Special Issue with Research Topics on “Recent Analysis and Applications of Mass Spectra on Biochemistry”
Funding
Conflicts of Interest
References
- Zolotov, Y. Methodological aspects of analytical chemistry. J. Anal. Chem. 2021, 76, 1–14. [Google Scholar] [CrossRef]
- Adams, F.; Adriaens, M. The metamorphosis of analytical chemistry. Anal. Bioanal. Chem. 2020, 412, 3525–3537. [Google Scholar] [CrossRef]
- Adams, F.; Adriaens, M. Methodological aspects of analytical chemistry. J. Anal. Chem. 2021, 76, 671–673. [Google Scholar] [CrossRef]
- Hormann, F.; Sommer, S.; Heiles, S. Formation and tandem mass spectrometry of doubly charged lipid-metal ion complexes. J. Am. Soc. Mass Spectrom. 2023, 34, 1436–1446. [Google Scholar] [CrossRef]
- Mann, M.; Meng, C.; Fenn, J. Interpreting mass spectra of multiply charged ions. Anal. Chem. 1989, 61, 1702–1708. [Google Scholar] [CrossRef]
- Chen, R.; Brown, H.; Cooks, C. Metabolic profiles of human brain parenchyma and glioma for rapid tissue diagnosis by targeted desorption electrospray ionization mass spectrometry. Anal. Bioanal. Chem. 2021, 413, 6213–6224. [Google Scholar] [CrossRef] [PubMed]
- Liere, P.; Schumacher, M. Mass spectrometric analysis of steroids: All that glitters is not gold. Expert Rev. Endocrinol. Metabol. 2015, 10, 463–465. [Google Scholar] [CrossRef] [PubMed]
- Chiva, C.; Pastor, O.; Trilla-Fuertes, L.; Gamez-Pozo, A.; Angel, J.; Sabido, F. Isotopologue multipoint calibration for roteomics biomarker quantification in clinical practice. Anal. Chem. 2019, 91, 4934–4938. [Google Scholar] [CrossRef] [PubMed]
- Eisenberg, S.; Knizner, K.; Muddiman, D. Development of an object-based image analysis tool for mass spectrometry imaging ion classification. Anal. Bioanal. Chem. 2023, 415, 4725–4730. [Google Scholar] [CrossRef]
- Pikovskoi, I.; Kosyakov, D. Kendrick mass defect analysis—A tool for high-resolution Orbitrap mass spectrometry of native lignin. Anal. Bioanal. Chem. 2023, 415, 3525–3534. [Google Scholar] [CrossRef]
- Gorshkov, M.; Fornelli, L.; Tsybin, Y. Observation of ion coalescence in Orbitrap Fourier transform mass spectrometry. Rapid Commun. Mass Spectrom. 2012, 26, 1711–1717. [Google Scholar] [CrossRef]
- Blake, S.; Walker, S.; Muddiman, D.; Hinks, D.; Beck, K. Spectral accuracy and sulfur counting capabilities of the LTQ-FT-ICR and the LTQ-Orbitrap XL for small molecule analysis. J. Am. Soc. Mass Spectrom. 2011, 22, 2269–2275. [Google Scholar] [CrossRef] [PubMed]
- Gorshkov, M.; Good, D.; Lyutvinskiy, Y.; Yang, H.; Zubarev, R. Calibration function for the Orbitrap FTMS accounting for the space charge effect. J. Am. Soc. Mass Spectrom. 2010, 21, 1846–1851. [Google Scholar] [CrossRef] [PubMed]
- Tamara, S.; Den Boer, M.; Heck, A. High-resolution native mass spectrometry. Chem. Rev. 2022, 122, 7269–7326. [Google Scholar] [CrossRef] [PubMed]
- Kharchenko, A.; Vladimirov, G.; Heeren, R.; Nikolaev, E. Performance of Orbitrap mass analyzer at various space charge and non-ideal field conditions: Simulation approach. J. Am. Soc. Mass Spectrom. 2012, 23, 977–987. [Google Scholar] [CrossRef]
- Weisbrod, C.; Kaiser, N.; Syka, J.; Early, L.; Mullen, C.; Dunyach, J.; English, A.; Anderson, L.; Blakney, G.; Shabanowitz, J.; et al. Front-end electron transfer dissociation coupled to a 21 Tesla FT-ICR mass spectrometer for intact protein sequence analysis. J. Am. Soc. Mass Spectrom. 2017, 28, 1787–1795. [Google Scholar] [CrossRef]
- Hendrickson, C.; Quinn, J.; Kaiser, N.; Smith, D.; Blakney, G.; Chen, T.; Marshall, A.; Weisbrod, C.; Beu, S. 21 Tesla Fourier transform ion cyclotron resonance mass spectrometer: A National resource for ultrahigh resolution mass analysis. J. Am. Soc. Mass Spectrom. 2015, 26, 1626–1632. [Google Scholar] [CrossRef]
- Makarov, A. Electrostatic axially harmonic Orbital trapping: A high-performance technique of mass analysis. Anal. Chem. 2000, 72, 1156–1162. [Google Scholar] [CrossRef]
- Comisarow, M.; Marshall, A. Fourier transform ion cyclotron resonance spectroscopy. Chem. Phys. Lett. 1974, 25, 282–283. [Google Scholar] [CrossRef]
- Kingdon, K. Method for the neutralization of electron space charge by positive ionization at very low gas pressures. Phys. Rev. 1923, 21, 408–418. [Google Scholar] [CrossRef]
- Lange, O.; Damoc, E.; Wieghaus, A.; Makarov, A. Enhanced Fourier transform for Orbitrap mass spectrometry. Int. J. Mass Spectrom. 2014, 369, 16–22. [Google Scholar] [CrossRef]
- Makarov, A.; Denisov, E.; Lange, O. Performance evaluation of a high-field Orbitrap mass analyser. J. Am. Soc. Mass Spectrom. 2009, 20, 1391–1396. [Google Scholar] [CrossRef] [PubMed]
- Rose, R.; Damoc, E.; Denisov, E.; Makarov, A.; Heck, A. High-sensitivity Orbitrap mass analysis of intact macromolecular assemblies. Nat. Methods 2012, 9, 1084–1086. [Google Scholar] [CrossRef] [PubMed]
- Makarov, A. Method of Generating a Mass Spectrum Having Improved Resolving Power. U.S. Patent 9,043,164. B2, 26 May 2015. [Google Scholar]
- Boldin, I.; Nikolaev, E. Fourier transform ion cyclotron resonance cell with dynamic harmonization of the electric field in the whole volume by shaping of the excitation and detection electrode assembly. Rapid Commun. Mass Spectrom. 2011, 25, 122–126. [Google Scholar] [CrossRef]
- Nikolaev, E.; Boldin, I.; Jertz, R.; Baykut, G. Initial experimental characterization of a new ultra-high resolution FTICR cell with dynamic harmonization. J. Am. Soc. Mass Spectrom. 2011, 22, 1125–1133. [Google Scholar] [CrossRef] [PubMed]
- Claesen, J.; Rockwood, A.; Gorshkov, M.; Valkenborg, D. The isotope distribution: A rose with thorns. Mass Spec. Rev. 2023, 2023, 1–21. [Google Scholar] [CrossRef] [PubMed]
- Nagornov, K.; Gorshkov, M.; Kozhinov, A.; Tsybin, Y. High-resolution Fourier transform ion cyclotron resonance mass spectrometry with increased throughput for biomolecular analysis. Anal. Chem. 2014, 86, 9020–9028. [Google Scholar] [CrossRef]
- Boldin, I.; Nikolaev, E. Theory of peak coalescence in Fourier transform ion cyclotron resonance mass spectrometry. Rapid Commun. Mass Spectrom. 2009, 23, 3213–3219. [Google Scholar] [CrossRef]
- Naito, Y.; Inoue, M. Peak confluence phenomenon in Fourier transform ion cyclotron resonance mass spectrometry. J. Mass Spectrom. Soc. Jpn. 1994, 42, 1–9. [Google Scholar] [CrossRef]
- Naito, Y.; Inoue, M. Collective motion of ions in an ion trap for Fourier transform ion cyclotron resonance mass spectrometry. Int. J. Mass Spectrom. 1996, 157/158, 85–96. [Google Scholar] [CrossRef]
- Jeffries, J.; Barlow, S.; Dunn, G. Theory of space-charge shift of ion cyclotron resonance frequencies. Int. J. Mass Spectrom. 1983, 54, 169–187. [Google Scholar] [CrossRef]
- Gorshkov, M.; Marshall, A.; Nikolaev, E. Analysis and elimination of systematic errors originating from coulomb mutual interaction and image charge in fourier transform ion cyclotron resonance precise mass difference measurements. J. Am. Soc. Mass Spectrom. 1993, 4, 855–868. [Google Scholar] [CrossRef]
- Claesen, J.; Lermyte, F.; Sobott, F.; Burzykowski, T.; Valkenborg, D. Differences in the elemental isotope definition may lead to errors in modern mass-spectrometry-based proteomics. Anal. Chem. 2015, 87, 10747–10754. [Google Scholar] [CrossRef]
- Csernica, T.; Eiler, J. High-dimensional isotomics, part 1: A mathematical framework for isotomics. Chem. Geol. 2023, 617, 121235. [Google Scholar] [CrossRef]
- Bartelink, E.; Chesson, L. Recent applications of isotope analysis to forensic anthropology. Forens. Sci. Res. 2019, 4, 29–44. [Google Scholar] [CrossRef]
- He, L.; Rockwood, A.; Agarwa, A.; Anderson, L.; Weisbrod, C.; Hendrickson, C.; Marshall, A. Diagnosis of hemoglobinopathy and thalassemia by 21 tesla Fourier transform ion cyclotron resonance mass spectrometry and tandem mass spectrometry of hemoglobin from blood. Clin. Chem. 2019, 65, 986–994. [Google Scholar] [CrossRef] [PubMed]
- Woerner, T.; Snijder, J.; Bennett, A.; Agbandje-McKenna, M.; Makarov, A.; Heck, A. Resolving heterogeneous macromolecular assemblies by Orbitrap-based single-particle charge detection mass spectrometry. Nat. Met. 2020, 17, 395–398. [Google Scholar] [CrossRef] [PubMed]
- Kafader, J.; Melani, R.; Durbin, K.; Ikwuagwu, B.; Early, B.; Fellers, R.; Beu, S.; Zabrouskov, V.; Makarov, A.; Maze, J.; et al. Multiplexed mass spectrometry of individual ions improves measurement of proteoforms and their complexes. Nat. Met. 2020, 17, 391–394. [Google Scholar] [CrossRef]
- Ivanova, B.; Spiteller, M. Stochastic dynamic electrospray ionization mass spectrometric quantitative analysis of metronidazole in human urine. Anal. Chem. Lett. 2022, 12, 322–348. [Google Scholar] [CrossRef]
- Carlsson, J.; Åstroem, T.; Oestman, C.; Nilsson, U. Solvent-free automated thermal desorption-gas chromatography/mass spectrometry for direct screening of hazardous compounds in consumer textiles. Anal. Bioanal. Chem. 2023, 415, 4675–4687. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Baudys, J.; Osman, S.; Barr, J. Analysis of the N-glycosylation profiles of the spike proteins from the alpha, beta, gamma, and delta variants of SARS-CoV-2. Anal. Bioanal. Chem. 2023, 415, 4779–4793. [Google Scholar] [CrossRef]
- Solovyeva, E.; Bubis, J.; Tarasova, I.; Lobas, A.; Ivanov, M.; Nazarov, A.; Shutkov, I.; Gorshkov, M. On the feasibility of using an ultra-fast DirectMS1 method of proteome-wide analysis for searching drug targets in chemical proteomics. Biochemistry 2022, 87, 1342–1353. [Google Scholar] [CrossRef] [PubMed]
- Ivanov, M.; Bubis, J.; Gorshkov, V.; Tarasova, I.; Levitsky, L.; Solovyeva, E.; Lipatova, A.; Kjeldsen, F.; Gorshkov, F. DirectMS1Quant: Ultrafast quantitative proteomics with MS/MS free mass spectrometry. Anal. Chem. 2022, 94, 13068–13075. [Google Scholar] [CrossRef] [PubMed]
- De Oro-Carretero, P.; Sanz-Landaluze, J. Miniaturized method for the quantification of persistent organic pollutants and their metabolites in HepG2 cells: Assessment of their biotransformation. Anal. Bioanal. Chem. 2023, 415, 4813–4825. [Google Scholar] [CrossRef]
- Szalwinski, L.; Cooks, R. Complex mixture analysis by two-dimensional mass spectrometry using a miniature ion trap. Talanta Open 2021, 3, 100028. [Google Scholar] [CrossRef]
- Pu, F.; Pandey, S.; Bushman, L.; Anderson, P.; Ouyang, Z.; Cooks, R. Direct quantitation of tenofovir diphosphate in human blood with mass spectrometry for adherence monitoring. Anal. Bioanal. Chem. 2020, 412, 1243–1249. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez, L.; Szalwinski, L.; Sams, T.; Dziekonski, E.; Cooks, R. Metabolomic and lipidomic profiling of bacillus using two-dimensional tandem mass spectrometry. Anal. Chem. 2022, 94, 16838–16846. [Google Scholar] [CrossRef]
- Siuzdak, G.; Bothnet, B.; Yeager, M.; Brugidou, C.; Fauquet, C.; Hoey, K.; Chang, C. Mass spectrometry and viral analysis. Chem. Biol. 1996, 3, 45–48. [Google Scholar] [CrossRef]
- Sharman, K.; Patterson, N.; Migas, L.; Neumann, E.; Allen, J.; Gibson-Corley, K.; Spraggins, J.; Van de Plas, R.; Skaar, E.; Caprioli, R. MALDI IMS-derived molecular contour maps: Augmenting histology whole-slide images. J. Am. Soc. Mass Spectrom. 2023, 34, 905–912. [Google Scholar] [CrossRef]
- Fincher, J.; Djambazova, K.; Klein, D.; Dufresne, M.; Migas, L.; Van de Plas, R.; Caprioli, R.; Spraggins, J. Molecular mapping of neutral lipids using silicon nanopost arrays and TIMS imaging mass spectrometry. J. Am. Soc. Mass Spectrom. 2021, 32, 2519–2527. [Google Scholar] [CrossRef]
- Neumann, E.; Djambazova, K.; Caprioli, R.; Spraggins, J. Multimodal imaging mass spectrometry: Next generation molecular mapping in biology and medicine. J. Am. Soc. Mass Spectrom. 2020, 31, 2401–2415. [Google Scholar] [CrossRef] [PubMed]
- Berry, K.; Hankin, J.; Barkley, R.; Spraggins, J.; Caprioli, R.; Murphy, R. MALDI imaging of lipid biochemistry in tissues by mass spectrometry. Chem. Rev. 2011, 111, 6491–6512. [Google Scholar] [CrossRef] [PubMed]
- Djambazova, K.; Dufresne, M.; Migas, L.; Kruse, A.; Van de Plas, R.; Caprioli, R.; Spraggins, R. MALDI TIMS IMS of disialoganglioside isomers GD1a and GD1b in murine brain tissue. Anal. Chem. 2023, 95, 1176–1183. [Google Scholar] [CrossRef] [PubMed]
- Rivera, E.; Weiss, A.; Migas, L.; Freiberg, J.; Djambazova, K.; Neumann, E.; Van de Plas, R.; Spraggins, J.; Skaar, E.; Caprioli, R. Imaging mass spectrometry reveals complex lipid distributions across Staphylococcus aureus biofilm layers. J. Mass Spectrom. Adv. Clin. Lab. 2022, 26, 36–46. [Google Scholar] [CrossRef] [PubMed]
- Sharman, K.; Patterson, P.; Weiss, A.; Neumann, E.; Guiberson, E.; Ryan, D.; Gutierrez, D.; Spraggins, J.; Van de Plas, R.; Skaar, E.; et al. Rapid multivariate analysis approach to explore differential spatial protein profiles in tissue. J. Proteome Res. 2023, 22, 1394–1405. [Google Scholar] [CrossRef] [PubMed]
- Takemura, H.; Choi, J.; Fushimi, K.; Narikawa, R.; Wu, J.; Kondo, M.; Nelson, D.; Suzuki, T.; Ouchi, H.; Inai, M.; et al. Role of hypoxanthine-guanine phosphoribosyltransferase in the metabolism of fairy chemicals in rice. Org. Biomol. Chem. 2023, 21, 2556–2561. [Google Scholar] [CrossRef]
- Szalwinski, L.; Gonzalez, L.; Morato, N.; Marsh, B.; Cooks, R. Bacterial growth monitored by two-dimensional tandem mass spectrometry. Analyst 2022, 147, 940–946. [Google Scholar] [CrossRef]
- Artymowicz, M.; Struck-Lewicka, W.; Wiczling, P.; Markuszewski, M.; Markuszewski, M.; Siluk, D. Targeted quantitative metabolomics with a linear mixed-effect model for analysis of urinary nucleosides and deoxynucleosides from bladder cancer patients before and after tumor resection. Anal. Bioanal. Chem. 2023, 415, 5511–5528. [Google Scholar] [CrossRef]
- Borowska, M.; Jankowski, K. Basic and advanced spectrometric methods for complete nanoparticles characterization in bio/eco systems: Current status and future prospects. Anal. Bioanal. Chem. 2023, 415, 4023–4038. [Google Scholar] [CrossRef]
- Ivanova, B. Stochastic dynamic mass spectrometric quantitative and structural analyses of pharmaceutics and biocides in biota and sewage sludge. Int. J. Mol. Sci. 2023, 24, 6306. [Google Scholar] [CrossRef] [PubMed]
- Upadyshev, M.; Ivanova, B.; Motyleva, S. Mass spectrometric identification of metabolites after magnetic-pulse treatment of infected Pyrus communis L. microplants. Int. J. Mol. Sci. 2023, 24, 16776. [Google Scholar] [CrossRef]
- Mason, E.; McDaniel, E. Transport Properties of Ions in Gases; John Wiley & Sons Inc.: New York, NY, USA, 1988; pp. 1–560. [Google Scholar]
- Li, Y.; Mehari, T.; Wei, Z.; Liu, Y.; Cooks, R. Reaction acceleration at air-solution interfaces: Anisotropic rate constants for Katritzky transamination. J. Mass Spectrom. 2021, 56, e4585. [Google Scholar] [CrossRef]
- Wei, Z.; Li, Y.; Cooks, R.; Yan, X. Accelerated reaction kinetics in microdroplets: Overview and recent developments. Annu. Rev. Phys. Chem. 2020, 71, 31–51. [Google Scholar] [CrossRef]
- Mehnert, S.; Fischer, J.; McDaniel, M.; Fabijanczuk, K.; McLuckey, S. Dissociation kinetics in quadrupole ion traps: Effective temperatures under dipolar DC collisional activation conditions. J. Am. Soc. Mass Spectrom. 2023, 34, 1166–1174. [Google Scholar] [CrossRef] [PubMed]
- Fabijanczuk, K.; Chao, H.; Fischer, J.; McLuckey, S. Structural elucidation and isomeric differentiation/ quantitation of monophosphorylated phosphoinositides using gas-phase ion/ion reactions and dissociation kinetics. Analyst 2022, 147, 5000–5010. [Google Scholar] [CrossRef] [PubMed]
- Kulathunga, S.; Morato, N.; Zhou, Q.; Cooks, R.; Mesecar, A. Desorption electrospray ionization mass spectrometry assay for label-free characterization of SULT2B1b enzyme kinetics. ChemMedChem 2022, 17, e202200043. [Google Scholar] [CrossRef] [PubMed]
- Cooks, R.; Wong, P. Kinetic method of making thermochemical determinations: Advances and applications. Accts. Chem. Res. 1998, 31, 379–386. [Google Scholar] [CrossRef]
- Augusti, R.; Turowski, M.; Chen, H.; Cooks, R. Dissociation of ionized benzophenones investigated by the kinetic method: Effective temperature, steric effects and gas-phase CO+• affinities of phenyl radicals. J. Mass Spectrom. 2004, 39, 558–564. [Google Scholar] [CrossRef] [PubMed]
- Christofi, E.; Barran, P. Ion mobility mass spectrometry (IM–MS) for structural biology: Insights gained by measuring mass, charge, and collision cross section. Chem. Rev. 2023, 123, 2902–2949. [Google Scholar] [CrossRef] [PubMed]
- Jiang, T.; Chen, Y.; Mao, L.; Marshall, A.; Xu, W. Extracting biomolecule collision cross sections from the high-resolution FT-ICR mass spectral linewidths. Phys. Chem. Chem. Phys. 2016, 18, 713–717. [Google Scholar] [CrossRef] [PubMed]
- Mao, L.; Chen, Y.; Xin, Y.; Chen, Y.; Zheng, L.; Kaiser, N.; Marshall, A.; Xu, W. Collision cross section measurements for biomolecules within a high-resolution Fourier transform ion cyclotron resonance cell. Anal. Chem. 2015, 87, 4072–4075. [Google Scholar] [CrossRef]
- Geue, N.; Bennett, T.; Ramakers, L.; Timco, G.; McInnes, E.; Burton, N.; Armentrout, P.; Winpenny, R.; Barran, P. Adduct ions as diagnostic probes of metallosupramolecular complexes using ion mobility mass spectrometry. Inorg. Chem. 2023, 62, 2672–2679. [Google Scholar] [CrossRef] [PubMed]
- Haler, J.; Far, J.; De la Rosa, V.; Kune, C.; Hoogenboom, R.; De Pauw, E. Using ion mobility–mass spectrometry to extract physicochemical enthalpic and entropic contributions from synthetic polymers. J. Am. Soc. Mass Spectrom. 2021, 32, 330–339. [Google Scholar] [CrossRef] [PubMed]
- Zhu, F.; Lee, S.; Valentine, S.; Reilly, J.; Clemmer, D. Mannose7 glycan isomer characterization by IMS-MS/MS analysis. J. Am. Soc. Mass Spectrom. 2012, 23, 2158–2166. [Google Scholar] [CrossRef] [PubMed]
- Kwantwi-Barima, P.; Sandilya, V.; Garimella, B.; Attah, I.; Zheng, X.; Ibrahim, Y.; Smith, R. Accumulation of large ion populations with high ion densities and effects due to space charge in traveling wave-based structures for lossless ion manipulations (SLIM) IMS–MS. J. Am. Soc. Mass Spectrom. 2024. [CrossRef] [PubMed]
- Wyttenbach, T.; Pierson, N.; Clemmer, D.; Bowers, M. Ion mobility analysis of molecular dynamics. Annu. Rev. Phys. Chem. 2014, 65, 175–196. [Google Scholar] [CrossRef] [PubMed]
- Trimpin, S.; Inutan, E.; Karki, S.; Elia, E.; Zhang, W.; Weidner, S.; Marshall, D.; Hoang, K.; Lee, C.; Davis, E.; et al. Fundamental studies of new ionization technologies and insights from IMS–MS. J. Am. Soc. Mass Spectrom. 2019, 30, 1133–1147. [Google Scholar] [CrossRef] [PubMed]
- Snyder, D.; Haarvey, S.; Wysocki, V. Surface-induced dissociation mass spectrometry as a structural biology tool. Chem. Rev. 2022, 122, 7442–7487. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Qiu, C.; Xu, F.; Ding, L.; Ding, C. Genetic algorithm optimized printed circuit board ion funnel tandem subambient pressure ionization with nanoelectrospray (SPIN) for high sensitivity mass spectrometry. J. Am. Soc. Mass Spectrom. 2023, 34, 1805–1812. [Google Scholar] [CrossRef]
- Mathew, A.; Giskes, F.; Lekkas, A.; Greisch, J.; Eijkel, G.; Anthony, I.; Fort, K.; Heck, A.; Papanastasiou, D.; Makarov, A.; et al. An Orbitrap/time-of-flight mass spectrometer for photofragment ion imaging and high-resolution mass analysis of native macromolecular assemblies. J. Am. Soc. Mass Spectrom. 2023, 34, 1359–1371. [Google Scholar] [CrossRef]
- Specker, J.; Prentice, B. Separation of isobaric lipids in imaging mass spectrometry using gas-phase charge inversion ion/ion reactions. J. Am. Soc. Mass Spectrom. 2023, 34, 1868–1878. [Google Scholar] [CrossRef]
- Pitts-McCoy, A.; Abdillahi, A.; Lee, K.; McLuckey, S. Multiply charged cation attachment to facilitate mass measurement in negative-mode native mass spectrometry. Anal. Chem. 2022, 94, 2220–2226. [Google Scholar] [CrossRef]
- Lawler, J.; Harrilal, C.; DeBlase, A.; Sibert III, E.; McLuckey, S.; Zwier, T. Single-conformation spectroscopy of cold, protonated DPG-containing peptides: Switching β-turn types and formation of a sequential type II/II0 double β-turn. Phys. Chem. Chem. Phys. 2022, 24, 2095–2109. [Google Scholar] [CrossRef]
- Rolland, A.; Prell, J. Approaches to heterogeneity in native mass spectrometry. Chem. Rev. 2022, 122, 7909–7951. [Google Scholar] [CrossRef] [PubMed]
- Abdillahi, A.; Lee, K.; McLuckey, S. Mass analysis of macro-molecular analytes via multiply-charged ion attachment. Anal. Chem. 2020, 92, 16301–16306. [Google Scholar] [CrossRef] [PubMed]
- Brown, H.; Garcia, D.; Middlebrooks, E.; Morato, M.; Chaichana, K.; Quinones-Hinojosa, A.; Cooks, R. High-throughput analysis of tissue microarrays using automated desorption electrospray ionization mass spectrometry. Sci. Rep. 2022, 12, 18851. [Google Scholar]
- Chao, H.; McLuckey, S. Manipulation of ion types via gas-phase ion/ion chemistry for the structural characterization of the glycan moiety on gangliosides. Anal. Chem. 2021, 93, 15752–15760. [Google Scholar] [CrossRef]
- Alexandrov, M.; Gall, L.; Krasnov, N.; Nikolaev, V.; Pavlenko, V.; Shkurov, V. Extraction of ions from solutions under atmospheric pressure as a method for mass spectrometric analysis of bioorganic compounds. Rapid Commun. Mass Spectrom. 2008, 22, 267–270. [Google Scholar] [CrossRef]
- Mann, M. The ever expanding scope of electrospray mass spectrometry—A 30 year journey. Nat. Commun. 2019, 10, 3744. [Google Scholar] [CrossRef] [PubMed]
- Konermann, L.; Rodriguez, A.; Liu, J. On the formation of highly charged gaseous ions from unfolded proteins by electrospray ionization. Anal. Chem. 2012, 84, 6798–6804. [Google Scholar] [CrossRef]
- Chen, H.; Venter, A.; Cooks, R. Extractive electrospray ionization for direct analysis of undiluted urine, milk and other complex mixtures without sample preparation. Chem. Commun. 2006, 2006, 2042–2044. [Google Scholar] [CrossRef] [PubMed]
- Yamashita, M.; Fenn, J. Electrospray ion source. Another variation on the free-jet theme. J. Phys. Chem. 1984, 88, 4451–4459. [Google Scholar] [CrossRef]
- Mosher, J.; Kaplan, L.; Podgorski, D.; McKenna, A.; Marshall, A. Longitudinal shifts in dissolved organic matter chemogeography and chemodiversity within headwater streams: A river continuum reprise. Biogeochem 2015, 124, 371–385. [Google Scholar] [CrossRef]
- Akhlaqi, M.; Wang, W.; Moeckel, C.; Kruve, A. Complementary methods for structural assignment of isomeric candidate structures in non-target liquid chromatography ion mobility high-resolution mass spectrometric analysis. Anal. Bioanal. Chem. 2023, 415, 5247–5259. [Google Scholar] [CrossRef] [PubMed]
- Lazofsky, A.; Brinker, A.; Rivera-Nunez, Z.; Buckley, B. A comparison of four liquid chromatography-mass spectrometry platforms for the analysis of zeranols in urine. Anal. Bioanal. Chem. 2023, 415, 4885–4899. [Google Scholar] [CrossRef] [PubMed]
- Setou, M.; Oka, H. Biomedical mass spectrometry. Anal. Bioanal. Chem. 2011, 400, 1827. [Google Scholar] [CrossRef]
- Lesne, E.; Munoz-Bartual, M.; Esteve-Turrillas, F. Determination of synthetic hallucinogens in oral fluids by microextraction by packed sorbent and liquid chromatography-tandem mass spectrometry. Anal. Bioanal. Chem. 2023, 415, 3607–3617. [Google Scholar] [CrossRef]
- Brockbals, L.; Garrett-Rickman, S.; Fu, S.; Ueland, M.; McNevin, D.; Padula, M. Estimating the time of human decomposition based on skeletal muscle biopsy samples utilizing an untargeted LC–MS/MS-based proteomics approach. Anal. Bioanal. Chem. 2023, 415, 5487–5498. [Google Scholar] [CrossRef]
- Peng, T.; Rao, J.; Zhang, T.; Wang, Y.; Li, N.; Gao, Q.; Feng, X.; Song, Z.; Wang, K.; Qiu, F. Elucidation of the relationship between evodiamine-induced liver injury and CYP3A4-mediated metabolic activation by UPLC–MS/MS analysis. Anal. Bioanal. Chem. 2023, 415, 5619–5635. [Google Scholar] [CrossRef]
- Goodwin, J.; Manard, B.; Ticknor, B.; Cable-Dunlap, P.; Marcus, R. Initial characterization and optimization of the liquid sampling-atmospheric pressure glow discharge ionization source coupled to an orbitrap mass spectrometer for the determination of plutonium. Anal. Chem. 2023, 95, 12131–12138. [Google Scholar] [CrossRef]
- Helm, J.; Gruenwald-Gruber, C.; Thader, A.; Urteil, J.; Fuehrer, J.; Stenitzer, D.; Maresch, D.; Neumann, L.; Pabst, M.; Altmann, F. Bisecting Lewis X in hybrid-type N-glycans of human brain revealed by deep structural glycomics. Anal. Chem. 2021, 93, 15175–15182. [Google Scholar] [CrossRef]
- Krajewski, L.; Lobodin, V.; Johansen, C.; Bartges, T.; Maksimova, E.; MacDonald, I.; Marshall, A. Linking natural oil seeps from the gulf of Mexico to their origin by use of Fourier transform ion cyclotron resonance mass spectrometry. Environ. Sci. Technol. 2018, 52, 1365–1374. [Google Scholar] [CrossRef] [PubMed]
- Reinke, S.; Chaleckis, R.; Wheelock, C. Metabolomics in pulmonary medicine: Extracting the most from your data. Eur. Respir. J. 2022, 60, 2200102. [Google Scholar] [CrossRef] [PubMed]
- Dewez, F.; Oejten, J.; Henkel, C.; Hebeler, R.; Neuweger, H.; De Pauw, E.; Heeren, R.; Balluff, B. MS imaging-guided microproteomics for spatial omics on a single instrument. Proteomics 2020, 20, 1900369. [Google Scholar] [CrossRef] [PubMed]
- Shi, L.; Dai, X.; Yan, F.; Lin, Y.; Lin, L.; Zhang, Y.; Zeng, Y.; Chen, X. Novel lipidomes profile and clinical phenotype identified in pneumoconiosis patients. J. Health Popul. Nutr. 2023, 42, 55. [Google Scholar] [CrossRef]
- Beasley-Green, A.; Heckert, N. Estimation of measurement uncertainty for the quantification of protein by ID-LC-MS/MS. Anal. Bioanal. Chem. 2023, 415, 3265–3274. [Google Scholar] [CrossRef]
- Fedorov, I.; Lineva, V.; Tarasova, I.; Gorshkov, M. Mass spectrometry-based chemical proteomics for drug target discoveries. Biochemistry 2022, 87, 983–994. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Marshall, A. A universal algorithm for fast and automated charge state deconvolution of electrospray mass-to-charge ratio spectra. J. Am. Soc. Mass Spectrom. 1998, 9, 225–233. [Google Scholar] [CrossRef] [PubMed]
- Krueger, C.; Moran, E.; Tessier, K.; Tretyakova, N. Isotope labeling mass spectrometry to quantify endogenous and exogenous DNA adducts and metabolites of 1,3-butadiene In Vivo. Chem. Res. Toxicol. 2023, 36, 1409–1418. [Google Scholar]
- Zulfiqar, M.; Gadelha, L.; Steinbeck, C.; Sorokina, M.; Peters, K. The reproducible metabolome annotation workflow for untargeted tandem mass spectrometry. J. Cheminform. 2023, 15, 32. [Google Scholar] [CrossRef]
- Samples, R.; Puckett, S.; Balunas, M. Metabolomics peak analysis computational tool (MPACT): An advanced informatics tool for metabolomics and data visualization of molecules from complex biological samples. Anal. Chem. 2023, 95, 8770–8779. [Google Scholar] [CrossRef]
- Calderon-Celis, F.; Encinar, J.; Sanz-Medel, A. Standardization approaches in absolute quantitative proteomics with mass spectrometry. Mass Spec Rev. 2018, 37, 715–737. [Google Scholar] [CrossRef]
- Kazakova, E.; Solovyeva, E.; Levitsky, L.; Bubis, J.; Emekeeva, D.; Antonets, A.; Nazarov, A.; Gorshkov, M.; Tarasova, I. Proteomics-based scoring of cellular response to stimuli for improved characterization of signaling pathway activity. Proteomics 2023, 23, 2200275. [Google Scholar] [CrossRef] [PubMed]
- Rea, M.; Jiang, T.; Eleazer, R.; Eckstein, M.; Marshall, A.; Fondufe-Mittendorf, Y. Quantitative mass spectrometry reveals changes in histone H2B variants as cells undergo inorganic arsenic-mediated cellular transformation. Mol. Cell. Proteom. 2016, 15, 2411–2422. [Google Scholar] [CrossRef]
- Sanders, J.; Grinfeld, D.; Aizikov, K.; Makarov, A.; Holden, D.; Brodbelt, J. Determination of collision cross sections of protein ions in an Orbitrap mass analyser. Anal. Chem. 2018, 90, 5896–5902. [Google Scholar] [CrossRef]
- Zubarev, R.; Makarov, A. Orbitrap mass spectrometry. Anal. Chem. 2013, 85, 5288–5296. [Google Scholar] [CrossRef] [PubMed]
- Choi, S.; Munoz-Lancao, P.; Manzini, M.; Nemes, P. Data-dependent acquisition ladder for capillary electrophoresis mass spectrometry-based ultrasensitive (neuro)proteomics. Anal. Chem. 2021, 93, 15964–15972. [Google Scholar] [CrossRef] [PubMed]
- Seeley, E.; Caprioli, R. MALDI imaging mass spectrometry of human tissue: Method challenges and clinical perspectives. Trends Biotechnol. 2011, 29, 136–143. [Google Scholar] [CrossRef]
- Ferrer-Sueta, G.; Campolo, N.; Trujillo, M.; Bartesaghi, S.; Carballal, S.; Romero, N.; Alvarez, B.; Radi, R. Biochemistry of peroxynitrite and protein tyrosine nitration. Chem. Rev. 2018, 118, 1338–1408. [Google Scholar] [CrossRef]
- Sternisha, S.; Liu, P.; Marshall, A.; Miller, B. Mechanistic origins of enzyme activation in human glucokinase variants associated with congenital hyperinsulinism. Biochemistry 2018, 57, 1632–1639. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ivanova, B. Special Issue with Research Topics on “Recent Analysis and Applications of Mass Spectra on Biochemistry”. Int. J. Mol. Sci. 2024, 25, 1995. https://doi.org/10.3390/ijms25041995
Ivanova B. Special Issue with Research Topics on “Recent Analysis and Applications of Mass Spectra on Biochemistry”. International Journal of Molecular Sciences. 2024; 25(4):1995. https://doi.org/10.3390/ijms25041995
Chicago/Turabian StyleIvanova, Bojidarka. 2024. "Special Issue with Research Topics on “Recent Analysis and Applications of Mass Spectra on Biochemistry”" International Journal of Molecular Sciences 25, no. 4: 1995. https://doi.org/10.3390/ijms25041995
APA StyleIvanova, B. (2024). Special Issue with Research Topics on “Recent Analysis and Applications of Mass Spectra on Biochemistry”. International Journal of Molecular Sciences, 25(4), 1995. https://doi.org/10.3390/ijms25041995