuka, F. Interaction of Orexin and Bone Morphogenetic Proteins in Steroidogenesis by Human Adrenocortical Cells. Int. J. Mol. Sci. 2023, 24, 2559. [Google Scholar] [CrossRef]
- Vasey, C.; McBride, J.; Penta, K. Circadian Rhythm Dysregulation and Restoration: The Role of Melatonin. Nutrients 2021, 13, 3480. [Google Scholar] [CrossRef] [PubMed]
- Komatsubara, M.; Hara, T.; Hosoya, T.; Toma, K.; Tsukamoto-Yamauchi, N.; Iwata, N.; Inagaki, K.; Wada, J.; Otsuka, F. Melatonin regulates catecholamine biosynthesis by modulating bone morphogenetic protein and glucocorticoid actions. J. Steroid Biochem. Mol. Biol. 2017, 165, 182–189. [Google Scholar] [CrossRef] [PubMed]
- Greene, L.A.; Tischler, A.S. Establishment of a noradrenergic clonal line of rat adrenal pheochromocytoma cells which respond to nerve growth factor. Proc. Natl. Acad. Sci. USA 1976, 73, 2424–2428. [Google Scholar] [CrossRef] [PubMed]
- Fan, Y.; Jiang, E.; Gao, H.; Bigalke, J.; Chen, B.; Yu, C.; Chen, Q.; Shan, Z. Activation of Orexin System Stimulates CaMKII Expression. Front. Physiol. 2021, 12, 698185. [Google Scholar] [CrossRef]
- Chen, X.W.; Huang, W.; Yan, J.A.; Fan, H.X.; Guo, N.; Lü, J.; Xiu, Y.; Gu, J.L.; Zhang, C.X.; Ruan, H.Z.; et al. Reinvestigation of the effect of orexin A on catecholamine release from adrenal chromaffin cells. Neurosci. Lett. 2008, 436, 181–184. [Google Scholar] [CrossRef]
- Kawada, Y.; Ueno, S.; Asayama, K.; Tsutsui, M.; Utsunomiya, K.; Toyohira, Y.; Morisada, N.; Tanaka, K.; Shirahata, A.; Yanagihara, N. Stimulation of catecholamine synthesis by orexin-A in bovine adrenal medullary cells through orexin receptor 1. Biochem. Pharmacol. 2003, 66, 141–147. [Google Scholar] [CrossRef]
- Nemoto, T.; Toyoshima-Aoyama, F.; Ueda, Y.; Ohba, T.; Yanagita, T.; Watanabe, H.; Shirasaka, T.; Tsuneyoshi, I.; Ishida, Y.; Hirota, K.; et al. Involvement of the orexin system in adrenal sympathetic regulation. Pharmacology 2013, 91, 250–258. [Google Scholar] [CrossRef] [PubMed]
- Mazzocchi, G.; Malendowicz, L.K.; Aragona, F.; Rebuffat, P.; Gottardo, L.; Nussdorfer, G.G. Human pheochromocytomas express orexin receptor type 2 gene and display an in vitro secretory response to orexins A and B. J. Clin. Endocrinol. Metab. 2001, 86, 4818–4821. [Google Scholar] [CrossRef] [PubMed]
- Shirasaka, T.; Nakazato, M.; Matsukura, S.; Takasaki, M.; Kannan, H. Sympathetic and cardiovascular actions of orexins in conscious rats. Am. J. Physiol. 1999, 277, R1780–R1785. [Google Scholar] [CrossRef] [PubMed]
- Hirota, K.; Kushikata, T.; Kudo, M.; Kudo, T.; Smart, D.; Matsuki, A. Effects of central hypocretin-1 administration on hemodynamic responses in young-adult and middle-aged rats. Brain Res. 2003, 981, 143–150. [Google Scholar] [CrossRef] [PubMed]
- Kayaba, Y.; Nakamura, A.; Kasuya, Y.; Ohuchi, T.; Yanagisawa, M.; Komuro, I.; Fukuda, Y.; Kuwaki, T. Attenuated defense response and low basal blood pressure in orexin knockout mice. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2003, 285, R581–R593. [Google Scholar] [CrossRef] [PubMed]
- Hayashi, H.; Ishisaki, A.; Suzuki, M.; Imamura, T. BMP-2 augments FGF-induced differentiation of PC12 cells through upregulation of FGF receptor-1 expression. J. Cell Sci. 2001, 114, 1387–1395. [Google Scholar] [CrossRef] [PubMed]
- Hayashi, H.; Ishisaki, A.; Imamura, T. Smad mediates BMP-2-induced upregulation of FGF-evoked PC12 cell differentiation. FEBS Lett. 2003, 536, 30–34. [Google Scholar] [CrossRef]
- Kudo, T.A.; Kanetaka, H.; Mizuno, K.; Ryu, Y.; Miyamoto, Y.; Nunome, S.; Zhang, Y.; Kano, M.; Shimizu, Y.; Hayashi, H. Dorsomorphin stimulates neurite outgrowth in PC12 cells via activation of a protein kinase A-dependent MEK-ERK1/2 signaling pathway. Genes Cells 2011, 16, 1121–1132. [Google Scholar] [CrossRef]
- Schinner, S.; Bornstein, S.R. Cortical-chromaffin cell interactions in the adrenal gland. Endocr. Pathol. 2005, 16, 91–98. [Google Scholar] [CrossRef] [PubMed]
- Chang, H.W.; Chu, T.S.; Huang, H.Y.; Chueh, S.C.; Wu, V.C.; Chen, Y.M.; Hsieh, B.S.; Wu, K.D. Down-regulation of D2 dopamine receptor and increased protein kinase Cmu phosphorylation in aldosterone-producing adenoma play roles in aldosterone overproduction. J. Clin. Endocrinol. Metab. 2007, 92, 1863–1870. [Google Scholar] [CrossRef] [PubMed]
- Wurtman, R.J. Stress and the adrenocortical control of epinephrine synthesis. Metabolism 2002, 51, 11–14. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.; Lim, Q.E.; Wan, G.; Too, H.P. Normalization with genes encoding ribosomal proteins but not GAPDH provides an accurate quantification of gene expressions in neuronal differentiation of PC12 cells. BMC Genom. 2010, 11, 75. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Soejima, Y.; Iwata, N.; Yamamoto, K.; Suyama, A.; Nakano, Y.; Otsuka, F. Mutual Effects of Orexin and Bone Morphogenetic Proteins on Catecholamine Regulation Using Adrenomedullary Cells. Int. J. Mol. Sci. 2024, 25, 1585. https://doi.org/10.3390/ijms25031585
Soejima Y, Iwata N, Yamamoto K, Suyama A, Nakano Y, Otsuka F. Mutual Effects of Orexin and Bone Morphogenetic Proteins on Catecholamine Regulation Using Adrenomedullary Cells. International Journal of Molecular Sciences. 2024; 25(3):1585. https://doi.org/10.3390/ijms25031585
Chicago/Turabian StyleSoejima, Yoshiaki, Nahoko Iwata, Koichiro Yamamoto, Atsuhito Suyama, Yasuhiro Nakano, and Fumio Otsuka. 2024. "Mutual Effects of Orexin and Bone Morphogenetic Proteins on Catecholamine Regulation Using Adrenomedullary Cells" International Journal of Molecular Sciences 25, no. 3: 1585. https://doi.org/10.3390/ijms25031585
APA StyleSoejima, Y., Iwata, N., Yamamoto, K., Suyama, A., Nakano, Y., & Otsuka, F. (2024). Mutual Effects of Orexin and Bone Morphogenetic Proteins on Catecholamine Regulation Using Adrenomedullary Cells. International Journal of Molecular Sciences, 25(3), 1585. https://doi.org/10.3390/ijms25031585