Noise Stress Abrogates Structure-Specific Endonucleases within the Mammalian Inner Ear
Abstract
:1. Introduction
2. Results
2.1. Expression of Structure-Specific Endonucleases
2.2. Biological Significance of Endonuclease Expression
3. Discussion
4. Materials and Methods
4.1. Research Design
4.2. Noise Stress
4.3. Telomere Delivery
4.4. Real-Time Polymerase Chain Reactions
4.4.1. Tissue Procurement
4.4.2. Spin Column Chromatography
4.4.3. First-Strand cDNA Synthesis
4.4.4. Real-Time Fluorescence Polymerase Reaction
4.4.5. Data Analysis
4.5. Inner Ear Function
4.5.1. Animals
4.5.2. Apparatus
4.5.3. Electroacoustics and Biogenic Responses
4.5.4. Data Analysis
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Brooks, P.J. The Cyclopurine Deoxynucleosides: DNA Repair, Biological Effects, Mechanistic Insights, and Unanswered Questions. Free Radic. Biol. Med. 2017, 107, 90–100. [Google Scholar] [CrossRef]
- Gillet, L.C.J.; Schärer, O.D. Molecular Mechanisms of Mammalian Global Genome Nucleotide Excision Repair. Chem. Rev. 2006, 106, 253–276. [Google Scholar] [CrossRef]
- Viana, L.M.; Seyyedi, M.; Brewer, C.C.; Zalewski, C.; DiGiovanna, J.J.; Tamura, D.; Totonchy, M.; Kraemer, K.H.; Nadol, J.B. Histopathology of the Inner Ear in Patients with Xeroderma Pigmentosum and Neurological Degeneration. Otol. Neurotol. 2013, 34, 1230–1236. [Google Scholar] [CrossRef] [PubMed]
- Guthrie, O.W. Preincision Complex-I from the Excision Nuclease Reaction among Cochlear Spiral Limbus and Outer Hair Cells. J. Mol. Histol. 2008, 39, 617–625. [Google Scholar] [CrossRef] [PubMed]
- Guthrie, O.W. Localization and Distribution of Neurons That Co-Express Xeroderma Pigmentosum-A and Epidermal Growth Factor Receptor within Rosenthal’s Canal. Acta Histochem. 2015, 117, 688–695. [Google Scholar] [CrossRef] [PubMed]
- Guthrie, O.W.; Carrero-Martínez, F.A. Real-Time Quantification of Xeroderma Pigmentosum mRNA from the Mammalian Cochlea. Ear Hear. 2010, 31, 714–721. [Google Scholar] [CrossRef]
- Guthrie, O.W. Functional Consequences of Inducible Genetic Elements from the P53 SOS Response in a Mammalian Organ System. Exp. Cell Res. 2017, 359, 50–61. [Google Scholar] [CrossRef] [PubMed]
- Guthrie, O.W.; Li-Korotky, H.-S.; Durrant, J.D.; Balaban, C. Cisplatin Induces Cytoplasmic to Nuclear Translocation of Nucleotide Excision Repair Factors among Spiral Ganglion Neurons. Hear. Res. 2008, 239, 79–91. [Google Scholar] [CrossRef] [PubMed]
- Guthrie, O.W.; Xu, H. Noise Exposure Potentiates the Subcellular Distribution of Nucleotide Excision Repair Proteins within Spiral Ganglion Neurons. Hear. Res. 2012, 294, 21–30. [Google Scholar] [CrossRef]
- Faridounnia, M.; Folkers, G.E.; Boelens, R. Function and Interactions of ERCC1-XPF in DNA Damage Response. Molecules 2018, 23, 3205. [Google Scholar] [CrossRef]
- Kemp, M.G.; Hu, J. PostExcision Events in Human Nucleotide Excision Repair. Photochem. Photobiol. 2017, 93, 178–191. [Google Scholar] [CrossRef] [PubMed]
- Fagbemi, A.F.; Orelli, B.; Schärer, O.D. Regulation of Endonuclease Activity in Human Nucleotide Excision Repair. DNA Repair. 2011, 10, 722–729. [Google Scholar] [CrossRef]
- Constantinou, A.; Gunz, D.; Evans, E.; Lalle, P.; Bates, P.A.; Wood, R.D.; Clarkson, S.G. Conserved Residues of Human XPG Protein Important for Nuclease Activity and Function in Nucleotide Excision Repair. J. Biol. Chem. 1999, 274, 5637–5648. [Google Scholar] [CrossRef] [PubMed]
- Wakasugi, M.; Reardon, J.T.; Sancar, A. The Non-Catalytic Function of XPG Protein during Dual Incision in Human Nucleotide Excision Repair. J. Biol. Chem. 1997, 272, 16030–16034. [Google Scholar] [CrossRef] [PubMed]
- Scherly, D.; Nouspikel, T.; Corlet, J.; Ucla, C.; Bairoch, A.; Clarkson, S.G. Complementation of the DNA Repair Defect in Xeroderma Pigmentosum Group G Cells by a Human cDNA Related to Yeast RAD2. Nature 1993, 363, 182–185. [Google Scholar] [CrossRef] [PubMed]
- Dunand-Sauthier, I.; Hohl, M.; Thorel, F.; Jaquier-Gubler, P.; Clarkson, S.G.; Schärer, O.D. The Spacer Region of XPG Mediates Recruitment to Nucleotide Excision Repair Complexes and Determines Substrate Specificity. J. Biol. Chem. 2005, 280, 7030–7037. [Google Scholar] [CrossRef]
- He, Z.; Henricksen, L.A.; Wold, M.S.; Ingles, C.J. RPA Involvement in the Damage-Recognition and Incision Steps of Nucleotide Excision Repair. Nature 1995, 374, 566–569. [Google Scholar] [CrossRef]
- Iyer, N.; Reagan, M.S.; Wu, K.-J.; Canagarajah, B.; Friedberg, E.C. Interactions Involving the Human RNA Polymerase II Transcription/Nucleotide Excision Repair Complex TFIIH, the Nucleotide Excision Repair Protein XPG, and Cockayne Syndrome Group B (CSB) Protein. Biochemistry 1996, 35, 2157–2167. [Google Scholar] [CrossRef]
- Gary, R.; Ludwig, D.L.; Cornelius, H.L.; MacInnes, M.A.; Park, M.S. The DNA Repair Endonuclease XPG Binds to Proliferating Cell Nuclear Antigen (PCNA) and Shares Sequence Elements with the PCNA-Binding Regions of FEN-1 and Cyclin-Dependent Kinase Inhibitor P21. J. Biol. Chem. 1997, 272, 24522–24529. [Google Scholar] [CrossRef]
- Warbrick, E. PCNA Binding through a Conserved Motif. BioEssays 1998, 20, 195–199. [Google Scholar] [CrossRef]
- Evans, E.; Moggs, J.G.; Hwang, J.R.; Egly, J.-M.; Wood, R.D. Mechanism of Open Complex and Dual Incision Formation by Human Nucleotide Excision Repair Factors. EMBO J. 1997, 16, 6559–6573. [Google Scholar] [CrossRef]
- Choi, Y.-J.; Ryu, K.-S.; Ko, Y.-M.; Chae, Y.-K.; Pelton, J.G.; Wemmer, D.E.; Choi, B.-S. Biophysical Characterization of the Interaction Domains and Mapping of the Contact Residues in the XPF-ERCC1 Complex. J. Biol. Chem. 2005, 280, 28644–28652. [Google Scholar] [CrossRef] [PubMed]
- de Laat, W.L.; Sijbers, A.M.; Odijk, H.; Jaspers, N.G.J.; Hoeijmakers, J.H.J. Mapping of Interaction Domains between Human Repair Proteins ERCC1 and XPF. Nucleic Acids Res. 1998, 26, 4146–4152. [Google Scholar] [CrossRef] [PubMed]
- Gaillard, P.-H.L.; Wood, R.D. Activity of Individual ERCC1 and XPF Subunits in DNA Nucleotide Excision Repair. Nucleic Acids Res. 2001, 29, 872–879. [Google Scholar] [CrossRef] [PubMed]
- Tripsianes, K.; Folkers, G.; Ab, E.; Das, D.; Odijk, H.; Jaspers, N.G.J.; Hoeijmakers, J.H.J.; Kaptein, R.; Boelens, R. The Structure of the Human ERCC1/XPF Interaction Domains Reveals a Complementary Role for the Two Proteins in Nucleotide Excision Repair. Structure 2005, 13, 1849–1858. [Google Scholar] [CrossRef] [PubMed]
- Fisher, L.A.; Bessho, M.; Wakasugi, M.; Matsunaga, T.; Bessho, T. Role of Interaction of XPF with RPA in Nucleotide Excision Repair. J. Mol. Biol. 2011, 413, 337–346. [Google Scholar] [CrossRef] [PubMed]
- Kopke, R.D.; Jackson, R.L.; Coleman, J.K.M.; Liu, J.; Bielefeld, E.C.; Balough, B.J. NAC for Noise: From the Bench Top to the Clinic. Hear. Res. 2007, 226, 114–125. [Google Scholar] [CrossRef] [PubMed]
- Nelson, D.I.; Nelson, R.Y.; Concha-Barrientos, M.; Fingerhut, M. The Global Burden of Occupational Noise-Induced Hearing Loss. Am. J. Ind. Med. 2005, 48, 446–458. [Google Scholar] [CrossRef]
- Zelaya, C.; Lucas, J.; Hoffman, H. Self-Reported Hearing Trouble in Adults Aged 18 and Over: United States, 2014. NCHS Data Brief 2015, 214, 1–8. [Google Scholar]
- Clark, W.W. Noise Exposure from Leisure Activities: A Review. J. Acoust. Soc. Am. 1991, 90, 175–181. [Google Scholar] [CrossRef]
- Muchnik, C.; Amir, N.; Shabtai, E.; Kaplan-Neeman, R. Preferred Listening Levels of Personal Listening Devices in Young Teenagers: Self Reports and Physical Measurements. Int. J. Audiol. 2012, 51, 287–293. [Google Scholar] [CrossRef] [PubMed]
- Guthrie, O.W. Noise Induced DNA Damage Within the Auditory Nerve. Anat. Rec. 2017, 300, 520–526. [Google Scholar] [CrossRef]
- Van Campen, L.E.; Murphy, W.J.; Franks, J.R.; Mathias, P.I.; Toraason, M.A. Oxidative DNA Damage Is Associated with Intense Noise Exposure in the Rat. Hear. Res. 2002, 164, 29–38. [Google Scholar] [CrossRef] [PubMed]
- Kamio, T.; Watanabe, K.-I.; Okubo, K. Acoustic Stimulation Promotes DNA Fragmentation in the Guinea Pig Cochlea. J. Nippon. Med. Sch. 2012, 79, 349–356. [Google Scholar] [CrossRef] [PubMed]
- Bialek, W.; Wit, H.P. Quantum Limits to Oscillator Stability: Theory and Experiments on Acoustic Emissions from the Human Ear. Phys. Lett. A 1984, 104, 173–178. [Google Scholar] [CrossRef]
- Robles, L.; Ruggero, M.A. Mechanics of the Mammalian Cochlea. Physiol. Rev. 2001, 81, 1305–1352. [Google Scholar] [CrossRef] [PubMed]
- Kemp, D.T. Otoacoustic Emissions, Their Origin in Cochlear Function, and Use. Br. Med. Bull. 2002, 63, 223–241. [Google Scholar] [CrossRef]
- Avan, P.; Büki, B.; Petit, C. Auditory Distortions: Origins and Functions. Physiol. Rev. 2013, 93, 1563–1619. [Google Scholar] [CrossRef]
- Guthrie, O.W. Dynamic Compartmentalization of DNA Repair Proteins within Spiral Ganglion Neurons in Response to Noise Stress. Int. J. Neurosci. 2012, 122, 757–766. [Google Scholar] [CrossRef]
- Huang, J.C.; Svoboda, D.L.; Reardon, J.T.; Sancar, A. Human Nucleotide Excision Nuclease Removes Thymine Dimers from DNA by Incising the 22nd Phosphodiester Bond 5′ and the 6th Phosphodiester Bond 3′ to the Photodimer. Proc. Natl. Acad. Sci. USA 1992, 89, 3664–3668. [Google Scholar] [CrossRef]
- Staresincic, L.; Fagbemi, A.F.; Enzlin, J.H.; Gourdin, A.M.; Wijgers, N.; Dunand-Sauthier, I.; Giglia-Mari, G.; Clarkson, S.G.; Vermeulen, W.; Schärer, O.D. Coordination of Dual Incision and Repair Synthesis in Human Nucleotide Excision Repair. EMBO J. 2009, 28, 1111–1120. [Google Scholar] [CrossRef] [PubMed]
- Ogi, T.; Limsirichaikul, S.; Overmeer, R.M.; Volker, M.; Takenaka, K.; Cloney, R.; Nakazawa, Y.; Niimi, A.; Miki, Y.; Jaspers, N.G.; et al. Three DNA Polymerases, Recruited by Different Mechanisms, Carry out NER Repair Synthesis in Human Cells. Mol. Cell 2010, 37, 714–727. [Google Scholar] [CrossRef] [PubMed]
- Edenberg, H.; Hanawalt, P. Size of Repair Patches in the DNA of Ultraviolet-Irradiated HeLa Cells. Biochim. Biophys. Acta (BBA) Nucleic Acids Protein Synth. 1972, 272, 361–372. [Google Scholar] [CrossRef]
- Hu, J.; Choi, J.-H.; Gaddameedhi, S.; Kemp, M.G.; Reardon, J.T.; Sancar, A. Nucleotide Excision Repair in Human Cells: Fate of the Excised Oligonucleotide Carrying DNA Damage In Vivo. J. Biol. Chem. 2013, 288, 20918–20926. [Google Scholar] [CrossRef] [PubMed]
- Kemp, M.G.; Reardon, J.T.; Lindsey-Boltz, L.A.; Sancar, A. Mechanism of Release and Fate of Excised Oligonucleotides during Nucleotide Excision Repair. J. Biol. Chem. 2012, 287, 22889–22899. [Google Scholar] [CrossRef] [PubMed]
- Han, C.; Wani, G.; Zhao, R.; Qian, J.; Sharma, N.; He, J.; Zhu, Q.; Wang, Q.-E.; Wani, A.A. Cdt2-Mediated XPG Degradation Promotes Gap-Filling DNA Synthesis in Nucleotide Excision Repair. Cell Cycle 2015, 14, 1103–1115. [Google Scholar] [CrossRef] [PubMed]
- Mocquet, V.; Lainé, J.P.; Riedl, T.; Yajin, Z.; Lee, M.Y.; Egly, J.M. Sequential Recruitment of the Repair Factors during NER: The Role of XPG in Initiating the Resynthesis Step. EMBO J. 2008, 27, 155–167. [Google Scholar] [CrossRef] [PubMed]
- Kitahara, T.; Li-Korotky, H.S.; Balaban, C.D. Regulation of Mitochondrial Uncoupling Proteins in Mouse Inner Ear Ganglion Cells in Response to Systemic Kanamycin Challenge. Neuroscience 2005, 135, 639–653. [Google Scholar] [CrossRef]
- Schmittgen, T.D.; Livak, K.J. Analyzing Real-Time PCR Data by the Comparative CT Method. Nat. Protoc. 2008, 3, 1101–1108. [Google Scholar] [CrossRef]
- Martin, G.K.; Stagner, B.B.; Chung, Y.S.; Lonsbury-Martin, B.L. Characterizing Distortion-Product Otoacoustic Emission Components across Four Species. J. Acoust. Soc. Am. 2011, 129, 3090–3103. [Google Scholar] [CrossRef]
- Martin, G.K.; Stagner, B.B.; Lonsbury-Martin, B.L. Assessment of Cochlear Function in Mice: Distortion-Product Otoacoustic Emissions. Curr. Protoc. Neurosci. 2006, 34, 8.21C.1–8.21C.18. [Google Scholar] [CrossRef]
Source | df | SS | MS | F-Values |
---|---|---|---|---|
Xpg: | ||||
Between conditions | 3 | 57.94 | 19.31 | 10.65 a |
Within/Residual | 8 | 14.51 | 1.814 | |
Total | 11 | 72.45 | ||
Xpf: | ||||
Between conditions | 3 | 0.008 | 0.025 | 0.3901 |
Within/Residual | 8 | 0.018 | 0.0022 | |
Total | 11 | 0.025 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guthrie, O.W. Noise Stress Abrogates Structure-Specific Endonucleases within the Mammalian Inner Ear. Int. J. Mol. Sci. 2024, 25, 1749. https://doi.org/10.3390/ijms25031749
Guthrie OW. Noise Stress Abrogates Structure-Specific Endonucleases within the Mammalian Inner Ear. International Journal of Molecular Sciences. 2024; 25(3):1749. https://doi.org/10.3390/ijms25031749
Chicago/Turabian StyleGuthrie, O’neil W. 2024. "Noise Stress Abrogates Structure-Specific Endonucleases within the Mammalian Inner Ear" International Journal of Molecular Sciences 25, no. 3: 1749. https://doi.org/10.3390/ijms25031749
APA StyleGuthrie, O. W. (2024). Noise Stress Abrogates Structure-Specific Endonucleases within the Mammalian Inner Ear. International Journal of Molecular Sciences, 25(3), 1749. https://doi.org/10.3390/ijms25031749