Identification and Regulation of Hypoxia-Tolerant and Germination-Related Genes in Rice
Abstract
:1. Introduction
2. Molecular Genetic Basis for Hypoxic Germination Tolerance in Rice
2.1. Mapping of QTLs for Hypoxia Tolerance in Rice
Combinations of Parents | Group Type | Evaluation Index of Hypoxia Resistance | Range of Contribution Rates (R2) | QTL/Candidate Genes | Chromosomes | References |
---|---|---|---|---|---|---|
Khao Hlan On × IR64 | BC2F2 | Survival percentage | 17.9–33.5% | qAG1-2, qAG3-1, qAG7-2, qAG9-1, qAG9-2 | 1, 3, 7, 9 | [42] |
Ma-Zhan Red × IR42 | F2:3 | Survival percentage | 31.7% | qAG7.1 | 7 | [38] |
Nanhi × IR64 | F2:3 | Seedling survival rate | 13.93–22.3% | qAG7, qAG11, qAG2.1 | 2, 7, 11 | [39] |
Nipponbare × IR64 | RIL | Anaerobic response index | 27% | qAG1-2 | 1 | [40] |
ASD1 × IR64 | F2:3 | Survival percentage | 15.1–29.4% | qAG7, qAG9 | 7, 9 | [54] |
Lianjing 15 × Huanglizhan | F2:3 | Germ sheath length | 11.7–24% | qGS1, qGS3, qGS9, qGS10 | 1, 3, 9, 10 | [43] |
TN1 × CJ06 | DH | Mesocotyl length, Chlorophyll damage index, plant height, survival rate, dry mass relative damage rate | 10.6–41.1% | qLOE-12 qPH12 et al. | 1, 2, 3, 4, 6, 8, et al. | [45] |
Xiushui79 C Bao, NIP × Kasalath | RIL, BIL | Anoxic response index | 5.8–16.2% | qSAT-2-R, qSAT-2-B et al. | 2, 3, 5, 7, et al. | [55] |
Kinmaz × DV85 | RIL | Anaerobic germination | 12.05–19.06% | qAG-1, qAG-2 et al. | 1, 2, 5, 7, et al. | [51] |
USSR5 × N22 | F2:3 | Anoxia germinability | 10.99–15.51% | qAG-5, qAG-11 | 5, 11 | [54] |
Kharsu80A × IR64 | F2:3 | Seedling survival rate | 8.1–12.6% | qAG7.1, qAG7.2, qAG7.3, qAG3 | 3, 7 | [47] |
94 rice genotypes | - | Anaerobic germination | >20% | LOC_Os03g31550, LOC_Os12g31350 | 3, 12 | |
432 Indian rice | - | Germ sheath length | - | LOC_Os06g03520 | 6 | [56] |
Kalarata × NSIC Rc222/NSIC Rc238 | BC1F2:3 | Survival, seedling height | 11.96–16.01%, 13.53–34.30% | qSUR3-1, qSUR5-1, qSUR6-1, qSH1–1 et al. | 1, 3, 5, 6, et al. | [48] |
Zhaxima × Nanjing46 | RIL | Coleoptile length | 11.24% | qAG-12 | 12 | [52] |
209 natural rice populations | - | Coleoptile length (CL) and coleoptile diameter (CD) | - | Os01g0911700, Os05g0560900, Os05g0562200, Os06g0548200 | 1, 5, 6 | [49] |
2.2. Phytohormone Regulation and Sugar Metabolism Pathways in Hypoxia-Tolerant Rice
2.3. Hypoxia Tolerance Genes and Functions in Rice
Type | Genetic Symbol | Gene Annotation | MSU-Locus | References |
---|---|---|---|---|
Transcription factor | OsABF1; OsbZIP12 | bZIP transcription factor | LOC_Os01g64730 | [26] |
OsPHR2 | MYB. transcription factor | LOC_Os07g25710 | [77] | |
OsEREBP1 | EREBP. transcription factor | LOC_Os02g54160 | [78] | |
OsbZIP72 | bZIP. transcription factor | LOC_Os09g28310 | [79] | |
Gene | Sub1A | flood-tolerant gene | LOC_Os09g28180 | [33] |
OsCIPK15 | calcineurin-like neurophosphatase B subunit-interacting protein kinase gene | LOC_Os11g02240 | [72] | |
OsNAAT1 | nicotinamide aminotransferase gene | LOC_Os02g20360 | [80] | |
OsHIGD2 | hypoxia-induced gene | LOC_Os07g47670 | [25] | |
MHZ6; OsEIL1 | mao huzi 6 gene | LOC_Os03g20790 | [81] | |
OsABA8ox1 | ABA 8′-Hydroxylase gene | LOC_Os02g47470 | [82] | |
Adh1 | alcohol dehydrogenase gene | LOC_Os11g10480 | [28] | |
OVP3 | vacuolar H+-pyrophosphatase gene | LOC_Os02g55890 | [83] | |
OsAmy3D | alpha-amylase isozyme 3D | LOC_Os08g36910 | [84] | |
D14L | DWARF 14 LIKE; alpha/ beta-fold hydrolase | LOC_Os03g32270 | [85] | |
OsSMAX1 | SMAX1-Like (SMXL) gene | LOC_Os08g15230 | [86] | |
OsABA8ox3 | ABA 8′-Hydroxylase | LOC_Os09g28390 | [87] | |
OsETOL1 | homolog of ETHYLENE OVERPRODUCER | LOC_Os03g18360 | [88] | |
OsACS2 | aminocyclopropane-1-carboxylate synthase | LOC_Os04g48850 | [89] | |
OsiSAP8 | O. sativa subspecies indica stress-associated protein gene | LOC_Os06g41010 | [90] | |
OsTPP7 | trehalose-6-phosphate phosphatase | LOC_Os09g20390 | [24] | |
Kinase | SnRK1A | Snf1 protein kinase | LOC_Os05g45420 | [91] |
OsMAP1 | Mitogen-activated protein | LOC_Os03g17700 | [92] | |
OsGSK2 | GSK3/SHAGGY-like kinase | LOC_Os05g11730 | [93] | |
OsPAO5 | polyamine oxidase 5 | LOC_Os04g57560 | [94] | |
OsPME1 | pectin methyl esterase | LOC_Os03g19610 | [95] | |
OsCRTISO | carotenoid isomerase gene; zebra leaf | LOC_Os11g36440 | [96] | |
OsBADH1 | betaine aldehyde dehydrogenase | LOC_Os07g48950 | [97] | |
OsCCD7; HTD1 | carotenoid cleavage dioxygenase | LOC_Os04g46470 | [98] | |
Responsive factor | OsEIL1; OsEIL1a | ethylene-insensitive | LOC_Os03g20780 | [99] |
Protein | CycP2;1; CYC U2 | U-type cyclin | LOC_Os04g46660 | [100] |
SLR1; OsGAI; Slr1-d | slender rice 1; GRAS-domain protein | LOC_Os03g49990 | [101] | |
OSISAP1; OsSAP1 | O. sativa subspecies indica stress-associated protein gene | LOC_Os09g31200 | [102] | |
OsDOG; OsSAP11 | A20/AN1 zinc-finger protein | LOC_Os08g39450 | [103] |
3. Sequence Variations and Hormonal Responses of Rice Hypoxia-Tolerant Genes
3.1. Formatting of Mathematical Components
3.2. Analysis of Population Differences in Genes
3.3. Haplotype Analysis of Hypoxia Tolerance Genes
4. Discussion and Prospects
4.1. Discussion
4.2. Prospects of Rice Hypoxia Tolerance Genes in Breeding
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jian, C. Evolution and Development of Rice Planting Pattern. J. Shenyang Agric. Univ. 2003, 34, 389–393. [Google Scholar]
- Farooq, M.; Siddique, K.H.M.; Rehman, H.; Aziz, T.; Lee, D.J.; Wahid, A. Rice direct seeding: Experiences, challenges and opportunities. Soil Tillage Res. 2011, 111, 87–98. [Google Scholar] [CrossRef]
- Ge, W.W.; Ye, C.; Fei, Q.Y.; Jun, W.X.; Mei, W.Y. The Current Status and Progresses of the Research on Direct Seeding Rice. Rev. China Agric. Sci. Technol. 2006, 8, 32–36. [Google Scholar]
- Turner, F.T.; Chen, C.C.; Mccauley, G.N. Morphological Development of Rice Seedlings in Water at Controlled Oxygen Levels1. Agron. J. 1981, 73, 566–570. [Google Scholar] [CrossRef]
- Yang, Y.; Yaohua, S.; Chunlong, Z. Rice germination and biochemical indicator variation in the hypoxic condition. J. Yangzhou Univ. 2020, 41, 16–20. [Google Scholar]
- Voesenek, L.; Bailey-Serres, J. Flooding tolerance: O2 sensing and survival strategies. Curr. Opin. Plant Biol. 2013, 16, 647–653. [Google Scholar] [CrossRef] [PubMed]
- Kawai, M.; Uchimiya, H. Coleoptile senescence in rice (Oryza sativa L.). Ann. Bot. 2000, 86, 405–414. [Google Scholar] [CrossRef]
- Luo, P.; Di, D.W.; Wu, L.; Yang, J.W.; Lu, Y.F.; Shi, W.M. MicroRNAs Are Involved in Regulating Plant Development and Stress Response through Fine-Tuning of TIR1/AFB-Dependent Auxin Signaling. Int. J. Mol. Sci. 2022, 23, 510. [Google Scholar] [CrossRef]
- Guo, F.; Han, N.; Xie, Y.K.; Fang, K.; Yang, Y.N.; Zhu, M.Y.; Wang, J.H.; Bian, H.W. The miR393a/target module regulates seed germination and seedling establishment under submergence in rice (Oryza sativa L.). Plant Cell Environ. 2016, 39, 2288–2302. [Google Scholar] [CrossRef]
- Jung, J.K.H.; McCouch, S. Getting to the roots of it: Genetic and hormonal control of root architecture. Front. Plant Sci. 2013, 4, 32. [Google Scholar] [CrossRef]
- Shriram, V.; Kumar, V.; Devarumath, R.M.; Khare, T.S.; Wani, S.H. MicroRNAs As Potential Targets for Abiotic Stress Tolerance in Plants. Front. Plant Sci. 2016, 7, 817. [Google Scholar] [CrossRef]
- Gismondi, A.; Marco, G.D.; Camoni, L.; Montesano, C.; Braglia, R.; Marra, M.; Canini, A. MicroRNA Expression Profiles inMoringa oleiferaLam. Seedlings at Different Growth Conditions. J. Plant Growth Regul. 2022, 42, 2115–2123. [Google Scholar] [CrossRef]
- Meng, Y.; Ma, X.; Chen, D.; Wu, P.; Chen, M. MicroRNA-mediated signaling involved in plant root development. Biochem. Biophys. Res. Commun. 2010, 393, 345–349. [Google Scholar] [CrossRef] [PubMed]
- Loreti, E.; Striker, G.G. Plant Responses to Hypoxia: Signaling and Adaptation. Plants 2020, 9, 1704. [Google Scholar] [CrossRef] [PubMed]
- Si-Ammour, A.; Windels, D.; Arn-Bouldoires, E.; Kutter, C.; Ailhas, J.; Meins, F.; Vazquez, F. miR393 and secondary siRNAs regulate expression of the TIR1/AFB2 auxin receptor clade and auxin-related development of Arabidopsis leaves. Plant Physiol. 2011, 157, 683–691. [Google Scholar] [CrossRef] [PubMed]
- Jones-Rhoades, M.W.; Bartel, D.P. Computational identification of plant MicroRNAs and their targets, including a stress-induced miRNA. Mol. Cell 2004, 14, 787–799. [Google Scholar] [CrossRef] [PubMed]
- Bian, H.W.; Xie, Y.K.; Guo, F.; Han, N.; Ma, S.Y.; Zeng, Z.H.; Wang, J.H.; Yang, Y.N.; Zhu, M.Y. Distinctive expression patterns and roles of the miRNA393/TIR1 homolog module in regulating flag leaf inclination and primary and crown root growth in rice (Oryza sativa). New Phytol. 2012, 196, 149–161. [Google Scholar] [CrossRef] [PubMed]
- Shi, M.Y.; Hu, X.; Wei, Y.; Hou, X.; Yuan, X.; Liu, J.; Liu, Y.P. Genome-Wide Profiling of Small RNAs and Degradome Revealed Conserved Regulations of miRNAs on Auxin-Responsive Genes during Fruit Enlargement in Peaches. Int. J. Mol. Sci. 2017, 18, 2599. [Google Scholar] [CrossRef] [PubMed]
- Pinweha, N.; Asvarak, T.; Viboonjun, U.; Narangajavana, J. Involvement of miR160/miR393 and their targets in cassava responses to anthracnose disease. J. Plant Physiol. 2015, 174, 26–35. [Google Scholar] [CrossRef] [PubMed]
- Li, K.; Wei, Y.H.; Wang, R.H.; Mao, J.P.; Tian, H.Y.; Chen, S.Y.; Li, S.H.; Tahir, M.M.; Zhang, D. Mdm-MIR393b-mediated adventitious root formation by targeted regulation of MdTIR1A expression and weakened sensitivity to auxin in apple rootstock. Plant Sci. 2021, 308, 14. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, K.; Li, D.; Yan, J.; Zhang, W. Enhanced Cold Tolerance and Tillering in Switchgrass (Panicum virgatum L.) by Heterologous Expression of Osa-miR393a. Plant Cell Physiol. 2017, 58, 2226–2240. [Google Scholar] [CrossRef] [PubMed]
- Voesenek, L.; Bailey-Serres, J. Flood adaptive traits and processes: An overview. New Phytol. 2015, 206, 57–73. [Google Scholar] [CrossRef] [PubMed]
- Hartman, S.; Sasidharan, R.; Voesenek, L. The role of ethylene in metabolic acclimations to low oxygen. New Phytol. 2021, 229, 64–70. [Google Scholar] [CrossRef] [PubMed]
- Kretzschmar, T.; Pelayo, M.A.F.; Trijatmiko, K.R.; Gabunada, L.F.M.; Alam, R.; Jimenez, R.; Mendioro, M.S.; Slamet-Loedin, I.H.; Sreenivasulu, N.; Bailey-Serres, J.; et al. A trehalose-6-phosphate phosphatase enhances anaerobic germination tolerance in rice. Nat. Plants 2015, 1, 5. [Google Scholar] [CrossRef]
- Kudahettige, N.P.; Pucciariello, C.; Parlanti, S.; Alpi, A.; Perata, P. Regulatory interplay of the Sub1A and CIPK15 pathways in the regulation of α-amylase production in flooded rice plants. Plant Biol. 2011, 13, 611–619. [Google Scholar] [CrossRef]
- Hossain, M.A.; Lee, Y.; Cho, J.I.; Ahn, C.H.; Lee, S.K.; Jeon, J.S.; Kang, H.; Lee, C.H.; An, G.; Park, P.B. The bZIP transcription factor OsABF1 is an ABA responsive element binding factor that enhances abiotic stress signaling in rice. Plant Mol. Biol. 2010, 72, 557–566. [Google Scholar] [CrossRef]
- Hwang, S.T.; Choi, D. A novel rice protein family of OsHIGDs may be involved in early signalling of hypoxia-promoted stem growth in deepwater rice. Plant Cell Rep. 2016, 35, 2021–2031. [Google Scholar] [CrossRef]
- Saika, H.; Matsumura, H.; Takano, T.; Tsutsumi, N.; Nakazono, M. A point mutation of Adh1 gene is involved in the repression of coleoptile elongation under submergence in rice. Breed. Sci. 2006, 56, 69–74. [Google Scholar] [CrossRef]
- Zhou, J.; Jiao, F.C.; Wu, Z.C.; Li, Y.Y.; Wang, X.M.; He, X.W.; Zhong, W.Q.; Wu, P. OsPHR2 is involved in phosphate-starvation signaling and excessive phosphate accumulation in shoots of plants. Plant Physiol. 2008, 146, 1673–1686. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, J.; Chen, S.J.; Ma, X.S.; Wei, H.B.; Chen, C.; Gao, N.N.; Zou, Y.Q.; Kong, D.Y.; Li, T.F.; et al. An APETALA2/ethylene responsive factor, OsEBP89 knockout enhances adaptation to direct-seeding on wet land and tolerance to drought stress in rice. Mol. Genet. Genom. 2020, 295, 941–956. [Google Scholar] [CrossRef] [PubMed]
- Septiningsih, E.M.; Pamplona, A.M.; Sanchez, D.L.; Neeraja, C.N.; Vergara, G.V.; Heuer, S.; Ismail, A.M.; Mackill, D.J. Development of submergence-tolerant rice cultivars: The Sub1 locus and beyond. Ann Bot. 2009, 103, 151–160. [Google Scholar] [CrossRef] [PubMed]
- Xie, W.; Ding, C.Q.; Hu, H.T.; Dong, G.J.; Zhang, G.H.; Qian, Q.; Ren, D.Y. Molecular Events of Rice AP2/ERF Transcription Factors. Int. J. Mol. Sci. 2022, 23, 12013. [Google Scholar] [CrossRef] [PubMed]
- Singh, N.; Dang, T.T.; Vergara, G.V.; Pandey, D.M.; Sanchez, D.; Neeraja, C.N.; Septiningsih, E.M.; Mendioro, M.; Tecson-Mendoza, E.M.; Ismail, A.M.; et al. Molecular marker survey and expression analyses of the rice submergence-tolerance gene SUB1A. Theor. Appl. Genet. 2010, 121, 1441–1453. [Google Scholar] [CrossRef]
- Tsuji, H.; Meguro, N.; Suzuki, Y.; Tsutsumi, N.; Hirai, A.; Nakazono, M. Induction of mitochondrial aldehyde dehydrogenase by submergence facilitates oxidation of acetaldehyde during re-aeration in rice. FEBS Lett. 2003, 546, 369–373. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.H.; Zhao, Y.; Wei, X.H.; Li, C.Y.; Wang, A.; Zhao, Q.; Li, W.J.; Guo, Y.L.; Deng, L.W.; Zhu, C.R.; et al. Genome-wide association study of flowering time and grain yield traits in a worldwide collection of rice germplasm. Nat. Genet. 2012, 44, 32–39. [Google Scholar] [CrossRef]
- Huang, X.H.; Wei, X.H.; Sang, T.; Zhao, Q.A.; Feng, Q.; Zhao, Y.; Li, C.Y.; Zhu, C.R.; Lu, T.T.; Zhang, Z.W.; et al. Genome-wide association studies of 14 agronomic traits in rice landraces. Nat. Genet. 2010, 42, 961–967. [Google Scholar] [CrossRef]
- Angaji, S.A.; Septiningsih, E.M.; Mackill, D.J.; Ismail, A.M. QTLs associated with tolerance of flooding during germination in rice (Oryza sativa L.). Euphytica 2010, 172, 159–168. [Google Scholar] [CrossRef]
- Septiningsih, E.M.; Ignacio, J.C.I.; Sendon, P.M.D.; Sanchez, D.L.; Ismail, A.M.; Mackill, D.J. QTL mapping and confirmation for tolerance of anaerobic conditions during germination derived from the rice landrace Ma-Zhan Red. Theor. Appl. Genet. 2013, 126, 1357–1366. [Google Scholar] [CrossRef]
- Baltazar, M.D.; Ignacio, J.C.I.; Thomson, M.J.; Ismail, A.M.; Mendioro, M.S.; Septiningsih, E.M. QTL mapping for tolerance of anaerobic germination from IR64 and the aus landrace Nanhi using SNP genotyping. Euphytica 2014, 197, 251–260. [Google Scholar] [CrossRef]
- Hsu, S.K.; Tung, C.W. Genetic Mapping of Anaerobic Germination-Associated QTLs Controlling Coleoptile Elongation in Rice. Rice 2015, 8, 12. [Google Scholar] [CrossRef] [PubMed]
- Sun, K.; Li, D.; Yang, J.; Dong, J.; Yan, X.; Luo, L.; Liu, Y.; Xiao, W.; Wang, H.; Chen, Z. Genome-wide association analysis for rice submergence seedling rate. Sci. Agric. Sin. 2019, 52, 385–398. [Google Scholar]
- Zhang, M.C. Genome-wide Association Study of Rice Flooding Tolerance during Germination. Master’s Thesis, Chinese Academy of Agricultural Sciences, Beijing, China, 2016. [Google Scholar]
- Sun, Z.-G.; Wang, B.-X.; Zhou, Z.-L.; Fang, L.; Chi, M.; Li, J.-F.; Liu, J.-B.; Bello, B.K.; Xu, D.-Y. Screening of germplasm resources and QTL mapping for germinability under submerged condition in rice (Oryza sativa L.). Acta Agron. Sin. 2021, 47, 61–70. [Google Scholar] [CrossRef]
- Heng, Z.G.; Li, Z.D.; Kai, H.S.; Yan, S.U.; Tie, A.J.L.; Guo, L.B.; Qian, Q. QTL analysis of traits concerned submergence tolerance at seedling stage in rice (Oryza sativa L.). Acta Agron. Sin. 2006, 32, 1280–1286. [Google Scholar]
- Yuchun, R.; Han, L.; Saqing, X.; Yi, W. Identifying of QTL forresistance to submergence in rice. J. Zhejiang Norm. Univ. 2020, 43, 312–319. [Google Scholar]
- Gonzaga, Z.J.C.; Carandang, J.; Singh, A.; Collard, B.C.Y.; Thomson, M.J.; Septiningsih, E.M. Mapping QTLs for submergence tolerance in rice using a population fixed for SUB1A tolerant allele. Mol. Breed. 2017, 37, 47. [Google Scholar] [CrossRef]
- Baltazar, M.D.; Ignacio, J.C.I.; Thomson, M.J.; Ismail, A.M.; Mendioro, M.S.; Septiningsih, E.M. QTL mapping for tolerance to anaerobic germination in rice from IR64 and the aus landrace Kharsu 80A. Breed. Sci. 2019, 69, 227–233. [Google Scholar] [CrossRef] [PubMed]
- Ghosal, S.; Casal, C.; Quilloy, F.A.; Septiningsih, E.M.; Mendioro, M.S.; Dixit, S. Deciphering Genetics Underlying Stable Anaerobic Germination in Rice: Phenotyping, QTL Identification, and Interaction Analysis. Rice 2019, 12, 15. [Google Scholar] [CrossRef] [PubMed]
- Su, L.; Yang, J.; Li, D.D.; Peng, Z.; Xia, A.Y.; Yang, M.; Luo, L.X.; Huang, C.H.; Wang, J.F.; Wang, H.; et al. Dynamic genome-wide association analysis and identification of candidate genes involved in anaerobic germination tolerance in rice. Rice 2021, 14, 22. [Google Scholar] [CrossRef]
- Zhang, C.P.; Li, M.; Rey, J.D.; Feng, T.; Lafitte, R.; Zheng, T.Q.; Lv, Y.M.; Wu, F.C.; Fu, B.Y.; Xu, J.L.; et al. Simultaneous improvement and genetic dissection of drought and submergence tolerances in rice (Oryza sativa L.) by selective introgression. Front. Plant Sci. 2023, 14, 11. [Google Scholar] [CrossRef]
- Mingyu, H. The QTL Mapping of Low Temperature Germinability and Anoxia Germinability in Rice. Master’s Thesis, Nanjing Agricultural University, Nanjing, China, 2003. [Google Scholar]
- Suobing, Z.; Yunhui, Z.; Haiyuan, C.; Jing, L. Identification of QTL involved in Anaerobic Germination Tolerance by RlL Population in Rice. North China J. Agron. 2020, 35, 31–35. [Google Scholar]
- Bailey-Serres, J.; Fukao, T.; Gibbs, D.J.; Holdsworth, M.J.; Lee, S.C.; Licausi, F.; Perata, P.; Voesenek, L.A.; van Dongen, J.T. Making sense of low oxygen sensing. Trends Plant Sci. 2012, 17, 129–138. [Google Scholar] [CrossRef]
- Ignacio, J.C.I.; Zaidem, M.; Casal, C., Jr.; Dixit, S.; Kretzschmar, T.; Samaniego, J.M.; Mendioro, M.S.; Weigel, D.; Septiningsih, E.M. Genetic mapping by sequencing more precisely detects loci responsible for anaerobic germination tolerance in rice. Plants 2021, 10, 705. [Google Scholar] [CrossRef]
- Wang, Y.; Guo, Y.; Hong, D.-L. QTL Analysis of Anoxic Tolerance at Seedling Stage in Rice. Rice Sci. 2010, 17, 192–198. [Google Scholar] [CrossRef]
- Zhang, M.; Lu, Q.; Wu, W.; Niu, X.; Wang, C.; Feng, Y.; Xu, Q.; Wang, S.; Yuan, X.; Yu, H. Association Mapping Reveals Novel Genetic Loci Contributing to Flooding Tolerance during Germination in Indica Rice. Front. Plant Sci. 2017, 8, 678. [Google Scholar] [CrossRef] [PubMed]
- Fang, W.; Tongwen, H.; Qingxin, S.; Wenxue, Y.; Xiaoguang, S.; Jinfang, C.; Jiayang, L.; Jeffrey, C.Z. The Rice Circadian Clock Regulates Tiller Growth and Panicle Development through Strigolactone Signaling and Sugar Sensing. Plant Cell 2010, 10, 3124–3138. [Google Scholar]
- Gibbs, J.; Morrell, S.; Valdez, A.; Setter, T.L.; Greenway, H. Regulation of alcoholic fermentation in coleoptiles of two rice cultivars differing in tolerance to anoxia. J. Exp. Bot. 2000, 51, 785–796. [Google Scholar] [CrossRef] [PubMed]
- Yu, T.H.D. How does rice cope with too little oxygen during its early life? New Phytol. 2021, 229, 36–41. [Google Scholar] [CrossRef]
- Damaris, R.N.; Lin, Z.Y.; Yang, P.F.; He, D.L. The Rice Alpha-Amylase, Conserved Regulator of Seed Maturation and Germination. Int. J. Mol. Sci. 2019, 20, 450. [Google Scholar] [CrossRef]
- Holesh, J.E.; Aslam, S.; Martin, A. Physiology, Carbohydrates. In StatPearls; StatPearls Publishing LLC.: Treasure Island, FL, USA, 2024. [Google Scholar]
- Yang, Q.; Yu, W.; Wu, H.; Zhang, C.; Sun, S.; Liu, Q. Lysine biofortification in rice by modulating feedback inhibition of aspartate kinase and dihydrodipicolinate synthase. Plant Biotechnol. J. 2021, 19, 490–501. [Google Scholar] [CrossRef]
- Loreti, E.; Yamaguchi, J.; Alpi, A.; Perata, P. Sugar modulation of α-amylase genes under anoxia. Ann. Bot. 2003, 91, 143–148. [Google Scholar] [CrossRef]
- Ponnu, J. Surviving hypoxia: Aquaporin-like protein NIP2;1 mediates lactic acid transport. Plant Physiol. 2021, 186, 1767–1769. [Google Scholar] [CrossRef]
- Mizutani, M.; Watanabe, S.; Nakagawa, T.; Maeshima, M. Aquaporin NIP2;1 is mainly localized to the ER membrane and shows root-specific accumulation in Arabidopsis thaliana. Plant Cell Physiol. 2006, 47, 1420–1426. [Google Scholar] [CrossRef]
- Gao, P.; Bai, X.; Yang, L.A.; Lv, D.K.; Pan, X.; Li, Y.; Cai, H.; Ji, W.; Chen, Q.; Zhu, Y.M. osa-MIR393: A salinity- and alkaline stress-related microRNA gene. Mol. Biol. Rep. 2011, 38, 237–242. [Google Scholar] [CrossRef]
- Xiong, Q.; Ma, B.; Lu, X.; Huang, Y.H.; He, S.J.; Yang, C.; Yin, C.C.; Zhao, H.; Zhou, Y.; Zhang, W.K.; et al. Ethylene-Inhibited Jasmonic Acid Biosynthesis Promotes Mesocotyl/Coleoptile Elongation of Etiolated Rice Seedlings. Plant Cell 2017, 29, 1053–1072. [Google Scholar] [CrossRef] [PubMed]
- Saika, H.; Okamoto, M.; Miyoshi, K.; Kushiro, T.; Shinoda, S.; Jikumaru, Y.; Fujimoto, M.; Arikawa, T.; Takahashi, H.; Ando, M.; et al. Ethylene promotes submergence-induced expression of OsABA8ox1, a gene that encodes ABA 8′-hydroxylase in rice. Plant Cell Physiol. 2007, 48, 287–298. [Google Scholar] [CrossRef] [PubMed]
- Dubois, V.; Moritz, T.; García-Martínez, J.L. Comparison of the role of gibberellins and ethylene in response to submergence of two lowland rice cultivars, Senia and Bomba. J. Plant Physiol. 2011, 168, 233–241. [Google Scholar] [CrossRef] [PubMed]
- Xiang, J.; Wu, H.; Zhang, Y.P.; Zhang, Y.K.; Wang, Y.F.; Li, Z.Y.; Lin, H.Y.; Chen, H.Z.; Zhang, J.; Zhu, D.F. Transcriptomic Analysis of Gibberellin- and Paclobutrazol-Treated Rice Seedlings under Submergence. Int. J. Mol. Sci. 2017, 18, 2225. [Google Scholar] [CrossRef] [PubMed]
- Eysholdt-Derzsó, E.; Sauter, M. Hypoxia and the group VII ethylene response transcription factor HRE2 promote adventitious root elongation in Arabidopsis. Plant Biol. 2019, 21, 103–108. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.; Chen, P.; Lu, C.; Chen, S.; Ho, T.; Yu, S. Coordinated Responses to Oxygen and Sugar Deficiency Allow Rice Seedlings to Tolerate Flooding. Sci. Signal. 2009, 2, ra61. [Google Scholar] [CrossRef]
- Xu, K.; Xu, X.; Fukao, T.; Canlas, P.; Maghirang-Rodriguez, R.; Heuer, S.; Ismail, A.M.; Bailey-Serres, J.; Ronald, P.C.; Mackill, D.J. Sub1A is an ethylene-response-factor-like gene that confers submergence tolerance to rice. Nature 2006, 442, 705–708. [Google Scholar] [CrossRef]
- Fukao, T.; Bailey-Serres, J. Submergence tolerance conferred by Sub1A is mediated by SLR1 and SLRL1 restriction of gibberellin responses in rice. Proc. Natl. Acad. Sci. USA 2008, 105, 16814–16819. [Google Scholar] [CrossRef] [PubMed]
- Fukao, T.; Yeung, E.; Bailey-Serres, J. The submergence tolerance regulator SUB1A mediates crosstalk between submergence and drought tolerance in rice. Plant Cell 2011, 23, 412–427. [Google Scholar] [CrossRef]
- Fukao, T.; Yeung, E.; Bailey-Serres, J. The submergence tolerance gene SUB1A delays leaf senescence under prolonged darkness through hormonal regulation in rice. Plant Physiol. 2012, 160, 1795–1807. [Google Scholar] [CrossRef] [PubMed]
- Guo, M.N.; Ruan, W.Y.; Li, C.Y.; Huang, F.L.; Zeng, M.; Liu, Y.Y.; Yu, Y.N.; Ding, X.M.; Wu, Y.R.; Wu, Z.C.; et al. Integrative Comparison of the Role of the PHOSPHATE RESPONSE1 Subfamily in Phosphate Signaling and Homeostasis in Rice. Plant Physiol. 2015, 168, 1762–1776. [Google Scholar] [CrossRef]
- Jisha, V.; Dampanaboina, L.; Vadassery, J.; Mithöfer, A.; Kappara, S.; Ramanan, R. Overexpression of an AP2/ERF Type Transcription Factor OsEREBP1 Confers Biotic and Abiotic Stress Tolerance in Rice. PLoS ONE 2015, 10, 24. [Google Scholar] [CrossRef]
- Wang, S.; Liu, W.; He, Y.; Adegoke, T.V.; Ying, J.; Tong, X.; Li, Z.; Tang, L.; Wang, H.; Zhang, J.; et al. bZIP72 promotes submerged rice seed germination and coleoptile elongation by activating ADH1. Plant Physiol. Biochem. 2021, 169, 112–118. [Google Scholar] [CrossRef]
- Cheng, L.; Wang, F.; Shou, H.; Huang, F.; Zheng, L.; He, F.; Li, J.; Zhao, F.; Ueno, D.; Wu, P.; et al. Mutation in Nicotianamine Aminotransferase Stimulated the Fe(II) Acquisition System and Led to Iron Accumulation in Rice. Plant Physiol. 2007, 145, 1647–1657. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.; Ma, B.; He, S.; Xiong, Q.; Duan, K.; Yin, C.; Zhang, J. MAOHUZI6/ETHYLENE INSENSITIVE3-LIKE1 and ETHYLENE INSENSITIVE3-LIKE2 Regulate Ethylene Response of Roots and Coleoptiles and Negatively Affect Salt Tolerance in Rice. Plant Physiol. 2015, 169, 148–165. [Google Scholar] [CrossRef]
- Fu, K.; Song, W.; Chen, C.; Mou, C.; Huang, Y.; Zhang, F.; Hao, Q.; Wang, P.; Ma, T.; Chen, Y. Improving pre-harvest sprouting resistance in rice by editing OsABA8ox using CRISPR/Cas9. Plant Cell Rep. 2022, 41, 2107–2110. [Google Scholar] [CrossRef]
- Liu, Q.; Zhang, Q.; Burton, R.A.; Shirley, N.J.; Atwell, B.J. Expression of vacuolar H+-pyrophosphatase (OVP3) is under control of an anoxia-inducible promoter in rice. Plant Mol. Biol. 2010, 72, 47–60. [Google Scholar] [CrossRef]
- Minji, P.; Hui-Kyeong, Y.; Hyeok-Gon, P.; Jun, L.; Soo-Hwan, K.; Yong-Sic, H. Interference with oxidative phosphorylation enhances anoxic expression of rice α-amylase genes through abolishing sugar regulation. J. Exp. Bot. 2010, 61, 3235–3244. [Google Scholar]
- Kameoka, H.; Kyozuka, J. Downregulation of Rice DWARF 14 LIKE Suppress Mesocotyl Elongation via a Strigolactone Independent Pathway in the Dark. J. Genet. Genom. 2015, 42, 119–124. [Google Scholar] [CrossRef]
- Zheng, J.; Hong, K.; Zeng, L.; Wang, L.; Kang, S.; Qu, M.; Dai, J.; Zou, L.; Zhu, L.; Tang, Z.; et al. Karrikin Signaling Acts Parallel to and Additively with Strigolactone Signaling to Regulate Rice Mesocotyl Elongation in Darkness. Plant Cell 2020, 32, 2780–2805. [Google Scholar] [CrossRef] [PubMed]
- Guohui Zhu1, N.Y.J.Z. Glucose-Induced Delay of Seed Germination in Rice is Mediated by the Suppression of ABA Catabolism Rather Than an Enhancement of ABA Biosynthesis. Plant Cell Physiol. 2009, 50, 644–651. [Google Scholar]
- Du, H.; Wu, N.; Cui, F.; You, L.; Li, X.; Xiong, L. A homolog of ETHYLENE OVERPRODUCER, OsETOL1, differentially modulates drought and submergence tolerance in rice. Plant J. 2014, 78, 834–849. [Google Scholar] [CrossRef] [PubMed]
- Iwai, T.; Miyasaka, A.; Seo, S.; Ohashi, Y. Corrections: Contribution of Ethylene Biosynthesis for Resistance to Blast Fungus Infection in Young Rice Plants. Plant Physiol. 2009, 150, 531. [Google Scholar]
- Kanneganti, V.; Gupta, A.K. Overexpression of OsiSAP8, a member of stress associated protein (SAP) gene family of rice confers tolerance to salt, drought and cold stress in transgenic tobacco and rice. Plant Mol. Biol. 2008, 66, 445. [Google Scholar] [CrossRef] [PubMed]
- Lu, C.; Lin, C.; Lee, K.; Chen, J.; Huang, L.; Ho, S.; Liu, H.; Hsing, Y.; Yu, S. The SnRK1A protein kinase plays a key role in sugar signaling during germination and seedling growth of rice. Plant Cell 2007, 19, 2484–2499. [Google Scholar] [CrossRef] [PubMed]
- Wen, J.-Q. Two Novel Mitogen-Activated Protein Signaling Components, OsMEK1 and OsMAP1, Are Involved in a Moderate Low-Temperature Signaling Pathway in Rice. Plant Physiol. 2002, 129, 1880–1891. [Google Scholar] [CrossRef]
- He, Y.; Hong, G.; Zhang, H.; Tan, X.; Sun, Z. The OsGSK2 Kinase Integrates Brassinosteroid and Jasmonic Acid Signaling by Interacting with OsJAZ4. Plant Cell 2020, 32, 2806–2822. [Google Scholar] [CrossRef]
- Lv, Y.; Shao, G.; Jiao, G.; Sheng, Z.; Xie, L.; Hu, S.; Tang, S.; Wei, X.; Hu, P. Targeted mutagenesis of POLYAMINE OXIDASE 5 that negatively regulates mesocotyl elongation enables the generation of direct-seeding rice with improved grain yield. Mol. Plant 2021, 14, 344–351. [Google Scholar] [CrossRef]
- Kanneganti, V.; Gupta, A.K. Isolation and Expression analysis of OsPME1, encoding for a putative Pectin Methyl Esterase from Oryza sativa (subsp. indica). Physiol. Mol. Biol. Plants 2009, 15, 123–131. [Google Scholar] [CrossRef] [PubMed]
- Yin, C.C.; Ma, B.A.; Collinge, D.P.; Pogson, B.J.; He, S.J.; Xiong, Q.; Duan, K.X.; Chen, H.; Yang, C.; Lu, X.; et al. Ethylene Responses in Rice Roots and Coleoptiles Are Differentially Regulated by a Carotenoid Isomerase-Mediated Abscisic Acid Pathway. Plant Cell 2015, 27, 1061–1081. [Google Scholar] [CrossRef] [PubMed]
- Mitsuya, S.; Yokota, Y.; Fujiwara, T.; Mori, N.; Takabe, T. OsBADH1 is possibly involved in acetaldehyde oxidation in rice plant peroxisomes. FEBS Lett. 2009, 583, 3625–3629. [Google Scholar] [CrossRef] [PubMed]
- Zou, J.; Chen, Z.; Zhang, S.; Zhang, W.; Jiang, G.; Zhao, X.; Zhai, W.; Pan, X.; Zhu, L. Characterizations and fine mapping of a mutant gene for high tillering and dwarf in rice (Oryza sativa L.). Planta 2005, 222, 604–612. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.; Lu, X.; Ma, B.; Chen, S.; Zhang, J. Ethylene signaling in rice and Arabidopsis: Conserved and diverged aspects. Mol. Plant. 2015, 8, 495–505. [Google Scholar] [CrossRef] [PubMed]
- Sun, S.; Chen, D.; Li, X.; Qiao, S.; Shi, C.; Li, C.; Shen, H.; Wang, X. Brassinosteroid signaling regulates leaf erectness in Oryza sativa via the control of a specific U-type cyclin and cell proliferation. Dev. Cell 2015, 34, 220–228. [Google Scholar] [CrossRef] [PubMed]
- De Vleesschauwer, D.; Seifi, H.S.; Filipe, O.; Haeck, A.; Huu, S.N.; Demeestere, K.; Höfte, M. The DELLA Protein SLR1 Integrates and Amplifies Salicylic Acid- and Jasmonic Acid-Dependent Innate Immunity in Rice. Plant Physiol. 2016, 170, 1831–1847. [Google Scholar] [CrossRef] [PubMed]
- Mukhopadhyay, A.; Vij, S.; Tyagi, A.K. Overexpression of a zinc-finger protein gene from rice confers tolerance to cold, dehydration, and salt stress in transgenic tobacco. Proc. Natl. Acad. Sci. USA. 2004, 101, 6309–6314. [Google Scholar] [CrossRef]
- Liu, Y.; Xu, Y.; Xiao, J.; Ma, Q.; Li, D.; Xue, Z.; Chong, K. OsDOG, a gibberellin-induced A20/AN1 zinc-finger protein, negatively regulates gibberellin-mediated cell elongation in rice. J. Plant Physiol. 2011, 168, 1098–1105. [Google Scholar] [CrossRef]
- Ogata, H.; Goto, S.; Sato, K.; Fujibuchi, W.; Kanehisa, M. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res. 1999, 27, 29–34. [Google Scholar] [CrossRef] [PubMed]
- Kuroha, T.; Nagai, K.; Gamuyao, R.; Wang, R.; Furuta, T.; Nakamori, M.; Kitaoka, T.; Adachi, K.; Minami, A.; Mori, Y.; et al. Ethylene-gibberellin signaling underlies adaptation of rice to periodic flooding. Science 2018, 361, 181–186. [Google Scholar] [CrossRef] [PubMed]
- Yutaka, S.; Hinako, T.; Kaori, K.; Hiroshi, M.; Nobukazu, N.; Hiroshi, I.; Hajime, O.; Kazuhiko, S.; Antonio, B.A.; Yoshiaki, N. RiceXPro Version 3.0: Expanding the informatics resource for rice transcriptome. Nucleic Acids Res. 2013, 41, D1206–D1213. [Google Scholar]
- Chen, S.; Zhiqiang, H.; Tianqing, Z.; Kuangchen, L.; Yue, Z.; Wensheng, W.; Jianxin, S.; Chunchao, W.; Jinyuan, L.; Dabing, Z. RPAN: Rice pan-genome browser for ∼3000 rice genomes. Nucleic Acids Res. 2017, 45, 597–605. [Google Scholar]
- Zhang, F.; Wang, C.; Li, M.; Cui, Y.; Shi, Y.; Wu, Z.; Hu, Z.; Wang, W.; Xu, J.; Li, Z. The landscape of gene-CDS-haplotype diversity in rice: Properties, population organization, footprints of domestication and breeding, and implications for genetic improvement. Mol. Plant 2021, 14, 787–804. [Google Scholar] [CrossRef] [PubMed]
- Haque, M.A.; Rafii, M.Y.; Yusoff, M.M.; Ali, N.S.; Yusuff, O.; Arolu, F.; Anisuzzaman, M. Flooding tolerance in Rice: Adaptive mechanism and marker-assisted selection breeding approaches. Mol. Biol. Rep. 2023, 50, 2795–2812. [Google Scholar] [CrossRef]
- Alpuerto, J.B.; Hussain, R.M.F.; Fukao, T. The key regulator of submergence tolerance, SUB1A, promotes photosynthetic and metabolic recovery from submergence damage in rice leaves. Plant Cell Environ. 2016, 39, 672–684. [Google Scholar] [CrossRef]
- Peña-Castro, J.M.; Zanten, M.V.; Lee, S.C.; Patel, M.R.; Voesenek, L.A.J.C. Expression of rice SUB1A and SUB1C transcription factors in Arabidopsis uncovers flowering inhibition as a submergence tolerance mechanism. Plant J. 2011, 67, 434–446. [Google Scholar] [CrossRef]
- Mondal, S.; Khan, M.I.R.; Dixit, S.; Cruz, P.C.S.; Septiningsih, E.M.; Ismail, A.M. Growth, productivity and grain quality of AG1 and AG2 QTLs introgression lines under flooding in direct-seeded rice system. Field Crops Res. 2020, 248, 107713. [Google Scholar] [CrossRef]
- Shin, N.H.; Han, J.H.; Jang, S.; Song, K.; Koh, H.J.; Lee, J.H.; Yoo, S.; Chin, J.H.; Copeland, L. Early Vigor of a Pyramiding Line Containing Two Quantitative Trait Loci, Phosphorus Uptake 1 (Pup1) and Anaerobic Germination 1 (AG1) in Rice (O. Sativa L.). Agriculture 2020, 10, 453. [Google Scholar] [CrossRef]
- Singh, R.; Singh, Y.; Xalaxo, S.; Verulkar, S.; Yadav, N.; Singh, S.; Singh, N.; Prasad, K.S.N.; Kondayya, K.; Rao, P.V.R.; et al. From QTL to variety-harnessing the benefits of QTLs for drought, flood and salt tolerance in mega rice varieties of India through a multi-institutional network. Plant Sci. 2016, 242, 278–287. [Google Scholar] [CrossRef]
- Sun, J.; Zhang, G.; Cui, Z.; Kong, X.; Yu, X.; Gui, R.; Han, Y.; Li, Z.; Lang, H.; Hua, Y. Regain flood adaptation in rice through a 14-3-3 protein OsGF14h. Nat. Commun. 2022, 13, 5664. [Google Scholar] [CrossRef]
- Sun, J.; Zhang, G.; Cui, Z.; Kong, X.; Yu, X.; Gui, R.; Han, Y.; Li, Z.; Lang, H.; Hua, Y. Mesocotyl elongation, an essential trait for dry-seeded rice (Oryza sativa L.): A review of physiological and genetic basis. Planta 2020, 251, 27. [Google Scholar]
- Pang, Y. Breeding and Genetic Dissecting of Salinity Tolerance, Drought Tolerance, High Yield and High Grain Quality Rice Materials. Master’s Thesis, Chinese Academy of Agricultural Sciences, Beijing, China, 2017. [Google Scholar]
- Thapa, R.; Tabien, R.E.; Thomson, M.J.; Septiningsih, E.M. Genetic factors underlying anaerobic germination in rice: Genome-wide association study and transcriptomic analysis. Plant Genome 2022, 0, e20261. [Google Scholar] [CrossRef] [PubMed]
- Panda, D.; Barik, J.; Sarkar, R.K. Recent Advances of Genetic Resources, Genes and Genetic Approaches for Flooding Tolerance in Rice. Curr. Genom. 2021, 22, 41–58. [Google Scholar] [CrossRef] [PubMed]
- Bai, S.; Yu, H.; Wang, B.; Li, J. Retrospective and perspective of rice breeding in China. J. Genet. Genom. 2018, 45, 603–612. [Google Scholar] [CrossRef] [PubMed]
- Chen, R.; Deng, Y.; Ding, Y.; Guo, J.; Qiu, J.; Wang, B.; Wang, C.; Xie, Y.; Zhang, Z.; Chen, J.; et al. Rice functional genomics: Decades’ efforts and roads ahead. Sci. China Life Sci. 2022, 65, 33–92. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yuan, H.; Zheng, Z.; Bao, Y.; Zhao, X.; Lv, J.; Tang, C.; Wang, N.; Liang, Z.; Li, H.; Xiang, J.; et al. Identification and Regulation of Hypoxia-Tolerant and Germination-Related Genes in Rice. Int. J. Mol. Sci. 2024, 25, 2177. https://doi.org/10.3390/ijms25042177
Yuan H, Zheng Z, Bao Y, Zhao X, Lv J, Tang C, Wang N, Liang Z, Li H, Xiang J, et al. Identification and Regulation of Hypoxia-Tolerant and Germination-Related Genes in Rice. International Journal of Molecular Sciences. 2024; 25(4):2177. https://doi.org/10.3390/ijms25042177
Chicago/Turabian StyleYuan, Hongyan, Zhenzhen Zheng, Yaling Bao, Xueyu Zhao, Jiaqi Lv, Chenghang Tang, Nansheng Wang, Zhaojie Liang, Hua Li, Jun Xiang, and et al. 2024. "Identification and Regulation of Hypoxia-Tolerant and Germination-Related Genes in Rice" International Journal of Molecular Sciences 25, no. 4: 2177. https://doi.org/10.3390/ijms25042177
APA StyleYuan, H., Zheng, Z., Bao, Y., Zhao, X., Lv, J., Tang, C., Wang, N., Liang, Z., Li, H., Xiang, J., Qian, Y., & Shi, Y. (2024). Identification and Regulation of Hypoxia-Tolerant and Germination-Related Genes in Rice. International Journal of Molecular Sciences, 25(4), 2177. https://doi.org/10.3390/ijms25042177