Chemical Compositions of Scutellaria baicalensis Georgi. (Huangqin) Extracts and Their Effects on ACE2 Binding of SARS-CoV-2 Spike Protein, ACE2 Activity, and Free Radicals
Abstract
:1. Introduction
2. Results
2.1. Chemical Compositions
2.2. Inhibition on SARS-CoV-2 Spike Protein and ACE2 Interaction
2.3. Inhibition on ACE2 Enzyme Activity
2.4. Total Phenolic Contents (TPC) and Antioxidant Assays
3. Discussion
4. Materials and Methods
4.1. Materials
4.2. Sample Preparation and Extraction
4.3. Chemical Compositions of Huangqin (Scutellaria baicalensis Georgi. Root)
4.4. Inhibitory Effects of Huangqin Extracts on SARS-CoV-2 Spike Protein and ACE2 Interaction
4.5. Inhibitory Effects of Huangqin Extracts on ACE2
4.6. Total Phenolic Content (TPC) Determination
4.7. Relative Hydroxy Radical Scavenging Capacity (HOSC)
4.8. Relative DPPH● Scavenging Capacity (RDSC)
4.9. Relative ABTS●+ Scavenging Capacity (ABTS)
4.10. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fazio, S.; Affuso, F.; Bellavite, P. A review of the potential roles of antioxidant and anti-inflammatory pharmacological approaches for the management of mild-to-moderate symptomatic COVID-19. Med. Sci. Monit. 2022, 28, e936292. [Google Scholar] [CrossRef] [PubMed]
- WHO. Available online: https://covid19.who.int/ (accessed on 14 June 2023).
- Zhang, J.; Xie, B.; Hashimoto, K. Current status of potential therapeutic candidates for the COVID-19 crisis. Brain Behav. Immunity 2020, 87, 59–73. [Google Scholar] [CrossRef] [PubMed]
- Pourkarim, F.; Pourtaghi-Anvarian, S.; Rezaee, H. Molnupiravir: A new candidate for COVID-19 treatment. Pharmacol. Res. Perspect. 2022, 10, e00909. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Chen, L. Tissue distributions of antiviral drugs affect their capabilities of reducing viral loads in COVID-19 treatment. Eur. J. Pharmacol. 2020, 889, 173634. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, L. Lung tissue distribution of drugs as a key factor for COVID-19 treatment. Br. J. Pharmacol. 2020, 177, 4995–4996. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Moore, M.J.; Vasilieva, N.; Sui, J.; Wong, S.K.; Berne, M.A.; Somasundaran, M.; Sullivan, J.L.; Luzuriaga, K.; Greenough, T.C.; et al. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature 2003, 426, 450–454. [Google Scholar] [CrossRef] [PubMed]
- Zhou, P.; Yang, X.L.; Wang, X.G.; Hu, B.; Zhang, L.; Zhang, W.; Si, H.R.; Zhu, Y.; Li, B.; Huang, C.L.; et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 2020, 579, 270–273. [Google Scholar] [CrossRef]
- Hoffmann, M.; Kleine-Weber, H.; Schroeder, S.; Kruger, N.; Herrler, T.; Erichsen, S.; Schiergens, T.S.; Herrler, G.; Wu, N.H.; Nitsche, A.; et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell 2020, 181, 271–280. [Google Scholar] [CrossRef]
- Ni, W.; Yang, X.; Yang, D.; Bao, J.; Li, R.; Xiao, Y.; Hou, C.; Wang, H.; Liu, J.; Yang, D.; et al. Role of angiotensin-converting enzyme 2 (ACE2) in COVID-19. Crit. Care 2020, 24, 422. [Google Scholar] [CrossRef]
- Ziegler, C.G.K.; Allon, S.J.; Nyquist, S.K.; Mbano, I.M.; Miao, V.N.; Tzouanas, C.N.; Cao, Y.; Yousif, A.S.; Bals, J.; Hauser, B.M.; et al. SARS-CoV-2 receptor ACE2 is an interferon-stimulated gene in human airway epithelial cells and is detected in specific cell subsets across tissues. Cell 2020, 181, 1016–1035. [Google Scholar] [CrossRef]
- Soto, M.E.; Guarner-Lans, V.; Soria-Castro, E.; Manzano Pech, L.; Pérez-Torres, I. Is antioxidant therapy a useful complementary measure for Covid-19 treatment? An algorithm for its application. Medicina 2020, 56, 386. [Google Scholar] [CrossRef]
- Kielbowski, K.; Herian, M.; Pawlik, A. How to restore oxidative balance that was disrupted by SARS-CoV-2 infection. Int. J. Mol. Sci. 2022, 23, 6377. [Google Scholar] [CrossRef] [PubMed]
- Fei, Y.; Shiquan, J.; Volshonok, H.; Wu, J.; Zhang, D.Y. Molecular mechanism of anti-prostate cancer activity of Scutellaria baicalensis extract. Nutr. Cancer 2007, 57, 100–110. [Google Scholar]
- Kumagai, T.; Muller, C.I.; Desmond, J.C.; Imai, Y.; Heber, D.; Koeffler, H.P. Scutellaria baicalensis, a herbal medicine: Anti-proliferative and apoptotic activity against acute lymphocytic leukemia, lymphoma and myeloma cell lines. Leuk. Res. 2007, 31, 523–530. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.C.; Wang, B.C.; Yang, X.S.; Wang, Q.; Ran, L. The synergistic activity of antibiotics combined with eight traditional Chinese medicines against two different strains of Staphylococcus aureus. Colloids Surf. B Biointerfaces 2005, 41, 79–81. [Google Scholar] [CrossRef] [PubMed]
- Shan, B.; Cai, Y.Z.; Brooks, J.D.; Corke, H. The in vitro antibacterial activity of dietary spice and medicinal herb extracts. Int. J. Food Microbiol. 2007, 117, 112–119. [Google Scholar] [CrossRef] [PubMed]
- Blaszczyk, T.; Krzyzanowska, J.; Lamer-Zarawska, E. Screening for antimycotic properties of 56 traditional Chinese drugs. Phytother. Res. 2000, 14, 210–212. [Google Scholar] [CrossRef]
- Lam, T.L.; Lam, M.L.; Au, T.K.; Ip, D.T.M.; Ng, T.B.; Fong, W.P.; Wan, D.C.C. A comparison of human immunodeficiency virus type-1 protease inhibition activities by the aqueous and methanol extracts of Chinese medicinal herbs. Life Sci. 2000, 67, 2889–2896. [Google Scholar] [CrossRef]
- Kitamura, K.; Honda, M.; Yoshizaki, H.; Yamamoto, S.; Nakane, H.; Fukushima, M.; Ono, K.; Tokunaga, T. Baicalin, an inhibitor of HIV-1 production in vitro. Antivir. Res. 1998, 37, 131–140. [Google Scholar] [CrossRef]
- Kaul, R.; Paul, P.; Kumar, S.; Busselberg, D.; Dwivedi, V.D.; Chaari, A. Promising antiviral activities of natural flavonoids against SARS-CoV-2 targets: Systematic review. Int. J. Mol. Sci. 2021, 22, 11069. [Google Scholar] [CrossRef]
- Meng, J.R.; Liu, J.; Fu, L.; Shu, T.; Yang, L.; Zhang, X.; Jiang, Z.H.; Bai, L.P. Anti-entry activity of natural flavonoids against SARS-CoV-2 by targeting spike RBD. Viruses 2023, 15, 160. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Ye, F.; Sun, Q.; Liang, H.; Li, C.; Li, S.; Lu, R.; Huang, B.; Tan, W.; Lai, L. Scutellaria baicalensis extract and baicalein inhibit replication of SARS-CoV-2 and its 3C-like protease in vitro. J. Enzyme Inhib. Med. Chem. 2021, 36, 497–503. [Google Scholar] [CrossRef] [PubMed]
- Udrea, A.-M.; Mernea, M.; Buiu, C.; Avram, S. Scutellaria baicalensis Flavones as Potent Drugs against Acute Respiratory Injury during SARS-CoV-2 Infection: Structural Biology Approaches. Processes 2020, 8, 1468. [Google Scholar] [CrossRef]
- Xu, J.; Yu, Y.; Shi, R.; Xie, G.; Zhu, Y.; Wu, G.; Qin, M. Organ-Specific Metabolic Shifts of Flavonoids in Scutellaria baicalensis at Different Growth and Development Stages. Molecules 2018, 23, 428. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; He, L.; Lu, L.; Liu, Y.; Dong, G.; Miao, J.; Luo, P. Characterization and quantification of the chemical compositions of Scutellariae Barbatae herba and differentiation from its substitute by combining UHPLC-PDA-QTOF-MS/MS with UHPLC-MS/MS. J. Pharm. Biomed. Anal. 2015, 109, 62–66. [Google Scholar] [CrossRef] [PubMed]
- Qiao, X.; Li, R.; Song, W.; Miao, W.J.; Liu, J.; Chen, H.B.; Guo, D.A.; Ye, M. A targeted strategy to analyze untargeted mass spectral data: Rapid chemical profiling of Scutellaria baicalensis using ultra-high performance liquid chromatography coupled with hybrid quadrupole orbitrap mass spectrometry and key ion filtering. J. Chromatogr. A 2016, 1441, 83–95. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.; Rajesh, N.; Wang, X.; Zhang, M.; Wu, Q.; Li, S.; Chen, B.; Yao, S. Identification of flavonoids in the stems and leaves of Scutellaria baicalensis Georgi. J. Chromatogr. B 2011, 879, 1023–1028. [Google Scholar] [CrossRef] [PubMed]
- He, L.; Zhang, Z.; Lu, L.; Liu, Y.; Li, S.; Wang, J.; Song, Z.; Yan, Z.; Miao, J. Rapid identification and quantitative analysis of the chemical constituents in Scutellaria indica L. by UHPLC-QTOF-MS and UHPLC-MS/MS. J. Pharm. Biomed. Anal. 2016, 117, 125–139. [Google Scholar] [CrossRef] [PubMed]
- Stepanova, A.Y.; Solov‘eva, A.I.; Malunova, M.V.; Salamaikina, S.A.; Panov, Y.M.; Lelishentsev, A.A. Hairy roots of Scutellaria spp. (Lamiaceae) as promising producers of antiviral flavones. Molecules 2021, 26, 3927. [Google Scholar] [CrossRef]
- Huang, T.; Liu, Y.; Zhang, C. Pharmacokinetics and bioavailability enhancement of baicalin: A review. Eur. J. Drug Metab. Pharmacokinet. 2019, 44, 159–168. [Google Scholar] [CrossRef]
- Pang, H.; Wu, T.; Peng, Z.; Tan, Q.; Peng, X.; Zhan, Z.; Song, L.; Wei, B. Baicalin induces apoptosis and autophagy in human osteosarcoma cells by increasing ROS to inhibit PI3K/Akt/mTOR, ERK1/2 and beta-catenin signaling pathways. J. Bone Oncol. 2022, 33, 100415. [Google Scholar] [CrossRef] [PubMed]
- Bruzewicz, S.; Malicki, A.; Oszmianski, J.; Jaroslawska, A.; Jarmoluk, A.; Pawlas, K.; Jarmoluk, A. Baicalin, added as the only preservative, improves the microbiological quality of homemade mayonnaise. Pak. J. Nutr. 2006, 5, 30–33. [Google Scholar] [CrossRef]
- Chan, E.; Wong, C.Y.; Wan, C.W.; Kwok, C.Y.; Wu, J.H.; Ng, K.M.; So, C.H.; Au, A.L.; Poon, C.C.; Seto, S.W.; et al. Evaluation of anti-oxidant capacity of root of Scutellaria baicalensis Georgi, in comparison with roots of Polygonum multiflorum Thunb and Panax ginseng CA Meyer. Am. J. Chin. Med. 2010, 38, 815–827. [Google Scholar] [CrossRef] [PubMed]
- Indrayanto, G.; Putra, G.S.; Suhud, F. Validation of in-vitro bioassay methods: Application in herbal drug research. Profiles Drug Subst. Excip. Relat. Methodol. 2021, 46, 273–307. [Google Scholar] [PubMed]
- Wrapp, D.; Wang, N.; Corbett, K.S.; Goldsmith, J.A.; Hsieh, C.-L.; Abiona, O.; Graham, B.S.; Mclellan, J.S. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science 2020, 367, 1260–1263. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Raghuvanshi, R.; Ceylan, F.D.; Bolling, B.W. Quercetin and its metabolites inhibit recombinant human angiotensin-converting enzyme 2 (ACE2) activity. J. Agric. Food Chem. 2020, 68, 13982–13989. [Google Scholar] [CrossRef] [PubMed]
- Guerrero, L.; Castillo, J.; Quinones, M.; Garcia-Vallve, S.; Arola, L.; Pujadas, G.; Muguerza, B. Inhibition of angiotensin-converting enzyme activity by flavonoids: Structure-activity relationship studies. PLoS ONE 2012, 7, e49493. [Google Scholar] [CrossRef]
- Vinas, G.; Puig, T.; Porta, R. Oxidative stress in patients with cancer: Two sides of the same coin. Med. Clin. 2012, 139, 171–175. [Google Scholar]
- Abramov, A.Y. Redox biology in neurodegenerative disorders. Free Radic. Biol. Med. 2022, 188, 24–25. [Google Scholar] [CrossRef]
- Izzo, C.; Vitillo, P.; Di Pietro, P.; Visco, V.; Strianese, A.; Virtuoso, N.; Ciccarelli, M.; Galasso, G.; Carrizzo, A.; Vecchione, C. The role of oxidative stress in cardiovascular aging and cardiovascular diseases. Life 2021, 11, 60. [Google Scholar] [CrossRef]
- Mehri, F.; Rahbar, A.H.; Ghane, E.T.; Souri, B.; Esfahani, M. Changes in oxidative markers in COVID-19 patients. Arch. Med. Res. 2021, 52, 843–849. [Google Scholar] [CrossRef]
- Amini, M.A.; Karimi, J.; Talebi, S.S.; Piri, H. The association of COVID-19 and reactive oxygen species modulator 1 (ROMO1) with oxidative stress. Chonnam Med. J. 2022, 58, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Reino-Gelardo, S.; Palop-Cervera, M.; Aparisi-Valero, N.; Espinosa-San Miguel, I.; Lozano-Rodríguez, N.; Llop-Furquet, G.; Sanchis-Artero, L.; Cortés-Castell, E.; Rizo-Baeza, M.; Cortés-Rizo, X. Effect of an Immune-Boosting, Antioxidant and Anti-Inflammatory Food Supplement in Hospitalized COVID-19 Patients: A Prospective Randomized Pilot Study. Nutrients 2023, 15, 1736. [Google Scholar] [CrossRef] [PubMed]
- Dhuli, K.; Micheletti, C.; Medori, M.C.; Madeo, G.; Bonetti, G.; Donato, K.; Gaffuri, F.; Tartaglia, G.M.; Michelini, S.; Fiorentino, A.; et al. The potential preventive role of a dietary supplement containing hydroxytyrosol in COVID-19: A multi-center study. Eur. Rev. Med. Pharmacol. Sci. 2023, 27, 33–38. [Google Scholar] [PubMed]
- Shahidi, F.; Ambigaipalan, P. Phenolics and polyphenolics in foods, beverages and spices: Antioxidant activity and health effects—A review. J. Funct. Foods 2015, 18, 820–897. [Google Scholar] [CrossRef]
- Heim, K.E.; Tagliaferro, A.R.; Bobilya, D.J. Flavonoid antioxidants: Chemistry, metabolism and structure-activity relationships. J. Nutr. Biochem. 2002, 13, 572–584. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Liu, Z.; Zeng, M.; El Kadiri, A.; Huang, J.; Kim, A.; He, X.; Sun, J.; Chen, P.; Wang, T.T.Y.; et al. Chemical Compositions of Clove (Syzygium aromaticum (L.) Merr. & L.) Extracts and Their Potentials in Suppressing SARS-CoV-2 Spike Protein-ACE2 Binding, Inhibiting ACE2, and Scavenging Free Radicals. J. Agric. Food Chem. 2022, 70, 14403–14413. [Google Scholar] [PubMed]
ID | Positive Mode (ESI+) | Negative Mode (ESI−) | Formula | Name | Ref. | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Retention Time | Exptl. [M + H]+ | Fragment Ions | Mass Error (ppm) | Retention Time | Exptl. [M – H]− | Fragment Ions | Mass Error (ppm) | ||||
1 | 12.81 | 467.11838 | 449.1074, 305.0652, 287.0547 | −0.048 | 13.16 | 465.10297 | 447.0916, 437.1072, 339.0703, 285.0391, 241.0493, 177.0184 | 0.468 | C21H22O12 | Taxifolin 7-O-glucoside | [25] |
2 | 13.10 | 463.08698 | 445.0755, 427.0645, 371.0753, 311.0396, 231.0281 | −0.264 | nd | nd | nd | nd | C21H18O12 | Kaempferol 3-O-glucuronide | [25] |
3 | 16.00 | 465.10254 | 447.0912, 345.0594, 303.0495 | −0.457 | 15.75 | 463.08752 | 435.0922, 301.0341, 283.0237, 151.0030 | 0.902 | C21H20O12 | Carthamidin 7-O-glucuronide | [26] |
4 | 16.43 | 305.06535 | 287.0548, 153.0182 | −0.751 | 16.23 | 303.05042 | 285.0400, 125.0240 | 1.620 | C15H12O7 | Isomer of pentahydroxyflavanone | [25] |
5 | nd | nd | nd | nd | 18.13 | 303.05026 | 285.9080 | 1.092 | C15H12O7 | Isomer of pentahydroxyflavanone | |
6 | 19.59 | 481.09747 | 305.0651, 169.0128 | −0.410 | 19.35 | 479.08258 | 303.0502, 285.0397 | 1.175 | C21H20O13 | 5,6,7,3′,4′-Pentahydroxy flavanon 7-O-glucuronide | [25] |
7 | 20.29 | 479.11853 | 461.0697, 317.0650, 303.0495 | 0.266 | 20.47 | 477.10352 | 331.0298, 315.0500 | 1.609 | C22H22O12 | 5,7,2′-trihydroxy-6-methoxyflavanone 7-O-glucuronide | [25] |
8 | 20.34 | 303.04993 | 285.0389, 127.0386 | 0.003 | 20.46 | 301.03470 | 283.0243, 257.0451, 193.0138, 151.0032, 125.0240 | 1.398 | C15H10O7 | Viscidulin I | [27] |
9 | 21.98 | 465.10238 | 447.0919, 303.0494, 289.0704 | −0.801 | 21.76 | 463.08755 | 445.0768, 287.0552, 269.0449, 193.0347 | 0.967 | C21H20O12 | Isocarthamidin 7-O-glucuronide | [26] |
10 | 22.09 | 303.08609 | 285.0752, 257.0803 | −0.741 | 21.94 | 301.07108 | 283.0611, 257.0820, 161.0241, 139.0398 | 1.380 | C16H14O6 | Isomer of trihydroxy-methoxyflavanone | [27] |
11 | 22.69 | 463.08679 | 301.0705, 287.0547 | −0.675 | 22.83 | 461.07183 | 299.0551, 285.0395 | 0.819 | C21H18O12 | Scutellarin | [27] |
12 | 22.83 | 465.10196 | 447.0918, 429.0812, 303.0861, 289.0702 | −1.704 | 22.97 | 463.08740 | 445.1133, 287.0552, 269.0448, 193.0346 | 0.643 | C21H20O12 | Eriodictyol 7-O-glucuronide | [26] |
13 | 22.89 | 549.15970 | 531.1490, 513.1387, 483.1283, 429.1176, 411.1072 | −1.033 | 23.06 | 547.14534 | 529.1346, 487.1239, 457.1131, 427.1026, 367.0813, 337.0708 | 1.321 | C26H28O13 | Chrysin 6-C-arabinoside-8-C-glucoside | [25] |
14 | 23.97 | 549.15974 | 531.1488, 513.1385, 483.1280, 429.1176, 411.1072 | −0.960 | 23.74 | 547.14531 | 529.1346, 487.1239, 457.1131, 427.1026, 367.0813, 337.0708 | 1.266 | C26H28O13 | Chrysin 6-C-glucoside-8-C-arabinoside | [25] |
15 | 24.20 | 287.05499 | 269.0439, 237.0388, 219.0283 153.0177, 137.0229, 107.0487 | −0.085 | 24.05 | 285.04013 | 267.0292, 217.0499, 199.0394, 151.0030, 133.0290, 107.0134 | 2.686 | C15H10O6 | 5,7,2′,6′-tetrahydroxyflavone | [25] |
16 | 24.29 | 303.04980 | 285.0390, 229.0493, 195.0286 | −0.426 | 24.12 | 301.03486 | 273.0402, 229.0503,151.0034 | 1.930 | C15H10O7 | Isomer of pentahydroxyflavone | |
17 | 24.56 | 479.11810 | 317.0650, 303.0858 | −0.631 | 24.42 | 477.10312 | 301.0708, 286.0470 | 0.368 | C22H22O12 | 5,7,2′-Trihydroxy-8-methoxy flavanone 7-O-glucuronide | [25] |
18 | 24.90 | 417.11777 | 399.1070, 381.0966, 351.0861, 297.0755, 255.0649 | −0.572 | 25.04 | 415.10266 | 397.0925, 337.0708, 325.0707, 295.0602, 267.0657, 253.0498, | 0.726 | C21H20O9 | Isomer of chrysin 8-C-glucoside | [27] |
19 | 25.19 | 289.07056 | 271.0599, 127.0388 | −0.362 | 25.27 | 287.05568 | 269.0446, 125.0238 | 2.318 | C15H12O6 | Carthamidin | [25] |
20 | 25.23 | 479.11826 | 461.1073, 303.0859 | −0.297 | 25.36 | 477.10318 | 301.0707 | 0.896 | C22H22O12 | Isomer of trihydroxy-methoxyflavanone O-glucuronide | [25] |
21 | 25.47 | 303.08606 | 285.0754, 257.0806 | −0.840 | 25.49 | 301.07092 | 161.0242, 139.0399 | 0.848 | C16H14O6 | Isomer of trihydroxy-methoxyflavanone | [27] |
22 | 25.95 | 477.10254 | 459.0920, 301.0707, 286.0479 | −0.445 | 25.76 | 475.08755 | 299.0547, 284.0315 | 0.942 | C22H20O12 | 5,6,7-trihydroxy-8-methoxy-7-O-glucuronide | [25] |
23 | 26.02 | 289.07061 | 271.0598 | −0.189 | 25.87 | 287.05562 | 269.0457 | 2.109 | C15H12O6 | Isocarthamidin | [25] |
24 | 26.10 | 463.12326 | 301.0707, 287.0550 | −0.492 | 25.92 | 461.10843 | 299.0551, 285.0396 | 1.284 | C22H22O11 | 5,7,2′-trihydroxy-6-methoxyflavone 7-O-glucoside | [25] |
25 | 26.29 | 347.07605 | 332.0525, 314.0421 | −0.270 | 26.11 | 345.06076 | 330.0373, 315.0141 | 0.771 | C17H14O8 | Viscidulin III | [27] |
26 | 26.48 | 287.05490 | 269.0441, 241.0493, 169.0130, 119.0490 | −0.399 | 26.37 | 285.04016 | 267.0295, 239.0346, 137.0240, 117.0346 | 2.791 | C15H10O6 | Scutellarein | [25] |
27 | 26.88 | 447.09209 | 429.1021, 313.0900, 271.0602 | −0.219 | 26.97 | 445.07682 | 269.0449, 175.0242 | 0.634 | C21H18O11 | Apigenin 7-O-glucuronide | [28] |
28 | 27.10 | 433.11291 | 271.0598 | −0.031 | 27.17 | 431.09761 | 413.0876, 269.0451 | 0.781 | C21H20O10 | Apigenin 7-O-glucoside | [25] |
29 | 27.32 | 417.11766 | 399.1078, 381.0972, 351.0865, 297.0760 | −0.836 | 27.31 | 415.10263 | 397.0918, 337.0705, 325.0706, 295.0601 | 0.654 | C21H20O9 | Isomer of chrysin 8-C-glucoside | [27] |
30 | 27.59 | 463.12305 | 301.0704, 287.0547 | −0.946 | 27.41 | 461.10815 | 443.0602, 299.0547 | 0.677 | C22H22O11 | Isomer of trihydroxy methoxyflavone O-glucoside | |
31 | 27.72 | 449.10745 | 431.0968, 413.0864, 395.0760, 327.0346, 273.0755, 169.0136 | −0.864 | 27.57 | 447.09262 | 429.0816, 271.0605, 243.0655 | 0.967 | C21H20O11 | Dihydrobaicalin | [25] |
32 | 27.93 | 477.10263 | 301.0702, 286.0480 | −0.246 | 27.75 | 475.08746 | 299.0547, 284.0322 | 0.753 | C22H20O12 | 5,7,8-trihydroxy-6-methoxy flavone-7-O-glucuronide | [25] |
33 | 28.14 | 479.11813 | 461.1084, 303.0863 | −0.569 | 27.98 | 477.10336 | 301.0711 | 1.273 | C22H22O12 | Isomer of trihydroxy-methoxyflavanone O-glucuronide | |
34 | 28.22 | 447.09207 | 429.0802, 285.0755, 271.0599 | −0.263 | 28.09 | 445.07694 | 269.0450 | 0.904 | C21H18O11 | Baicalin | [28] |
35 | 28.51 | 417.11801 | 399.1061, 351.0861, 297.0748, 255.0648 | 0.003 | 28.57 | 415.10275 | 397.0924, 295.0607, 253.0502 | 0.943 | C21H20O9 | Chrysin 6-C-glucoside | [27] |
36 | 28.62 | 317.06558 | 302.0419, 153.0181 | 0.003 | 28.68 | 315.05048 | 300.0270, 283.0245, 151.0035 | 1.749 | C16H12O7 | Pedalitin | [25] |
37 | 28.72 | 447.09203 | 285.0755, 271.0598 | −0.353 | 28.77 | 445.07694 | 269.0450, 175.0243 | 0.904 | C21H18O11 | Norwogonin 7-O-glucuronide | [28] |
38 | 28.76 | 477.10239 | 301.0702, 286.0480 | −0.760 | 28.84 | 475.08768 | 299.0551, 284.0320 | 1.216 | C22H20O12 | 5,7,2′-trihydroxy-6-methoxy flavone 7-O-glucuronoide | [25] |
39 | 28.78 | 301.07053 | 286.0471, 167.0334 | −0.447 | 28.89 | 299.05563 | 284.0318, 271.0606, 212.0472 | 2.058 | C16H12O6 | 4′-hydroxywogonin | [29] |
40 | 28.92 | 463.12326 | 301.0703, 286.0477 | −0.922 | 28.97 | 461.10846 | 446.0840, 299.0549 | 1.349 | C22H22O11 | (2S)-5,7-Dihydroxy-6-methoxyflavanone 7-O-glucuronide | [27] |
41 | 28.95 | 433.11258 | 415.1751, 271.0598, 255.0648 | −0.792 | 28.99 | 431.09790 | 269.0445, 253.0496 | 1.454 | C21H20O10 | Baicalein 7-O-glucoside | [27] |
42 | 29.21 | 431.09689 | 255.0649, 238.0605, 146.3212 | −0.889 | 29.13 | 429.08185 | 253.0501, 175.0242 | 0.529 | C21H18O10 | Chrysin 7-O-glucuronide | [25] |
43 | 29.25 | 361.09169 | 346.0679, 331.0446, 328.0574, 313.0340 | −0.288 | nd | nd | nd | nd | C18H16O8 | Isomer of trihydroxy-trimethoxyflavone | |
44 | 29.40 | 461.10787 | 299.0910, 285.0754, 271.0597 | 0.070 | 29.23 | 459.09261 | 283.0601, 268.0370 | 0.920 | C22H20O11 | Oroxylin A-7-O-glucuronide | [25] |
45 | 29.62 | 477.10275 | 301.0703, 286.0473 | −0.005 | 29.48 | 475.08780 | 299.0551, 284.0318 | 1.468 | C22H20O12 | Isomer of trihydroxy methoxy flavone O-glucuronoide | [25] |
46 | 29.76 | 287.05469 | 269.0444, 153.0181, 137.0233 | −1.131 | 29.61 | 285.04013 | 241.0500, 151.0032 | 2.686 | C15H10O6 | Isoscutellarein | [25] |
47 | 29.81 | 447.09201 | 429.0816, 285.0757, 271.0601 | −0.398 | 29.69 | 445.07700 | 427.0663, 401.0869, 269.0450, 251.0345 | 1.039 | C21H18O11 | Baicalein 6-O-glucuronide | [25] |
48 | 29.91 | 331.08102 | 316.0572, 298.0467, 287.0546, 197.0442 | −0.632 | 29.81 | 329.06564 | 314.0421, 299.0188, 195.0291 | 0.185 | C17H14O7 | Isomer of trihydroxy dimethoxyflavone | [27] |
49 | 30.05 | 433.11276 | 271.0597 | −0.377 | nd | nd | nd | nd | C21H20O10 | Isomer of dihydroxyflavanone O-glucoside | |
50 | 30.08 | 461.10784 | 285.0753, 271.0591 | −0.005 | 30.08 | 459.09262 | 283.0602, 268.0370, 175.0241 | 0.941 | C22H20O11 | Wogonoside | [25] |
51 | 30.40 | 347.07605 | 332.0522, 317.0287, 314.0417 | −0.270 | 30.44 | 345.06094 | 330.0364, 315.0134 | 1.293 | C17H14O8 | Isomer of tetrahydroxy-dimethoxyflavone | |
52 | 30.72 | 491.11816 | 315.0858, 300.0634 | −0.494 | 30.68 | 489.10320 | 313.0706, 175.0244 | 0.915 | C23H22O12 | 5,7-dihydroxy-8,2′-dimethoxyflavone 7-O-glucuronide | [27] |
53 | 31.11 | 301.07053 | 286.0469, 255.0651, 121.0282 | −0.447 | 30.98 | 299.05530 | 284.0317, 137.0239, 117.0350 | 0.955 | C16H12O6 | Hispidulin | [29] |
54 | 31.32 | 361.09128 | 346.0677, 331.0444, 328.0573, 313.0338, 227.0547, 212.0311 | −1.423 | 31.20 | 359.07629 | 344.0527, 329.0293, 326.0425, 254.9857, 225.0396, 210.0164 | 0.407 | C18H16O8 | 5,2′,5′-trihydroxy-6,7,8-trimethoxyflavone | [27] |
55 | 31.57 | 331.08096 | 316.0574, 301.0340, 298.0469 | −0.813 | 31.53 | 329.06607 | 314.0424, 299.0192 | 1.492 | C17H14O7 | Isomer of trihydroxy dimethoxyflavone | [27] |
56 | 31.61 | 301.07058 | 286.0465, 283.0465, 255.0646 | −0.281 | 31.60 | 299.05551 | 284.0323, 281.0456, 117.0353 | 1.657 | C16H12O6 | Isomer of trihydroxy-methoxyflavone | |
57 | 31.84 | 271.06006 | 253.0494, 225.0544 | −0.147 | 31.85 | 269.04507 | 241.0501, 225.0552, 171.0447 | 2.305 | C15H10O5 | Apigenin | [25] |
58 | 31.93 | 331.08111 | 316.0574, 301.0340, 298.0469 | −0.360 | 31.96 | 329.06617 | 314.0424, 299.0198 | 1.765 | C17H14O7 | Viscidulin II | [27] |
59 | 32.45 | 331.08115 | 316.0576, 298.0471, 270.0523, 183.0287, 169.0131 | −0.239 | 32.35 | 329.06613 | 314.0424, 191.0344, 137.0239 | 1.674 | C17H14O7 | 5,7,6′-trihydroxy-8,2′-dimethoxyflavone | [27] |
60 | 32.66 | 361.09137 | 346.0679, 331.0445, 328.0574 | −1.174 | 32.55 | 359.07651 | 344.0519, 329.0282, 254.9849 | 1.020 | C18H16O8 | Isomer of trihydroxy-trimethoxyflavone | [27] |
61 | 32.70 | 301.07047 | 286.0469, 283.0600, 255.0648, 105.0333 | −0.646 | 32.59 | 299.05557 | 284.0321, 153.0190 | 1.857 | C16H12O6 | Tenaxin II | [27] |
62 | 32.83 | 271.05975 | 253.0493, 225.0544, 197.0596 | −1.291 | 32.73 | 269.04501 | 251.0344, 241.0501, 223.0396, 195.0447, 169.0654 | 2.082 | C15H10O5 | Baicalein | [25] |
63 | 32.83 | 287.05493 | 269.0441, 243.0650, 225.0544 | −0.294 | nd | nd | nd | nd | C15H10O6 | Isomer of tetrahydroxyflavone | [25] |
64 | 33.21 | 331.08099 | 316.0575, 301.0341, 298.0470 | −0.723 | 33.22 | 329.06583 | 314.0425, 299.0197 | 0.762 | C17H14O7 | 5,8,2′-trihydroxy-6,7-dimethoxyflavone | [27] |
65 | 33.44 | 301.07056 | 286.0469, 283.0601, 255.0648, 183.0288 | −0.347 | 33.46 | 299.05569 | 284.0322, 255.0661, 212.0476, 165.9915, 110.0015 | 2.259 | C16H12O6 | 5,6,7-trihydroxy-4′-methoxyflavone | [25,27] |
66 | 33.82 | 331.08090 | 316.0574, 301.0339, 298.0468 | −0.994 | 33.76 | 329.06591 | 314.0424, 299.0190 | 1.005 | C17H14O7 | 5,7,2′-trihydroxy-8,6′-dimethoxyflavone | [25] |
67 | 35.32 | 331.08102 | 316.0573, 298.0468, 287.0547, 270.0521, 197.0442 | −0.632 | 35.23 | 329.06595 | 314.0418, 299.0186, 285.0397, 268.9837 | 1.127 | C17H14O7 | Isomer of trihydroxy dimethoxyflavone | [27] |
68 | 36.43 | 361.09219 | 346.0680, 331.0446, 328.0573, 313.0341 | 1.097 | 36.41 | 359.07550 | 344.0522, 329.0289, 326.0419 | −1.793 | C18H16O8 | Isomer of trihydroxy-trimethoxyflavone | |
69 | 36.90 | 345.09689 | 330.0730, 270.6946 | 0.031 | 36.81 | 343.08152 | 328.0576, 313.0345, 237.0397, 195.0293, 180.0058, 164.9828 | 0.847 | C18H16O7 | Skullcapflavone | [25] |
70 | 37.09 | 285.07547 | 270.0520, 239.0702, 105.0334 | −0.982 | 37.03 | 283.06080 | 268.0370, 163.0041, 110.0013 | 2.473 | C16H12O5 | Wogonin | [25] |
71 | 37.18 | 255.06493 | 209.0595, 171.0287 | −1.001 | 37.12 | 253.04984 | 209.0602, 143.0497, 107.0134 | 1.204 | C15H10O4 | Chrysin | [25] |
72 | 37.78 | 315.08622 | 300.0649, 285.0414 | −0.300 | 37.73 | 313.07117 | 298.0475, 283.0243, 180.0060 | 1.614 | C17H14O6 | 5,8-dihydroxy-6,7-dimethoxyflavone | [25] |
73 | 38.09 | 375.10721 | 360.0836, 345.0599, 327.0495, 227.0548 | −0.624 | 38.02 | 373.09218 | 358.0685, 343.0451, 303.0506, 194.9932 | 1.035 | C19H18O8 | Skullcapflavone II | [25] |
74 | 38.14 | 285.07561 | 270.0518, 239.0699 | −0.491 | 38.10 | 283.06076 | 268.0373, 239.0710 | 2.332 | C16H12O5 | Oroxylin A | [25] |
75 | 38.26 | 315.08625 | 300.0624, 271.0599 | −0.205 | 38.22 | 313.07117 | 298.0475, 283.0243, 180.0063 | 1.614 | C17H14O6 | 5,7-dihydroxy-6,8-dimethoxyflavone | [25] |
76 | 39.26 | 345.09689 | 330.0734, 315.0499, 284.0679, 227.0549 | 0.031 | 39.21 | 343.08151 | 328.0580, 313.0348, 282.0532, 269.0454 | 0.818 | C18H16O7 | Tenaxin I | [25] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, B.; Zhu, H.; Liu, Z.; He, X.; Sun, J.; Li, Y.; Wu, X.; Pehrsson, P.; Zhang, Y.; Yu, L. Chemical Compositions of Scutellaria baicalensis Georgi. (Huangqin) Extracts and Their Effects on ACE2 Binding of SARS-CoV-2 Spike Protein, ACE2 Activity, and Free Radicals. Int. J. Mol. Sci. 2024, 25, 2045. https://doi.org/10.3390/ijms25042045
Gao B, Zhu H, Liu Z, He X, Sun J, Li Y, Wu X, Pehrsson P, Zhang Y, Yu L. Chemical Compositions of Scutellaria baicalensis Georgi. (Huangqin) Extracts and Their Effects on ACE2 Binding of SARS-CoV-2 Spike Protein, ACE2 Activity, and Free Radicals. International Journal of Molecular Sciences. 2024; 25(4):2045. https://doi.org/10.3390/ijms25042045
Chicago/Turabian StyleGao, Boyan, Hanshu Zhu, Zhihao Liu, Xiaohua He, Jianghao Sun, Yanfang Li, Xianli Wu, Pamela Pehrsson, Yaqiong Zhang, and Liangli Yu. 2024. "Chemical Compositions of Scutellaria baicalensis Georgi. (Huangqin) Extracts and Their Effects on ACE2 Binding of SARS-CoV-2 Spike Protein, ACE2 Activity, and Free Radicals" International Journal of Molecular Sciences 25, no. 4: 2045. https://doi.org/10.3390/ijms25042045
APA StyleGao, B., Zhu, H., Liu, Z., He, X., Sun, J., Li, Y., Wu, X., Pehrsson, P., Zhang, Y., & Yu, L. (2024). Chemical Compositions of Scutellaria baicalensis Georgi. (Huangqin) Extracts and Their Effects on ACE2 Binding of SARS-CoV-2 Spike Protein, ACE2 Activity, and Free Radicals. International Journal of Molecular Sciences, 25(4), 2045. https://doi.org/10.3390/ijms25042045