The Role of miRNAs to Detect Progression, Stratify, and Predict Relevant Clinical Outcomes in Bladder Cancer
Abstract
:1. Bladder Cancer Overview
2. miRNAs as Prognostic Tools in BC
3. Biological Plausibility of Described miRNAs in BC
4. Limitations of miRNA-Based Strategies for BC
5. Future Perspectives
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Siegel, R.L.; Miller, K.D.; Wagle, N.S.; Jemal, A. Cancer statistics, 2023. CA Cancer J. Clin. 2023, 73, 17–48. [Google Scholar] [CrossRef] [PubMed]
- Jubber, I.; Ong, S.; Bukavina, L.; Black, P.C.; Comperat, E.; Kamat, A.M.; Kiemeney, L.; Lawrentschuk, N.; Lerner, S.P.; Meeks, J.J.; et al. Epidemiology of Bladder Cancer in 2023: A Systematic Review of Risk Factors. Eur. Urol. 2023, 84, 176–190. [Google Scholar] [CrossRef] [PubMed]
- Nardelli, C.; Aveta, A.; Pandolfo, S.D.; Tripodi, L.; Russo, F.; Imbimbo, C.; Castaldo, G.; Pastore, L. Microbiome Profiling in Bladder Cancer Patients Using the First-morning Urine Sample. Eur. Urol. Open Sci. 2024, 59, 18–26. [Google Scholar] [CrossRef] [PubMed]
- Lenis, A.T.; Lec, P.M.; Chamie, K.; Mshs, M.D. Bladder Cancer: A Review. JAMA 2020, 324, 1980–1991. [Google Scholar] [CrossRef] [PubMed]
- Chang, S.S.; Boorjian, S.A.; Chou, R.; Clark, P.E.; Daneshmand, S.; Konety, B.R.; Pruthi, R.; Quale, D.Z.; Ritch, C.R.; Seigne, J.D.; et al. Diagnosis and Treatment of Non-Muscle Invasive Bladder Cancer: AUA/SUO Guideline. J. Urol. 2016, 196, 1021–1029. [Google Scholar] [CrossRef]
- Sanli, O.; Dobruch, J.; Knowles, M.A.; Burger, M.; Alemozaffar, M.; Nielsen, M.E.; Lotan, Y. Bladder cancer. Nat. Rev. Dis. Primers 2017, 3, 17022. [Google Scholar] [CrossRef]
- Amin, M.B.; Greene, F.L.; Edge, S.B.; Compton, C.C.; Gershenwald, J.E.; Brookland, R.K.; Meyer, L.; Gress, D.M.; Byrd, D.R.; Winchester, D.P. The Eighth Edition AJCC Cancer Staging Manual: Continuing to build a bridge from a population-based to a more “personalized” approach to cancer staging. CA Cancer J. Clin. 2017, 67, 93–99. [Google Scholar] [CrossRef]
- Dobruch, J.; Oszczudlowski, M. Bladder Cancer: Current Challenges and Future Directions. Medicina 2021, 57, 749. [Google Scholar] [CrossRef]
- Krishna, S.R.; Konety, B.R. Current Concepts in the Management of Muscle Invasive Bladder Cancer. Indian J. Surg. Oncol. 2017, 8, 74–81. [Google Scholar] [CrossRef]
- Yeung, C.; Dinh, T.; Lee, J. The health economics of bladder cancer: An updated review of the published literature. Pharmacoeconomics 2014, 32, 1093–1104. [Google Scholar] [CrossRef] [PubMed]
- Bree, K.K.; Shan, Y.; Hensley, P.J.; Lobo, N.; Hu, C.; Tyler, D.S.; Chamie, K.; Kamat, A.M.; Williams, S.B. Management, Surveillance Patterns, and Costs Associated With Low-Grade Papillary Stage Ta Non-Muscle-Invasive Bladder Cancer among Older Adults, 2004–2013. JAMA Netw. Open 2022, 5, e223050. [Google Scholar] [CrossRef] [PubMed]
- Lone, S.N.; Nisar, S.; Masoodi, T.; Singh, M.; Rizwan, A.; Hashem, S.; El-Rifai, W.; Bedognetti, D.; Batra, S.K.; Haris, M.; et al. Liquid biopsy: A step closer to transform diagnosis, prognosis and future of cancer treatments. Mol. Cancer 2022, 21, 79. [Google Scholar] [CrossRef] [PubMed]
- Zeng, Y.; Wang, A.; Lv, W.; Wang, Q.; Jiang, S.; Pan, X.; Wang, F.; Yang, H.; Bolund, L.; Lin, C.; et al. Recent development of urinary biomarkers for bladder cancer diagnosis and monitoring. Clin. Transl. Discov. 2023, 3, e183. [Google Scholar] [CrossRef]
- Yafi, F.A.; Brimo, F.; Steinberg, J.; Aprikian, A.G.; Tanguay, S.; Kassouf, W. Prospective analysis of sensitivity and specificity of urinary cytology and other urinary biomarkers for bladder cancer. Urol. Oncol. 2015, 33, 66.e25–66.e31. [Google Scholar] [CrossRef] [PubMed]
- Batista, R.; Vinagre, N.; Meireles, S.; Vinagre, J.; Prazeres, H.; Leão, R.; Máximo, V.; Soares, P. Biomarkers for Bladder Cancer Diagnosis and Surveillance: A Comprehensive Review. Diagnostics 2020, 10, 39. [Google Scholar] [CrossRef] [PubMed]
- Henry, N.L.; Hayes, D.F. Cancer biomarkers. Mol. Oncol. 2012, 6, 140–146. [Google Scholar] [CrossRef] [PubMed]
- Macfarlane, L.A.; Murphy, P.R. MicroRNA: Biogenesis, Function and Role in Cancer. Curr. Genom. 2010, 11, 537–561. [Google Scholar] [CrossRef]
- O’Brien, J.; Hayder, H.; Zayed, Y.; Peng, C. Overview of MicroRNA Biogenesis, Mechanisms of Actions, and Circulation. Front. Endocrinol. 2018, 9, 402. [Google Scholar] [CrossRef]
- Gebert, L.F.R.; MacRae, I.J. Regulation of microRNA function in animals. Nat. Rev. Mol. Cell Biol. 2019, 20, 21–37. [Google Scholar] [CrossRef]
- Cortez, M.A.; Bueso-Ramos, C.; Ferdin, J.; Lopez-Berestein, G.; Sood, A.K.; Calin, G.A. MicroRNAs in body fluids—The mix of hormones and biomarkers. Nat. Rev. Clin. Oncol. 2011, 8, 467–477. [Google Scholar] [CrossRef]
- Misiak, D.; Bauer, M.; Lange, J.; Haase, J.; Braun, J.; Lorenz, K.; Wickenhauser, C.; Hüttelmaier, S. MiRNA Deregulation Distinguishes Anaplastic Thyroid Carcinoma (ATC) and Supports Upregulation of Oncogene Expression. Cancers 2021, 13, 5913. [Google Scholar] [CrossRef] [PubMed]
- Nam, E.J.; Yoon, H.; Kim, S.W.; Kim, H.; Kim, Y.T.; Kim, J.H.; Kim, J.W.; Kim, S. MicroRNA expression profiles in serous ovarian carcinoma. Clin. Cancer Res. 2008, 14, 2690–2695. [Google Scholar] [CrossRef] [PubMed]
- Le, M.T.; Teh, C.; Shyh-Chang, N.; Xie, H.; Zhou, B.; Korzh, V.; Lodish, H.F.; Lim, B. MicroRNA-125b is a novel negative regulator of p53. Genes Dev 2009, 23, 862–876. [Google Scholar] [CrossRef]
- Ozen, M.; Creighton, C.J.; Ozdemir, M.; Ittmann, M. Widespread deregulation of microRNA expression in human prostate cancer. Oncogene 2008, 27, 1788–1793. [Google Scholar] [CrossRef]
- Wang, H.; Peng, R.; Wang, J.; Qin, Z.; Xue, L. Circulating microRNAs as potential cancer biomarkers: The advantage and disadvantage. Clin. Epigenetics 2018, 10, 59. [Google Scholar] [CrossRef] [PubMed]
- Kim, T.; Croce, C.M. MicroRNA: Trends in clinical trials of cancer diagnosis and therapy strategies. Exp. Mol. Med. 2023, 55, 1314–1321. [Google Scholar] [CrossRef]
- Zou, X.; Wei, J.; Huang, Z.; Zhou, X.; Lu, Z.; Zhu, W.; Miao, Y. Identification of a six-miRNA panel in serum benefiting pancreatic cancer diagnosis. Cancer Med. 2019, 8, 2810–2822. [Google Scholar] [CrossRef] [PubMed]
- Ma, W.; Yu, Q.; Jiang, J.; Du, X.; Huang, L.; Zhao, L.; Zhou, Q.I. miR-517a is an independent prognostic marker and contributes to cell migration and invasion in human colorectal cancer. Oncol. Lett. 2016, 11, 2583–2589. [Google Scholar] [CrossRef]
- Wang, F.; Chang, J.T.; Kao, C.J.; Huang, R.S. High Expression of miR-532-5p, a Tumor Suppressor, Leads to Better Prognosis in Ovarian Cancer Both In Vivo and In Vitro. Mol. Cancer Ther. 2016, 15, 1123–1131. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, Y.; Liu, X.; Fang, A.; Wang, J.; Yang, Y.; Wang, L.; Du, L.; Wang, C. Direct quantitative detection for cell-free miR-155 in urine: A potential role in diagnosis and prognosis for non-muscle invasive bladder cancer. Oncotarget 2016, 7, 3255–3266. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, Y.; Liu, X.; Fang, A.; Li, P.; Li, Z.; Liu, T.; Yang, Y.; Du, L.; Wang, C. MicroRNA-203 Is a Prognostic Indicator in Bladder Cancer and Enhances Chemosensitivity to Cisplatin via Apoptosis by Targeting Bcl-w and Survivin. PLoS ONE 2015, 10, e0143441. [Google Scholar] [CrossRef]
- Zhang, H.H.; Qi, F.; Cao, Y.H.; Zu, X.B.; Chen, M.F. Expression and clinical significance of microRNA-21, maspin and vascular endothelial growth factor-C in bladder cancer. Oncol. Lett. 2015, 10, 2610–2616. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, X.; Wang, L.; Yang, Y.; Dong, Z.; Wang, H.; Du, L.; Wang, C. MicroRNA-214 Suppresses Oncogenesis and Exerts Impact on Prognosis by Targeting PDRG1 in Bladder Cancer. PLoS ONE 2015, 10, e0118086. [Google Scholar] [CrossRef]
- Wang, H.; Men, C.P. Correlation of Increased Expression of MicroRNA-155 in Bladder Cancer and Prognosis. Lab. Med. 2015, 46, 118–122. [Google Scholar] [CrossRef]
- Andrew, A.S.; Karagas, M.R.; Schroeck, F.R.; Marsit, C.J.; Schned, A.R.; Pettus, J.R.; Armstrong, D.A.; Seigne, J.D. MicroRNA Dysregulation and Non-Muscle-Invasive Bladder Cancer Prognosis. Cancer Epidemiol. Biomark. Prev. 2019, 28, 782–788. [Google Scholar] [CrossRef] [PubMed]
- Awadalla, A.; Abol-Enein, H.; Hamam, E.T.; Ahmed, A.E.; Khirallah, S.M.; El-Assmy, A.; Mostafa, S.A.; Babalghith, A.O.; Ali, M.; Abdel-Rahim, M.; et al. Identification of Epigenetic Interactions between miRNA and Gene Expression as Potential Prognostic Markers in Bladder Cancer. Genes 2022, 13, 1629. [Google Scholar] [CrossRef]
- Awadalla, A.; Zahran, M.H.; Abol-Enein, H.; Zekri, A.N.; Elbaset, M.A.; Ahmed, A.E.; Hamam, E.T.; Elsawy, A.; Khalifa, M.K.; Shokeir, A.A. Identification of Different miRNAs and Their Relevant miRNA Targeted Genes Involved in Sister Chromatid Cohesion and Segregation (SCCS)/chromatin Remodeling Pathway on T1G3 Urothelial Carcinoma (UC) Response to BCG Immunotherapy. Clin. Genitourin. Cancer 2022, 20, e181–e189. [Google Scholar] [CrossRef] [PubMed]
- Blanca, A.; Sanchez-Gonzalez, A.; Requena, M.J.; Carrasco-Valiente, J.; Gomez-Gomez, E.; Cheng, L.; Cimadamore, A.; Montironi, R.; Lopez-Beltran, A. Expression of miR-100 and miR-138 as prognostic biomarkers in non-muscle-invasive bladder cancer. Apmis 2019, 127, 545–553. [Google Scholar] [CrossRef] [PubMed]
- Braicu, C.; Buiga, R.; Cojocneanu, R.; Buse, M.; Raduly, L.; Pop, L.A.; Chira, S.; Budisan, L.; Jurj, A.; Ciocan, C.; et al. Connecting the dots between different networks: miRNAs associated with bladder cancer risk and progression. J. Exp. Clin. Cancer Res. 2019, 38, 433. [Google Scholar] [CrossRef]
- Borkowska, E.M.; Konecki, T.; Pietrusiński, M.; Borowiec, M.; Jabłonowski, Z. MicroRNAs Which Can Prognosticate Aggressiveness of Bladder Cancer. Cancers 2019, 11, 1551. [Google Scholar] [CrossRef]
- Cavallari, I.; Grassi, A.; Del Bianco, P.; Aceti, A.; Zaborra, C.; Sharova, E.; Bertazzolo, I.; D’Agostino, D.M.; Iafrate, M.; Ciminale, V. Prognostic Stratification of Bladder Cancer Patients with a MicroRNA-based Approach. Cancers 2020, 12, 3133. [Google Scholar] [CrossRef] [PubMed]
- Hao, Y.; Zhu, Y.; Sun, F.; Xu, D.; Wang, C. MicroRNA-30c-5p arrests bladder cancer G2/M phase and suppresses its progression by targeting PRC1-mediated blocking of CDK1/Cyclin B1 axis. Cell. Signal. 2023, 110, 110836. [Google Scholar] [CrossRef]
- Inamoto, T.; Uehara, H.; Akao, Y.; Ibuki, N.; Komura, K.; Takahara, K.; Takai, T.; Uchimoto, T.; Saito, K.; Tanda, N.; et al. A Panel of MicroRNA Signature as a Tool for Predicting Survival of Patients with Urothelial Carcinoma of the Bladder. Dis. Markers 2018, 2018, 5468672. [Google Scholar] [CrossRef]
- Juracek, J.; Stanik, M.; Vesela, P.; Radova, L.; Dolezel, J.; Svoboda, M.; Slaby, O. Tumor expression of miR-34a-3p is an independent predictor of recurrence in non-muscle-invasive bladder cancer and promising additional factor to improve predictive value of EORTC nomogram. Urol. Oncol. 2019, 37, 184.e181–184.e187. [Google Scholar] [CrossRef]
- Khan, M.T.; Irlam-Jones, J.J.; Pereira, R.R.; Lane, B.; Valentine, H.R.; Aragaki, K.; Dyrskjøt, L.; McConkey, D.J.; Hoskin, P.J.; Choudhury, A.; et al. A miRNA signature predicts benefit from addition of hypoxia-modifying therapy to radiation treatment in invasive bladder cancer. Br. J. Cancer 2021, 125, 85–93. [Google Scholar] [CrossRef] [PubMed]
- Lee, E.; Collazo-Lorduy, A.; Castillo-Martin, M.; Gong, Y.; Wang, L.; Oh, W.K.; Galsky, M.D.; Cordon-Cardo, C.; Zhu, J. Identification of microR-106b as a prognostic biomarker of p53-like bladder cancers by ActMiR. Oncogene 2018, 37, 5858–5872. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Zhou, L.; Lin, C.; Pan, X.; Xie, J.; Zhao, L.; Quan, J.; Xu, J.; Guan, X.; Xu, W.; et al. MiR-302b regulates cell functions and acts as a potential biomarker to predict recurrence in bladder cancer. Life Sci. 2018, 209, 15–23. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Lin, C.; Zhao, L.; Zhou, L.; Pan, X.; Quan, J.; Peng, X.; Li, W.; Li, H.; Xu, J.; et al. Oncogene miR-187-5p is associated with cellular proliferation, migration, invasion, apoptosis and an increased risk of recurrence in bladder cancer. Biomed. Pharmacother. 2018, 105, 461–469. [Google Scholar] [CrossRef]
- Lin, G.B.; Zhang, C.M.; Chen, X.Y.; Wang, J.W.; Chen, S.; Tang, S.Y.; Yu, T.Q. Identification of circulating miRNAs as novel prognostic biomarkers for bladder cancer. Math. Biosci. Eng. 2019, 17, 834–844. [Google Scholar] [CrossRef]
- Lin, T.; Zhou, S.; Gao, H.; Li, Y.; Sun, L. MicroRNA-325 Is a Potential Biomarker and Tumor Regulator in Human Bladder Cancer. Technol. Cancer Res. Treat. 2018, 17, 1533033818790536. [Google Scholar] [CrossRef]
- Liu, G.; Chen, Z.; Danilova, I.G.; Bolkov, M.A.; Tuzankina, I.A.; Liu, G. Identification of miR-200c and miR141-Mediated lncRNA-mRNA Crosstalks in Muscle-Invasive Bladder Cancer Subtypes. Front. Genet. 2018, 9, 422. [Google Scholar] [CrossRef]
- Liu, C.P.; Zhang, J.H.; Zheng, S.C.; Liu, J.; Guo, J.C. A novel clinical multidimensional transcriptome signature predicts prognosis in bladder cancer. Oncol. Rep. 2018, 40, 2826–2835. [Google Scholar] [CrossRef]
- Liu, D.; Zhou, B.; Liu, R. An RNA-sequencing-based transcriptome for a significantly prognostic novel driver signature identification in bladder urothelial carcinoma. PeerJ 2020, 8, e9422. [Google Scholar] [CrossRef]
- Liu, Y.; Zhu, D.Y.; Xing, H.J.; Hou, Y.; Sun, Y. A potential prognostic model based on miRNA expression profile in The Cancer Genome Atlas for bladder cancer patients. J. Biol. Res. 2020, 27, 6. [Google Scholar] [CrossRef]
- Pan, C.; Luo, J.; Zhang, J. Computational Identification of RNA-Seq Based miRNA-Mediated Prognostic Modules in Cancer. IEEE J. Biomed. Health Inform. 2020, 24, 626–633. [Google Scholar] [CrossRef]
- Rabien, A.; Ratert, N.; Högner, A.; Erbersdobler, A.; Jung, K.; Ecke, T.H.; Kilic, E. Diagnostic and Prognostic Potential of MicroRNA Maturation Regulators Drosha, AGO1 and AGO2 in Urothelial Carcinomas of the Bladder. Int. J. Mol. Sci. 2018, 19, 1622. [Google Scholar] [CrossRef]
- Setti Boubaker, N.; Cicchillitti, L.; Said, R.; Gurtner, A.; Ayed, H.; Blel, A.; Karray, O.; Essid, M.A.; Gharbi, M.; Bouzouita, A.; et al. The clinical and prognostic value of miR-9 gene expression in Tunisian patients with bladder cancer. Mol. Biol. Rep. 2019, 46, 4743–4750. [Google Scholar] [CrossRef]
- Shee, K.; Seigne, J.D.; Karagas, M.R.; Marsit, C.J.; Hinds, J.W.; Schned, A.R.; Pettus, J.R.; Armstrong, D.A.; Miller, T.W.; Andrew, A.S. Identification of Let-7f-5p as a novel biomarker of recurrence in non-muscle invasive bladder cancer. Cancer Biomark. 2020, 29, 101–110. [Google Scholar] [CrossRef] [PubMed]
- Tsikrika, F.D.; Avgeris, M.; Levis, P.K.; Tokas, T.; Stravodimos, K.; Scorilas, A. miR-221/222 cluster expression improves clinical stratification of non-muscle invasive bladder cancer (TaT1) patients’ risk for short-term relapse and progression. Genes Chromosomes Cancer 2018, 57, 150–161. [Google Scholar] [CrossRef] [PubMed]
- Urabe, F.; Matsuzaki, J.; Ito, K.; Takamori, H.; Tsuzuki, S.; Miki, J.; Kimura, T.; Egawa, S.; Nakamura, E.; Matsui, Y.; et al. Serum microRNA as liquid biopsy biomarker for the prediction of oncological outcomes in patients with bladder cancer. Int. J. Urol. 2022, 29, 968–976. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Liu, Z.; Zhang, X.; Liu, J.; Gui, J.; Cui, M.; Li, Y. miR-211-5p is down-regulated and a prognostic marker in bladder cancer. J. Gene Med. 2020, 22, e3270. [Google Scholar] [CrossRef]
- Ware, A.P.; Kabekkodu, S.P.; Chawla, A.; Paul, B.; Satyamoorthy, K. Diagnostic and prognostic potential clustered miRNAs in bladder cancer. 3 Biotech 2022, 12, 173. [Google Scholar] [CrossRef] [PubMed]
- Wei, X.; Bian, F.; Cai, X.; Wang, Y.; Cai, L.; Yang, J.; Zhu, Y.; Zhao, Y. Multiplexed Detection Strategy for Bladder Cancer MicroRNAs Based on Photonic Crystal Barcodes. Anal. Chem. 2020, 92, 6121–6127. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.L.; Ho, J.Y.; Hung, S.H.; Yu, D.S. miR-429 expression in bladder cancer and its correlation with tumor behavior and clinical outcome. Kaohsiung J. Med. Sci. 2018, 34, 335–340. [Google Scholar] [CrossRef] [PubMed]
- Xiong, J.; Xiong, K.; Bing, Z. Clinical and RNA expression integrated signature for urothelial bladder cancer prognosis. Cancer Biomark. 2018, 21, 535–546. [Google Scholar] [CrossRef] [PubMed]
- Xv, Y.; Qiu, M.; Liu, Z.; Xiao, M.; Wang, F. Development of a 7-miRNA prognostic signature for patients with bladder cancer. Aging 2022, 14, 10093–10106. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Sun, H.F.; Guo, L.Q.; Cao, H.B. MiR-10a-5p: A Promising Biomarker for Early Diagnosis and Prognosis Evaluation of Bladder Cancer. Cancer Manag. Res. 2021, 13, 7841–7850. [Google Scholar] [CrossRef] [PubMed]
- Yin, X.H.; Jin, Y.H.; Cao, Y.; Wong, Y.; Weng, H.; Sun, C.; Deng, J.H.; Zeng, X.T. Development of a 21-miRNA Signature Associated With the Prognosis of Patients With Bladder Cancer. Front. Oncol. 2019, 9, 729. [Google Scholar] [CrossRef]
- Zaidi, N.; Siddiqui, Z.; Sankhwar, S.N.; Srivastava, A.N. Urinary microRNA-10a levels in diagnosis and prognosis of urinary bladder cancer. J. Cancer Res. Ther. 2023, 19, 1324–1329. [Google Scholar] [CrossRef]
- Zhang, Z.; Sang, Y.; Liu, Z.; Shao, J. Negative Correlation Between Circular RNA SMARC5 and MicroRNA 432, and Their Clinical Implications in Bladder Cancer Patients. Technol. Cancer Res. Treat. 2021, 20, 15330338211039110. [Google Scholar] [CrossRef]
- Zhu, N.; Hou, J.; Wu, Y.; Liu, J.; Li, G.; Zhao, W.; Ma, G.; Chen, B.; Song, Y. Integrated analysis of a competing endogenous RNA network reveals key lncRNAs as potential prognostic biomarkers for human bladder cancer. Medicine 2018, 97, e11887. [Google Scholar] [CrossRef]
- Qureshi, A.; Fahim, A.; Kazi, N.; Farsi Kazi, S.A.; Nadeem, F. Expression of miR-100 as a novel ancillary non-invasive biomarker for early detection of bladder carcinoma. J. Pak. Med. Assoc. 2018, 68, 759–763. [Google Scholar]
- Patnaik, S.; Mallick, R.; Yendamuri, S. Detection of MicroRNAs in Dried Serum Blots. Nat. Preced. 2010. [Google Scholar] [CrossRef]
- Valadi, H.; Ekström, K.; Bossios, A.; Sjöstrand, M.; Lee, J.J.; Lötvall, J.O. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat. Cell Biol. 2007, 9, 654–659. [Google Scholar] [CrossRef]
- Peltier, H.J.; Latham, G.J. Normalization of microRNA expression levels in quantitative RT-PCR assays: Identification of suitable reference RNA targets in normal and cancerous human solid tissues. Rna 2008, 14, 844–852. [Google Scholar] [CrossRef]
miRNAs Analyzed | Performance | Group Comparison | Type of miRNA | Source | Technique for Analysis | Sample Size | Validation | Authors and Year |
---|---|---|---|---|---|---|---|---|
miR-26b-5p | ↑ miR-26-5p = ↑ RFS miR-26-5p + BF = ↑ AUC of BF alone for recurrence | Low expression vs. High expression | Free and exosomal | Tissue, blood and urine | Microarrays | 231 | Yes | Andrew 2019 [35] |
miR-21, -199, -31, let-7a | ↑ miR-21, -199 and ↓ miR-31, let-7 in BGC non responders ↑ miR-21, -199 and ↓ miR-31, let-7 = ↓ RFS | NMIBC BCG responders vs. non-responders | Free | Tissue | RT-QPCR | 157 | No | Awadalla 2022 [36] |
miR-138-5p and miR-100-5p | ↑ miR-138-5p in LGT ↓ miR-138-5p in recurrent tumors ↑ miR-138-5p = ↑ RFS ↓ miR-100-5p = ↑ RFS and ↑ CSS | Low expression vs. High expression | Free | Tissue | RT-QPCR | 50 | No | Blanca 2019 [38] |
miR-205-5p, -20a-5p, -21-5p, -145-5p and -182-5p | ↑ miR-205-5p, -145-5p, and -21-5p = ↑ risk of death ↑ miR-20a-5p and -182-5p = ↑ risk of recurrence | Stage | Free | Tissue | RT-QPCR | 85 | No | Borkowska 2019 [40] |
miR-143, -139, -141, -205 and -23a | ↑ miR-141 and ↓ miR-143 = ↑ OS | Low grade vs. High grade | Free | Tissue | Microarrays, RT-QPCR and TCGA analysis | 450 | Yes | Braicu 2019 [39] |
miR-30c-5p | ↓ miR-30c-5p = Poor prognosis | Low expression vs. High expression | Free | Tissue | RT-QPCR and TCGA analysis | 445 | Yes | Hao 2023 [42] |
miR-34a-3p | ↓ miR-34a-3p = ↑ OS miR-34a-3p + EORTC nomogram = ↑ SE and SP for progression | Low expression vs. High expression | Free | Tissue | Microarrays and RT-QPCR | 137 | Yes | Juracek 2019 [44] |
miR-106b-5p | ↑ miR-106b-5p = ↑ OS | Low expression vs. High expression | Free | Tissue | TCGA and Choi analysis | 1071 | Yes | Lee 2018 [46] |
miR-302-b | ↓ miR-302-b = ↓ RFS | Low expression vs. High expression | Free | Tissue | RT-QPCR | 39 | No | Li 2018 [47] |
miR-187-5p | ↑ miR-187-5p = ↑ Recurrence risk | Low expression vs. High expression | Free | Tissue | RT-QPCR | 44 | No | Li 2018 [48] |
miR-325 | ↑ miR-325 = ↓ OS | Low expression vs. High expression | Free | Tissue | RT-QPCR | 164 | No | Lin 2018 [50] |
miR-141-5p, -141-3p and -200c-3p | ↑ miR-141-5p, -141-3p and -200c-3p = ↑ OS | Low expression vs. High expression | Free | Tissue | TCGA analysis | 403 | No | Liu 2018 [51] |
AGO1, AGO2 and Drosha | ↑ Drosha = ↑ OS | Low expression vs. High expression | Free | Tissue | Microarrays | 112 | No | Rabien 2018 [56] |
Let-7f-5p | ↑ Let-7f-5p = ↑ RFS | Low expression vs. High expression | Free and exosomal | Tissue, blood and urine | NanoString’s amplification | 207 | Yes | Shee 2020 [58] |
miR-211-5p | ↓ miR-211-5p = ↓ OS and ↑ TNM stage | Low expression vs. High expression | Free | Tissue | Microarrays and RT-QPCR | 58 | No | Wang 2020 [61] |
3 Clusters (miR-200c/miR-141) (miR-216a/miR-217) (miR-15b/miR-16-2) | ↑ (miR-200c/miR-141) = ↑ OS ↑ (miR-216a/miR-217) = ↓ OS | Degree of expression among BC patients | Free | Tissue | Cluster miRNA analysis TCGA analysis | 412 | No | Ware 2022 [62] |
miR-429 | ↓ miR-429 = ↓ 5-year OS and RFS | Low expression vs. High expression | Free | Tissue | In situ hybridization | 76 | No | Wu 2018 [64] |
miR-432 | ↑ miR-432 = ↑ OS and ↑ DFS | Low expression vs. High expression | Free | Tissue | RT-QPCR | 156 | No | Zhang 2021 [70] |
miR-195 | ↑ miR-195 = ↓ OS | Low expression vs. High expression | Free | Tissue | TCGA analysis | 418 | No | Zhu 2018 [71] |
miRNAs Analyzed | Performance | Group Comparison | Type of miRNA | Source | Technique for Analysis | Sample Size | Validation | Authors and Year |
---|---|---|---|---|---|---|---|---|
let-7a-5p, -449a-5p, -124-3p, -138-5p and -23a-5p | ↓ let-7a-5p, miR-449a-5p, -124-3p, and -138-5p = ↓ 1 and 5 yr. CSS and MIBC ↑ miR-23a-5p in MIBC vs. NMIBC | NMIBC vs. MIBC | Free | Tissue | RT-QPCR | 100 | No | Awadalla 2022 [37] |
miR-21, -34a, -141, 193a, -200a and -200c | miR-34a, -193a and -200a classified high vs. low risk SE 0.88, SP 0.8, and ACC 0.82 ↑ All 6-miR expression = ↓ RFS | Low/intermediate risk vs. High risk (For recurrence) | Free | Urine and plasma | RT-QPCR | 100 | No | Cavallari 2020 [41] |
9 miRNA signature | Aggressive BCa =↓OS | Aggressive vs. non aggressive BC | Free | Tissue | Microarray TCGA analysis | 87 | Yes | Inamoto 2018 [43] |
14 miRNA signature | Hypoxic =↓PFS and↓OS | Hypoxic MIBC vs. non-hypoxic MIBC | Free | Tissue | TCGA analysis | 657 | Yes | Khan 2021 [45] |
7 miRNA-based score (-185-5p, -66a, -30c-5p, -3648, -1270, -200c-3p, and -29c-5p) | ↑Score =↓OS | High score BC vs. Low score BC | Free | Serum | Microarrays | 492 | No | Lin 2019 [49] |
Gene, lncmRNAs and miR-3913-1 and -981a score | ↑Score =↓OS Score had↑AUC vs. TNM for survival | High score BC vs. Low score BC | Free | Tissue | TCGA analysis | 239 | No | Liu 2018 [52] |
Genes, lncmRNAs and miR-497-5p | ↑Score =↓OS | Low risk vs. low risk (By score) | Free | Tissue | TCGA analysis | 400 | Yes | Liu 2020 [53] |
7 miRNA-based score (-1247, -1304, -1911, -204, -33b, -3934, and -526b) | ↑Score =↓OS AUC for 3–5-year survival 0.762 | Low risk vs. High risk (By score) | Free | Tissue | TCGA analysis | 428 | No | Liu 2020 [54] |
miR-17-5p, 19a-3p and 19b-3p | ↑Score =↓OS AUC 0.645 for progression | Low risk vs. High risk (By score) | Free | Tissue | TCGA analysis | 405 | No | Pan 2020 [55] |
Score lymph node + (miR-23a-3p, -3679-3p, and -3195) | Score AUC .88, SE 0.87, SP 0.30 for recurrence↓Score =↑OS | High vs. Low index | Free | Tissue | RQ-QPCR | 81 | Yes | Urabe 2022 [60] |
Clinical-mRNA-miRNA signature (miR-200c, -598 and -143) | CPV + signature =↑AUC and HR for↓5-year OS of both alone | Low risk vs. High risk (By score) | Free | Tissue | TCGA analysis | 402 | No | Xiong 2018 [65] |
7 miRNA signature (-151-a-5p, -216a-5p, -337-3p, -let-7c, -125-b, -590-3p, 652-3p) | ↑Score =↓OS and↑AUC of CPV | Low risk vs. High risk (By score) | Free | Tissue | RT-QPCR TCGA Analysis | 432 | No | Xv 2022 [66] |
21 miRNA signature | ↑Score =↓OS | Low risk vs. High risk (By score) | Free | Tissue | TCGA analysis | 427 | No | Yin 2019 [68] |
miRNAs Analyzed | Performance | Group Comparison | Type of miRNA | Source | Technique for Analysis | Sample size | Validation | Authors and Year |
---|---|---|---|---|---|---|---|---|
miR-9 | ↑ miR-9 in MIBC vs. NMIBC ↑ miR-9 in HG NMIBC vs. LG NMIBC | MIBC vs. NMIBC//LG NMIBC vs. HG NMIBC | Free | Tissue | RT-QPCR | 90 | No | Setti 2019 [57] |
miR-222 | ↑ miR-222 in MIBC vs. NMIBC ↑ miR-222 in HG NMIBC vs. LG NMIBC ↑ miR-222 = ↓ RFS, ↓ DFS, ↓ PFS | Low expression vs. High expression | Free | Tissue | RT-QPCR | 387 | No | Tsikrika 2018 [59] |
miR-133a, -143, and -200b | ↓ miR-200b associated with MIBC | Low expression vs. High expression | Free | Tissue | Photonic crystal (PhC) barcodes with hybridization chain reaction (HCR) | 10 | No | Wei 2020 [63] |
miR-10a-5p | ↑ miR-10a-5p in MIBC vs. NMIBC AUC 0.78, SE 0.75, SP 0.64 for MIBC vs. NMIBC, ↓ OS and RFS | Low expression vs. High expression | Free | Tissue and plasma | RQ-QPCR | 244 | Yes | Yang 2021 [67] |
miR-10a | ↑ miR-10a = ↑ Grade and ↑ Stage | Low expression vs. High expression | Free | Tissue and urine | RT-QPCR | 20 | No | Zaidi 2023 [69] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Torres-Bustamante, M.I.; Vazquez-Urrutia, J.R.; Solorzano-Ibarra, F.; Ortiz-Lazareno, P.C. The Role of miRNAs to Detect Progression, Stratify, and Predict Relevant Clinical Outcomes in Bladder Cancer. Int. J. Mol. Sci. 2024, 25, 2178. https://doi.org/10.3390/ijms25042178
Torres-Bustamante MI, Vazquez-Urrutia JR, Solorzano-Ibarra F, Ortiz-Lazareno PC. The Role of miRNAs to Detect Progression, Stratify, and Predict Relevant Clinical Outcomes in Bladder Cancer. International Journal of Molecular Sciences. 2024; 25(4):2178. https://doi.org/10.3390/ijms25042178
Chicago/Turabian StyleTorres-Bustamante, Maria Iyali, Jorge Raul Vazquez-Urrutia, Fabiola Solorzano-Ibarra, and Pablo Cesar Ortiz-Lazareno. 2024. "The Role of miRNAs to Detect Progression, Stratify, and Predict Relevant Clinical Outcomes in Bladder Cancer" International Journal of Molecular Sciences 25, no. 4: 2178. https://doi.org/10.3390/ijms25042178
APA StyleTorres-Bustamante, M. I., Vazquez-Urrutia, J. R., Solorzano-Ibarra, F., & Ortiz-Lazareno, P. C. (2024). The Role of miRNAs to Detect Progression, Stratify, and Predict Relevant Clinical Outcomes in Bladder Cancer. International Journal of Molecular Sciences, 25(4), 2178. https://doi.org/10.3390/ijms25042178