Special Issue “Deployment of Proteomics Approaches in Biomedical Research”
Funding
Conflicts of Interest
References
- Allayee, H.; Farber, C.R.; Seldin, M.M.; Williams, E.G.; James, D.E.; Lusis, A.J. Systems genetics approaches for understanding complex traits with relevance for human disease. Elife 2023, 12, e91004. [Google Scholar] [CrossRef]
- Mitchell, D.C.; Kuljanin, M.; Li, J.; Van Vranken, J.G.; Bulloch, N.; Schweppe, D.K.; Huttlin, E.L.; Gygi, S.P. A proteome-wide atlas of drug mechanism of action. Nat. Biotechnol. 2023, 41, 845–857. [Google Scholar] [CrossRef] [PubMed]
- Hao, T.; Wang, Q.; Zhao, L.; Wu, D.; Wang, E.; Sun, J. Analyzing of Molecular Networks for Human Diseases and Drug Discovery. Curr. Top. Med. Chem. 2018, 18, 1007–1014. [Google Scholar] [CrossRef]
- Doll, S.; Gnad, F.; Mann, M. The Case for Proteomics and Phospho-Proteomics in Personalized Cancer Medicine. Proteom. Clin. Appl. 2019, 13, e1800113. [Google Scholar] [CrossRef]
- Santos, A.; Colaco, A.R.; Nielsen, A.B.; Niu, L.; Strauss, M.; Geyer, P.E.; Coscia, F.; Albrechtsen, N.J.W.; Mundt, F.; Jensen, L.J.; et al. A knowledge graph to interpret clinical proteomics data. Nat. Biotechnol. 2022, 40, 692–702. [Google Scholar] [CrossRef]
- Uzozie, A.C.; Aebersold, R. Advancing translational research and precision medicine with targeted proteomics. J. Proteom. 2018, 189, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, R.; Budnik, B. A review of the current state of single-cell proteomics and future perspective. Anal. Bioanal. Chem. 2023, 415, 6889–6899. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.V.; Lapierre, L.R. Location, location, location: Subcellular protein partitioning in proteostasis and aging. Biophys. Rev. 2021, 13, 931–941. [Google Scholar] [CrossRef] [PubMed]
- Dimitrakopoulos, G.N.; Klapa, M.I.; Moschonas, N.K. How Far Are We from the Completion of the Human Protein Interactome Reconstruction? Biomolecules 2022, 12, 140. [Google Scholar] [CrossRef]
- Cheng, L.; Fan, K.; Huang, Y.; Wang, D.; Leung, K.S. Full Characterization of Localization Diversity in the Human Protein Interactome. J. Proteome Res. 2017, 16, 3019–3029. [Google Scholar] [CrossRef]
- Kosoglu, K.; Aydin, Z.; Tuncbag, N.; Gursoy, A.; Keskin, O. Structural coverage of the human interactome. Brief. Bioinform. 2023, 25, bbad496. [Google Scholar] [CrossRef] [PubMed]
- Kitamura, N.; Galligan, J.J. A global view of the human post-translational modification landscape. Biochem. J. 2023, 480, 1241–1265. [Google Scholar] [CrossRef] [PubMed]
- Zhai, L.H.; Chen, K.F.; Hao, B.B.; Tan, M.J. Proteomic characterization of post-translational modifications in drug discovery. Acta Pharmacol. Sin. 2022, 43, 3112–3129. [Google Scholar] [CrossRef] [PubMed]
- Bashyal, A.; Brodbelt, J.S. Uncommon posttranslational modifications in proteomics: ADP-ribosylation, tyrosine nitration, and tyrosine sulfation. Mass Spectrom. Rev. 2022, 43, e21811. [Google Scholar] [CrossRef]
- Bradley, D. The evolution of post-translational modifications. Curr. Opin. Genet. Dev. 2022, 76, 101956. [Google Scholar] [CrossRef]
- Malinovska, L.; Cappelletti, V.; Kohler, D.; Piazza, I.; Tsai, T.H.; Pepelnjak, M.; Stalder, P.; Dorig, C.; Sesterhenn, F.; Elsasser, F.; et al. Proteome-wide structural changes measured with limited proteolysis-mass spectrometry: An advanced protocol for high-throughput applications. Nat. Protoc. 2023, 18, 659–682. [Google Scholar] [CrossRef]
- Mercier, R.; LaPointe, P. The role of cellular proteostasis in antitumor immunity. J. Biol. Chem. 2022, 298, 101930. [Google Scholar] [CrossRef]
- Li, S.; Song, G.; Bai, Y.; Song, N.; Zhao, J.; Liu, J.; Hu, C. Applications of Protein Microarrays in Biomarker Discovery for Autoimmune Diseases. Front. Immunol. 2021, 12, 645632. [Google Scholar] [CrossRef]
- Geroldinger-Simic, M.; Bayati, S.; Pohjanen, E.; Sepp, N.; Nilsson, P.; Pin, E. Autoantibodies against PIP4K2B and AKT3 Are Associated with Skin and Lung Fibrosis in Patients with Systemic Sclerosis. Int. J. Mol. Sci. 2023, 24, 5629. [Google Scholar] [CrossRef] [PubMed]
- Mescia, F.; Bayati, S.; Brouwer, E.; Heeringa, P.; Toonen, E.J.M.; Beenes, M.; Ball, M.J.; Rees, A.J.; Kain, R.; Lyons, P.A.; et al. Autoantibody Profiling and Anti-Kinesin Reactivity in ANCA-Associated Vasculitis. Int. J. Mol. Sci. 2023, 24, 15341. [Google Scholar] [CrossRef]
- Tam, S.Y.; Islam Khan, M.Z.; Chen, J.Y.; Yip, J.H.; Yan, H.Y.; Tam, T.Y.; Law, H.K. Proteomic Profiling of Chemotherapy Responses in FOLFOX-Resistant Colorectal Cancer Cells. Int. J. Mol. Sci. 2023, 24, 9899. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Hou, K.; Tong, J.; Zhang, H.; Xiong, M.; Liu, J.; Jia, S. The Altered Functions of Shelterin Components in ALT Cells. Int. J. Mol. Sci. 2023, 24, 16830. [Google Scholar] [CrossRef] [PubMed]
- Moaddel, R.; Ubaida-Mohien, C.; Tanaka, T.; Lyashkov, A.; Basisty, N.; Schilling, B.; Semba, R.D.; Franceschi, C.; Gorospe, M.; Ferrucci, L. Proteomics in aging research: A roadmap to clinical, translational research. Aging Cell 2021, 20, e13325. [Google Scholar] [CrossRef] [PubMed]
- Bader, J.M.; Albrecht, V.; Mann, M. MS-Based Proteomics of Body Fluids: The End of the Beginning. Mol. Cell. Proteom. 2023, 22, 100577. [Google Scholar] [CrossRef]
- Dammer, E.B.; Ping, L.; Duong, D.M.; Modeste, E.S.; Seyfried, N.T.; Lah, J.J.; Levey, A.I.; Johnson, E.C.B. Multi-platform proteomic analysis of Alzheimer’s disease cerebrospinal fluid and plasma reveals network biomarkers associated with proteostasis and the matrisome. Alzheimers Res. Ther. 2022, 14, 174. [Google Scholar] [CrossRef]
- Li, Y.; Tam, W.W.; Yu, Y.; Zhuo, Z.; Xue, Z.; Tsang, C.; Qiao, X.; Wang, X.; Wang, W.; Li, Y.; et al. The application of Aptamer in biomarker discovery. Biomark. Res. 2023, 11, 70. [Google Scholar] [CrossRef]
- Tin, A.; Fohner, A.E.; Yang, Q.; Brody, J.A.; Davies, G.; Yao, J.; Liu, D.; Caro, I.; Lindbohm, J.V.; Duggan, M.R.; et al. Identification of circulating proteins associated with general cognitive function among middle-aged and older adults. Commun. Biol. 2023, 6, 1117. [Google Scholar] [CrossRef]
- Eldjarn, G.H.; Ferkingstad, E.; Lund, S.H.; Helgason, H.; Magnusson, O.T.; Gunnarsdottir, K.; Olafsdottir, T.A.; Halldorsson, B.V.; Olason, P.I.; Zink, F.; et al. Large-scale plasma proteomics comparisons through genetics and disease associations. Nature 2023, 622, 348–358. [Google Scholar] [CrossRef]
- Xu, Y.; Ritchie, S.C.; Liang, Y.; Timmers, P.; Pietzner, M.; Lannelongue, L.; Lambert, S.A.; Tahir, U.A.; May-Wilson, S.; Foguet, C.; et al. An atlas of genetic scores to predict multi-omic traits. Nature 2023, 616, 123–131. [Google Scholar] [CrossRef]
- Felipez, N.; Montori, S.; Mendizuri, N.; Llach, J.; Delgado, P.G.; Moreira, L.; Santamaria, E.; Fernandez-Irigoyen, J.; Albeniz, E. The Human Gastric Juice: A Promising Source for Gastric Cancer Biomarkers. Int. J. Mol. Sci. 2023, 24, 9131. [Google Scholar] [CrossRef]
- Arikan, M.; Muth, T. Integrated multi-omics analyses of microbial communities: A review of the current state and future directions. Mol. Omics 2023, 19, 607–623. [Google Scholar] [CrossRef]
- Gonzalez-Plaza, J.J.; Furlan, C.; Rijavec, T.; Lapanje, A.; Barros, R.; Tamayo-Ramos, J.A.; Suarez-Diez, M. Advances in experimental and computational methodologies for the study of microbial-surface interactions at different omics levels. Front. Microbiol. 2022, 13, 1006946. [Google Scholar] [CrossRef] [PubMed]
- Wolf, M.; Schallert, K.; Knipper, L.; Sickmann, A.; Sczyrba, A.; Benndorf, D.; Heyer, R. Advances in the clinical use of metaproteomics. Expert Rev. Proteom. 2023, 20, 71–86. [Google Scholar] [CrossRef] [PubMed]
- Mappa, C.; Alpha-Bazin, B.; Pible, O.; Armengaud, J. Mix24X, a Lab-Assembled Reference to Evaluate Interpretation Procedures for Tandem Mass Spectrometry Proteotyping of Complex Samples. Int. J. Mol. Sci. 2023, 24, 8634. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fernández-Irigoyen, J.; Santamaría, E. Special Issue “Deployment of Proteomics Approaches in Biomedical Research”. Int. J. Mol. Sci. 2024, 25, 1717. https://doi.org/10.3390/ijms25031717
Fernández-Irigoyen J, Santamaría E. Special Issue “Deployment of Proteomics Approaches in Biomedical Research”. International Journal of Molecular Sciences. 2024; 25(3):1717. https://doi.org/10.3390/ijms25031717
Chicago/Turabian StyleFernández-Irigoyen, Joaquín, and Enrique Santamaría. 2024. "Special Issue “Deployment of Proteomics Approaches in Biomedical Research”" International Journal of Molecular Sciences 25, no. 3: 1717. https://doi.org/10.3390/ijms25031717
APA StyleFernández-Irigoyen, J., & Santamaría, E. (2024). Special Issue “Deployment of Proteomics Approaches in Biomedical Research”. International Journal of Molecular Sciences, 25(3), 1717. https://doi.org/10.3390/ijms25031717