Phosphoproteome Microarray Analysis of Extracellular Particles as a Tool to Explore Novel Biomarker Candidates for Alzheimer’s Disease
Abstract
:1. Introduction
2. Results and Discussion
2.1. bdEP: Isolation and Characterization
2.2. Antibody Microarray Analysis of bdEP in Controls and AD Cases
2.3. Gene Ontology (GO) and Reactome Pathway Analysis of the Total Proteome Altered in AD
2.4. AD Relevant bdEP Total Proteome Interaction Network
2.5. Potential of bdEP Proteome to Discrimination of AD Cases
2.6. AD bdEP Phosphoproteins Network
2.7. bdEP Phosphoproteins in the Discrimination of AD Cases
3. Materials and Methods
3.1. Study Group Characterization
3.2. Blood-Derived EP: Isolation and Characterization
3.3. Blood-Derived EP Preparation for Antibody Microarray
3.4. Gene Ontology and Reactome Pathway Analysis
3.5. Protein Interaction Network Construction
3.6. Microarray Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Singh, V.; Ram, M.; Kumar, R.; Prasad, R.; Roy, B.K.; Singh, K.K. Phosphorylation: Implications in Cancer. Protein J. 2017, 36, 1–6. [Google Scholar] [CrossRef]
- Batista, T.M.; Haider, N.; Kahn, C.R. Defining the Underlying Defect in Insulin Action in Type 2 Diabetes. Diabetologia 2021, 64, 994–1006. [Google Scholar] [CrossRef]
- Oliveira, J.; Costa, M.; de Almeida, M.S.C.; da Cruz E Silva, O.A.B.; Henriques, A.G. Protein Phosphorylation Is a Key Mechanism in Alzheimer’s Disease. J. Alzheimers Dis. 2017, 58, 953–978. [Google Scholar] [CrossRef]
- Zhang, T.; Chen, D.; Lee, T.H. Phosphorylation Signaling in APP Processing in Alzheimer’s Disease. Int. J. Mol. Sci. 2020, 21, 209. [Google Scholar] [CrossRef]
- Rebelo, S.; Vieira, S.I.; Esselmann, H.; Wiltfang, J.; da Cruz e Silva, E.F.; da Cruz e Silva, O.A.B. Tyr687 Dependent APP Endocytosis and Abeta Production. J. Mol. Neurosci. 2007, 32, 1–8. [Google Scholar] [CrossRef]
- DeTure, M.A.; Dickson, D.W. The Neuropathological Diagnosis of Alzheimer’s Disease. Mol. Neurodegener. 2019, 14, 32. [Google Scholar] [CrossRef]
- Vintém, A.P.B.; Henriques, A.G.; da Cruz e Silva, O.A.B.; da Cruz e Silva, E.F. PP1 Inhibition by Abeta Peptide as a Potential Pathological Mechanism in Alzheimer’s Disease. Neurotoxicol. Teratol. 2009, 31, 85–88. [Google Scholar] [CrossRef]
- Henriques, A.G.; Müller, T.; Oliveira, J.M.; Cova, M.; da Cruz e Silva, C.B.; da Cruz e Silva, O.A.B. Altered Protein Phosphorylation as a Resource for Potential AD Biomarkers. Sci. Rep. 2016, 6, 30319. [Google Scholar] [CrossRef] [PubMed]
- Blennow, K. Cerebrospinal Fluid Protein Biomarkers for Alzheimer’s Disease. NeuroRX 2004, 1, 213–225. [Google Scholar] [CrossRef] [PubMed]
- Zetterberg, H.; Mattsson, N.; Blennow, K. Cerebrospinal Fluid Analysis Should Be Considered in Patients with Cognitive Problems. Int. J. Alzheimers. Dis. 2010, 2010, 163065. [Google Scholar] [CrossRef] [PubMed]
- Welge, V.; Fiege, O.; Lewczuk, P.; Mollenhauer, B.; Esselmann, H.; Klafki, H.-W.; Wolf, S.; Trenkwalder, C.; Otto, M.; Kornhuber, J.; et al. Combined CSF Tau, p-Tau181 and Amyloid-β 38/40/42 for Diagnosing Alzheimer’s Disease. J. Neural Transm. 2009, 116, 203–212. [Google Scholar] [CrossRef]
- Ciferri, M.C.; Quarto, R.; Tasso, R. Extracellular Vesicles as Biomarkers and Therapeutic Tools: From Pre-Clinical to Clinical Applications. Biology 2021, 10, 359. [Google Scholar] [CrossRef]
- Gomes, P.; Tzouanou, F.; Skolariki, K.; Vamvaka-Iakovou, A.; Noguera-Ortiz, C.; Tsirtsaki, K.; Waites, C.L.; Vlamos, P.; Sousa, N.; Costa-Silva, B.; et al. Extracellular vesicles and Alzheimer’s disease in the novel era of Precision Medicine: Implications for disease progression, diagnosis and treatment. Exp. Neurol. 2022, 358, 114183. [Google Scholar] [CrossRef] [PubMed]
- Fiandaca, M.S.; Kapogiannis, D.; Mapstone, M.; Boxer, A.; Eitan, E.; Schwartz, J.B.; Abner, E.L.; Petersen, R.C.; Federoff, H.J.; Miller, B.L.; et al. Identification of Preclinical Alzheimer’s Disease by a Profile of Pathogenic Proteins in Neurally Derived Blood Exosomes: A Case-Control Study. Alzheimers Dement. 2015, 11, 600–607.e1. [Google Scholar] [CrossRef] [PubMed]
- Kapogiannis, D.; Mustapic, M.; Shardell, M.D.; Berkowitz, S.T.; Diehl, T.C.; Spangler, R.D.; Tran, J.; Lazaropoulos, M.P.; Chawla, S.; Gulyani, S.; et al. Association of Extracellular Vesicle Biomarkers With Alzheimer Disease in the Baltimore Longitudinal Study of Aging. JAMA Neurol. 2019, 76, 1340–1351. [Google Scholar] [CrossRef]
- Jia, L.; Qiu, Q.; Zhang, H.; Chu, L.; Du, Y.; Zhang, J.; Zhou, C.; Liang, F.; Shi, S.; Wang, S.; et al. Concordance between the Assessment of Aβ42, T-Tau, and P-T181-Tau in Peripheral Blood Neuronal-Derived Exosomes and Cerebrospinal Fluid. Alzheimers Dement. 2019, 15, 1071–1080. [Google Scholar] [CrossRef]
- Zhao, A.; Li, Y.; Yan, Y.; Qiu, Y.; Li, B.; Xu, W.; Wang, Y.; Liu, J.; Deng, Y. Increased Prediction Value of Biomarker Combinations for the Conversion of Mild Cognitive Impairment to Alzheimer’s Dementia. Transl. Neurodegener. 2020, 9, 30. [Google Scholar] [CrossRef] [PubMed]
- Soares Martins, T.; Marçalo, R.; da Cruz e Silva, C.B.; Trindade, D.; Catita, J.; Amado, F.; Melo, T.; Rosa, I.M.; Vogelgsang, J.; Wiltfang, J.; et al. Novel Exosome Biomarker Candidates for Alzheimer’s Disease Unravelled Through Mass Spectrometry Analysis. Mol. Neurobiol. 2022, 59, 2838–2854. [Google Scholar] [CrossRef]
- Muraoka, S.; DeLeo, A.M.; Sethi, M.K.; Yukawa-Takamatsu, K.; Yang, Z.; Ko, J.; Hogan, J.D.; Ruan, Z.; You, Y.; Wang, Y.; et al. Proteomic and Biological Profiling of Extracellular Vesicles from Alzheimer’s Disease Human Brain Tissues. Alzheimer’s Dement. 2020, 16, 896–907. [Google Scholar] [CrossRef]
- Nielsen, J.E.; Honoré, B.; Vestergård, K.; Maltesen, R.G.; Christiansen, G.; Bøge, A.U.; Kristensen, S.R.; Pedersen, S. Shotgun-Based Proteomics of Extracellular Vesicles in Alzheimer’s Disease Reveals Biomarkers Involved in Immunological and Coagulation Pathways. Sci. Rep. 2021, 11, 18518. [Google Scholar] [CrossRef]
- Cai, H.; Pang, Y.; Wang, Q.; Qin, W.; Wei, C.; Li, Y.; Li, T.; Li, F.; Wang, Q.; Li, Y.; et al. Proteomic Profiling of Circulating Plasma Exosomes Reveals Novel Biomarkers of Alzheimer’s Disease. Alzheimer’s Res. Ther. 2022, 14, 181. [Google Scholar] [CrossRef]
- Su, H.; Rustam, Y.H.; Masters, C.L.; Makalic, E.; McLean, C.A.; Hill, A.F.; Barnham, K.J.; Reid, G.E.; Vella, L.J. Characterization of Brain-Derived Extracellular Vesicle Lipids in Alzheimer’s Disease. J. Extracell. Vesicles 2021, 10, e12089. [Google Scholar] [CrossRef]
- Soares Martins, T.; Magalhães, S.; Rosa, I.M.; Vogelgsang, J.; Wiltfang, J.; Delgadillo, I.; Catita, J.; da Cruz e Silva, O.A.B.; Nunes, A.; Henriques, A.G. Potential of FTIR Spectroscopy Applied to Exosomes for Alzheimer’s Disease Discrimination: A Pilot Study. J. Alzheimer’s Dis. 2020, 74, 391–405. [Google Scholar] [CrossRef]
- Zhang, H.; Pelech, S. Using Protein Microarrays to Study Phosphorylation-Mediated Signal Transduction. Semin. Cell Dev. Biol. 2012, 23, 872–882. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Dodig-Crnković, T.; Schwenk, J.M.; Tao, S.C. Current Applications of Antibody Microarrays. Clin. Proteom. 2018, 15, 7. [Google Scholar] [CrossRef] [PubMed]
- Otahal, A.; Kuten-Pella, O.; Kramer, K.; Neubauer, M.; Lacza, Z.; Nehrer, S.; De Luna, A. Functional Repertoire of EV-Associated MiRNA Profiles after Lipoprotein Depletion via Ultracentrifugation and Size Exclusion Chromatography from Autologous Blood Products. Sci. Rep. 2021, 11, 5823. [Google Scholar] [CrossRef] [PubMed]
- Busatto, S.; Yang, Y.; Iannotta, D.; Davidovich, I.; Talmon, Y.; Wolfram, J. Considerations for Extracellular Vesicle and Lipoprotein Interactions in Cell Culture Assays. J. Extracell. Vesicles 2022, 11, e12202. [Google Scholar] [CrossRef]
- Lobb, R.J.; Becker, M.; Wen Wen, S.; Wong, C.S.F.; Wiegmans, A.P.; Leimgruber, A.; Möller, A.; Wen, S.W.; Wong, C.S.F.; Wiegmans, A.P.; et al. Optimized Exosome Isolation Protocol for Cell Culture Supernatant and Human Plasma. J. Extracell. Vesicles 2015, 4, 27031. [Google Scholar] [CrossRef] [PubMed]
- Gámez-Valero, A.; Monguió-Tortajada, M.; Carreras-Planella, L.; Franquesa, M.; Beyer, K.; Borràs, F.E. Size-Exclusion Chromatography-Based Isolation Minimally Alters Extracellular Vesicles’ Characteristics Compared to Precipitating Agents. Sci. Rep. 2016, 6, 33641. [Google Scholar] [CrossRef]
- Ahmed, T.; Zulfiqar, A.; Arguelles, S.; Rasekhian, M.; Nabavi, S.F.; Silva, A.S.; Nabavi, S.M. Map Kinase Signaling as Therapeutic Target for Neurodegeneration. Pharmacol. Res. 2020, 160, 105090. [Google Scholar] [CrossRef]
- Kim, E.K.; Choi, E.J. Pathological Roles of MAPK Signaling Pathways in Human Diseases. Biochim. Biophys. Acta-Mol. Basis Dis. 2010, 1802, 396–405. [Google Scholar] [CrossRef]
- Cook, S.J.; Lochhead, P.A. ERK5 Signalling and Resistance to ERK1/2 Pathway Therapeutics: The Path Less Travelled? Front. Cell Dev. Biol. 2022, 10, 839997. [Google Scholar] [CrossRef]
- Ferreira, M.J.C.; Soares Martins, T.; Alves, S.R.; Rosa, I.M.; Vogelgsang, J.; Hansen, N.; Wiltfang, J.; da Cruz e Silva, O.A.B.; Vitorino, R.; Henriques, A.G. Bioinformatic Analysis of the SPs and NFTs Proteomes Unravel Putative Biomarker Candidates for Alzheimer’s Disease. Proteomics 2023, 23, e2200515. [Google Scholar] [CrossRef] [PubMed]
- Razani, E.; Pourbagheri-Sigaroodi, A.; Safaroghli-Azar, A.; Zoghi, A.; Shanaki-Bavarsad, M.; Bashash, D. The PI3K/Akt Signaling Axis in Alzheimer’s Disease: A Valuable Target to Stimulate or Suppress? Cell Stress Chaperones 2021, 26, 871–887. [Google Scholar] [CrossRef] [PubMed]
- Cho, S.J.; Park, M.H.; Han, C.; Yoon, K.; Koh, Y.H. VEGFR2 Alteration in Alzheimer’s Disease. Sci. Rep. 2017, 7, 17713. [Google Scholar] [CrossRef] [PubMed]
- Patel, N.S.; Mathura, V.S.; Bachmeier, C.; Beaulieu-Abdelahad, D.; Laporte, V.; Weeks, O.; Mullan, M.; Paris, D. Alzheimer’s β-Amyloid Peptide Blocks Vascular Endothelial Growth Factor Mediated Signaling via Direct Interaction with VEGFR-2. J. Neurochem. 2010, 112, 66–76. [Google Scholar] [CrossRef] [PubMed]
- Aharon, A.; Spector, P.; Ahmad, R.S.; Horrany, N.; Sabbach, A.; Brenner, B.; Aharon-Peretz, J. Extracellular Vesicles of Alzheimer’s Disease Patients as a Biomarker for Disease Progression. Mol. Neurobiol. 2020, 57, 4156–4169. [Google Scholar] [CrossRef] [PubMed]
- Momtazmanesh, S.; Perry, G.; Rezaei, N. Toll-like Receptors in Alzheimer’s Disease. J. Neuroimmunol. 2020, 348, 577362. [Google Scholar] [CrossRef] [PubMed]
- Tahara, K.; Kim, H.D.; Jin, J.J.; Maxwell, J.A.; Li, L.; Fukuchi, K.I. Role of Toll-like Receptor Signalling in Aβ Uptake and Clearance. Brain 2006, 129, 3006–3019. [Google Scholar] [CrossRef] [PubMed]
- Horner, T.J.; Osawa, S.; Schaller, M.D.; Weiss, E.R. Phosphorylation of GRK1 and GRK7 by CAMP-Dependent Protein Kinase Attenuates Their Enzymatic Activities. J. Biol. Chem. 2005, 280, 28241–28250. [Google Scholar] [CrossRef]
- Koronyo, Y.; Rentsendorj, A.; Mirzaei, N.; Regis, G.C.; Sheyn, J.; Shi, H.; Barron, E.; Cook-Wiens, G.; Rodriguez, A.R.; Medeiros, R.; et al. Retinal Pathological Features and Proteome Signatures of Alzheimer’s Disease. Acta Neuropathol. 2023, 145, 409–438. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Gao, F.; Ma, Y.; Xue, T.; Shen, Y. Identification of Early-Onset Photoreceptor Degeneration in Transgenic Mouse Models of Alzheimer’s Disease. iScience 2021, 24, 103327. [Google Scholar] [CrossRef] [PubMed]
- Manczak, M.; Calkins, M.J.; Reddy, P.H. Impaired Mitochondrial Dynamics and Abnormal Interaction of Amyloid Beta with Mitochondrial Protein Drp1 in Neurons from Patients with Alzheimer’s Disease: Implications for Neuronal Damage. Hum. Mol. Genet. 2011, 20, 2495–2509. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Su, B.; Lee, H.G.; Li, X.; Perry, G.; Smith, M.A.; Zhu, X. Impaired Balance of Mitochondrial Fission and Fusion in Alzheimer’s Disease. J. Neurosci. 2009, 29, 9090–9103. [Google Scholar] [CrossRef] [PubMed]
- Leal, N.S.; Schreiner, B.; Pinho, C.M.; Filadi, R.; Wiehager, B.; Karlström, H.; Pizzo, P.; Ankarcrona, M. Mitofusin-2 Knockdown Increases ER–Mitochondria Contact and Decreases Amyloid β-Peptide Production. J. Cell. Mol. Med. 2016, 20, 1686–1695. [Google Scholar] [CrossRef] [PubMed]
- Sita, G.; Hrelia, P.; Graziosi, A.; Morroni, F. Back to the Fusion: Mitofusin-2 in Alzheimer’S Disease. J. Clin. Med. 2020, 9, 126. [Google Scholar] [CrossRef]
- Yang, T.; Zhang, Y.; Chen, L.; Thomas, E.R.; Yu, W.; Cheng, B.; Li, X. The Potential Roles of ATF Family in the Treatment of Alzheimer’s Disease. Biomed. Pharmacother. 2023, 161, 114544. [Google Scholar] [CrossRef]
- Saha, P.; Guha, S.; Biswas, S.C. P38K and JNK Pathways Are Induced by Amyloid-β in Astrocyte: Implication of MAPK Pathways in Astrogliosis in Alzheimer’s Disease. Mol. Cell. Neurosci. 2020, 108, 103551. [Google Scholar] [CrossRef]
- Vargas, D.M.; De Bastiani, M.A.; Zimmer, E.R.; Klamt, F. Alzheimer’s Disease Master Regulators Analysis: Search for Potential Molecular Targets and Drug Repositioning Candidates. Alzheimer’s Res. Ther. 2018, 10, 59. [Google Scholar] [CrossRef]
- Pearson, A.G.; Curtis, M.A.; Waldvogel, H.J.; Faull, R.L.M.; Dragunow, M. Activating Transcription Factor 2 Expression in the Adult Human Brain: Association with Both Neurodegeneration and Neurogenesis. Neuroscience 2005, 133, 437–451. [Google Scholar] [CrossRef]
- Hsu, C.C.; Hu, C.D. Critical Role of N-Terminal End-Localized Nuclear Export Signal in Regulation of Activating Transcription Factor 2 (ATF2) Subcellular Localization and Transcriptional Activity. J. Biol. Chem. 2012, 287, 8621–8632. [Google Scholar] [CrossRef]
- Yamada, T.; Yoshiyama, Y.; Kawaguchi, N. Expression of Activating Transcription Factor-2 (ATF-2), One of the Cyclic AMP Response Element (CRE) Binding Proteins, in Alzheimer Disease and Non-Neurological Brain Tissues. Brain Res. 1997, 749, 329–334. [Google Scholar] [CrossRef]
- Giacomini, C.; Koo, C.Y.; Yankova, N.; Tavares, I.A.; Wray, S.; Noble, W.; Hanger, D.P.; Morris, J.D.H. A New TAO Kinase Inhibitor Reduces Tau Phosphorylation at Sites Associated with Neurodegeneration in Human Tauopathies. Acta Neuropathol. Commun. 2018, 6, 37. [Google Scholar] [CrossRef]
- Won, J.S.; Im, Y.B.; Kim, J.; Singh, A.K.; Singh, I. Involvement of AMP-Activated-Protein-Kinase (AMPK) in Neuronal Amyloidogenesis. Biochem. Biophys. Res. Commun. 2010, 399, 487–491. [Google Scholar] [CrossRef]
- Domise, M.; Didier, S.; Marinangeli, C.; Zhao, H.; Chandakkar, P.; Buée, L.; Viollet, B.; Davies, P.; Marambaud, P.; Vingtdeux, V. AMP-Activated Protein Kinase Modulates Tau Phosphorylation and Tau Pathology in Vivo. Sci. Rep. 2016, 6, 26758. [Google Scholar] [CrossRef]
- Zimmermann, H.R.; Yang, W.; Kasica, N.P.; Zhou, X.; Wang, X.; Beckelman, B.C.; Lee, J.; Furdui, C.M.; Dirk Keene, C.; Ma, T. Brain-Specific Repression of AMPKα1 Alleviates Pathophysiology in Alzheimer’s Model Mice. J. Clin. Investig. 2020, 130, 3511–3527. [Google Scholar] [CrossRef] [PubMed]
- Eom, J.W.; Lee, J.M.; Koh, J.Y.; Kim, Y.H. AMP-Activated Protein Kinase Contributes to Zinc-Induced Neuronal Death via Activation by LKB1 and Induction of Bim in Mouse Cortical Cultures. Mol. Brain 2016, 9, 14. [Google Scholar] [CrossRef]
- Chen, Z.; Simmons, M.S.; Perry, R.T.; Wiener, H.W.; Harrell, L.E.; Go, R.C.P. Genetic Association of Neurotrophic Tyrosine Kinase Receptor Type 2 (NTRK2) with Alzheimer’s Disease. Am. J. Med. Genet. Part B Neuropsychiatr. Genet. 2008, 147, 363–369. [Google Scholar] [CrossRef] [PubMed]
- Xia, Y.; Wang, Z.H.; Liu, P.; Edgington-Mitchell, L.; Liu, X.; Wang, X.C.; Ye, K. TrkB Receptor Cleavage by Delta-Secretase Abolishes Its Phosphorylation of APP, Aggravating Alzheimer’s Disease Pathologies. Mol. Psychiatry 2021, 26, 2943–2963. [Google Scholar] [CrossRef] [PubMed]
- Devi, L.; Ohno, M. TrkB Reduction Exacerbates Alzheimer’s Disease-like Signaling Aberrations and Memory Deficits without Affecting β-Amyloidosis in 5XFAD Mice. Transl. Psychiatry 2015, 5, e562. [Google Scholar] [CrossRef] [PubMed]
- Shen, J.; Sun, D.; Shao, J.; Chen, Y.; Pang, K.; Guo, W.; Lu, B. Extracellular Juxtamembrane Motif Critical for TrkB Preformed Dimer and Activation. Cells 2019, 8, 932. [Google Scholar] [CrossRef] [PubMed]
- Trindade, F.; Ferreira, R.; Magalhães, B.; Leite-Moreira, A.; Falcão-Pires, I.; Vitorino, R. How to Use and Integrate Bioinformatics Tools to Compare Proteomic Data from Distinct Conditions? A Tutorial Using the Pathological Similarities between Aortic Valve Stenosis and Coronary Artery Disease as a Case-Study. J. Proteomics 2018, 16, 37–52. [Google Scholar] [CrossRef]
- Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T. Cytoscape: A Software Environment for Integrated Models of Biomolecular Interaction Networks. Genome Res. 2003, 13, 2498–2504. [Google Scholar] [CrossRef] [PubMed]
- Pang, Z.; Zhou, G.; Ewald, J.; Chang, L.; Hacariz, O.; Basu, N.; Xia, J. Using MetaboAnalyst 5.0 for LC–HRMS Spectra Processing, Multi-Omics Integration and Covariate Adjustment of Global Metabolomics Data. Nat. Protoc. 2022, 17, 1735–1761. [Google Scholar] [CrossRef] [PubMed]
Gene Name | UniProt ID | Antibody P-Site | C Mean | AD Mean | %CFC | p-Value | Relevance in AD | Levels in AD Brain | Ref |
---|---|---|---|---|---|---|---|---|---|
MFN2 | O95140 | Pan | 2410 | 1032 | −57 | 0.009 | MFN2 down-regulation impairs γ-secretase activity and decreases Aβ production; Decreased mRNA and protein levels in the brains of AD patients and AD transgenic mice | ↓ mRNA and protein in humans or mice | [43,44,45,46] |
ATF2 | P15336 | Pan | 317 | 141 | −56 | 0.020 | MAPK signaling, induced by Aβ, activates ATF2, resulting in an inflammatory response by astrocytes | ↓/↑ In humans | [47,48,49,50,51,52] |
NTRK2 | Q16620 | Y706 + Y707 | 1708 | 2247 | 32 | 0.039 | Risk gene in AD: Binds and phosphorylates APP at Y687, retaining APP in TGN, and decreasing Aβ production | ↓ pan in humans and mice | [58,59,60] |
PRKAA1 | Q13131 | T183 + S184 | 4926 | 6566 | 33 | 0.039 | Tau kinase, co-localized with neurofibrillary tangles | ↑ pan in human | [55,56] |
TAOK1 * | Q7L7 × 3 | S181 | 262 | 419 | 60 | 0.023 | Tau kinase, active and co-localized with neurofibrillary tangles | ↑ active (S181) human | [53] |
GRK1 | Q15835 | Pan | 288 | 615 | 114 | 0.017 | Unknown | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Soares Martins, T.; Pelech, S.; Ferreira, M.; Pinho, B.; Leandro, K.; de Almeida, L.P.; Breitling, B.; Hansen, N.; Esselmann, H.; Wiltfang, J.; et al. Phosphoproteome Microarray Analysis of Extracellular Particles as a Tool to Explore Novel Biomarker Candidates for Alzheimer’s Disease. Int. J. Mol. Sci. 2024, 25, 1584. https://doi.org/10.3390/ijms25031584
Soares Martins T, Pelech S, Ferreira M, Pinho B, Leandro K, de Almeida LP, Breitling B, Hansen N, Esselmann H, Wiltfang J, et al. Phosphoproteome Microarray Analysis of Extracellular Particles as a Tool to Explore Novel Biomarker Candidates for Alzheimer’s Disease. International Journal of Molecular Sciences. 2024; 25(3):1584. https://doi.org/10.3390/ijms25031584
Chicago/Turabian StyleSoares Martins, Tânia, Steven Pelech, Maria Ferreira, Beatriz Pinho, Kevin Leandro, Luís Pereira de Almeida, Benedict Breitling, Niels Hansen, Hermann Esselmann, Jens Wiltfang, and et al. 2024. "Phosphoproteome Microarray Analysis of Extracellular Particles as a Tool to Explore Novel Biomarker Candidates for Alzheimer’s Disease" International Journal of Molecular Sciences 25, no. 3: 1584. https://doi.org/10.3390/ijms25031584
APA StyleSoares Martins, T., Pelech, S., Ferreira, M., Pinho, B., Leandro, K., de Almeida, L. P., Breitling, B., Hansen, N., Esselmann, H., Wiltfang, J., da Cruz e Silva, O. A. B., & Henriques, A. G. (2024). Phosphoproteome Microarray Analysis of Extracellular Particles as a Tool to Explore Novel Biomarker Candidates for Alzheimer’s Disease. International Journal of Molecular Sciences, 25(3), 1584. https://doi.org/10.3390/ijms25031584