The Interplay between Neurotransmitters and Calcium Dynamics in Retinal Synapses during Development, Health, and Disease
Abstract
:1. Introduction
2. The Retina
2.1. Retinal Structure and Information Processing
2.2. Retinal Synapses
2.3. Retinal Development
3. Neurotransmission
3.1. The Roles of Glutamate in Retinal Development, Normal Physiology, and Disease and Its Interplay with Calcium
3.1.1. The Role of Glutamate in Retinal Development
3.1.2. The Role of Glutamate in Normal Retinal Physiology
3.1.3. The Role of Glutamate in Retinal Diseases
3.1.4. The Interplay between Glutamate and Calcium
Neurotransmitter | Role of Calcium Interplay |
---|---|
Glutamate | |
GABA |
|
Glycine |
|
Dopamine | |
Acetylcholine (ACh) |
|
3.2. The Roles of Gamma-Aminobutyric Acid (GABA) in Retinal Development, Normal Physiology, and Disease and Its Interplay with Calcium
3.2.1. The Role of GABA in Retinal Development
3.2.2. The Role of GABA in Normal Retinal Physiology
3.2.3. The Role of GABA in Retinal Diseases
3.2.4. The Interplay between GABA and Calcium
3.3. The Roles of Glycine in Retinal Development, Normal Physiology, and Disease and Its Interplay with Calcium
3.3.1. The Role of Glycine in Retinal Development
3.3.2. The Role of Glycine in Normal Retinal Physiology
3.3.3. The Role of Glycine in Retinal Diseases
3.3.4. The Interplay between Glycine and Calcium
3.4. The Roles of Dopamine in Retinal Development, Normal Physiology, and Disease and Its Interplay with Calcium
3.4.1. The Role of Dopamine in Retinal Development
3.4.2. The Role of Dopamine in Normal Retinal Physiology
3.4.3. The Role of Dopamine in Retinal Diseases
3.4.4. The Interplay between Dopamine and Calcium
3.5. The Roles of Acetylcholine in Retinal Development, Normal Physiology, and Disease and Its Interplay with Calcium
3.5.1. The Role of Acetylcholine in Retinal Development
3.5.2. The Role of Acetylcholine in Normal Retinal Physiology
3.5.3. The Role of Acetylcholine in Retinal Diseases
3.5.4. The Interplay between Acetylcholine and Calcium
4. Conclusions and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Masland, R.H. The Neuronal Organization of the Retina. Neuron 2012, 76, 266–280. [Google Scholar] [CrossRef]
- Myers, C.E.; Klein, B.E.; Meuer, S.M.; Swift, M.K.; Chandler, C.S.; Huang, Y.; Gangaputra, S.; Pak, J.W.; Danis, R.P.; Klein, R. Retinal thickness measured by spectral-domain optical coherence tomography in eyes without retinal abnormalities: The Beaver Dam Eye Study. Am. J. Ophthalmol. 2015, 159, 445–456.e1. [Google Scholar] [CrossRef]
- Muraoka, Y.; Ikeda, H.O.; Nakano, N.; Hangai, M.; Toda, Y.; Okamoto-Furuta, K.; Kohda, H.; Kondo, M.; Terasaki, H.; Kakizuka, A.; et al. Real-Time Imaging of Rabbit Retina with Retinal Degeneration by Using Spectral-Domain Optical Coherence Tomography. PLoS ONE 2012, 7, e36135. [Google Scholar] [CrossRef]
- Quint, W.H.; Tadema, K.C.D.; Crins, J.H.C.; Kokke, N.; Meester-Smoor, M.A.; Willemsen, R.; Klaver, C.C.W.; Iglesias, A.I. Zebrafish: An In Vivo Screening Model to Study Ocular Phenotypes. Transl. Vis. Sci. Technol. 2022, 11, 17. [Google Scholar] [CrossRef]
- Guo, L.; Normando, E.; Nizari, S.; Lara, D.; Cordeiro, M.F. Tracking Longitudinal Retinal Changes in Experimental Ocular Hypertension Using the cSLO and Spectral Domain-OCT. Investig. Ophthalmol. Vis. Sci. 2010, 51, 6504–6513. [Google Scholar] [CrossRef]
- Pycock, C.J. Retinal neurotransmission. Surv. Ophthalmol. 1985, 29, 355–365. [Google Scholar] [CrossRef]
- Wu, S.M.; Maple, B.R. Amino acid neurotransmitters in the retina: A functional overview. Vis. Res. 1998, 38, 1371–1384. [Google Scholar] [CrossRef]
- Brockie, P.J.; Madsen, D.M.; Zheng, Y.; Mellem, J.; Maricq, A.V. Differential expression of glutamate receptor subunits in the nervous system of Caenorhabditis elegans and their regulation by the homeodomain protein UNC-42. J. Neurosci. 2001, 21, 1510–1522. [Google Scholar] [CrossRef]
- Fedorovich, S.V.; Waseem, T.V.; Lavrukevich, T.V.; Konev, S.V. Role of Calcium in Exocytosis Induced by Hypotonic Swelling. Ann. N. Y. Acad. Sci. 2005, 1048, 337–340. [Google Scholar] [CrossRef]
- Cerella, C.; Diederich, M.; Ghibelli, L. The dual role of calcium as messenger and stressor in cell damage, death, and survival. Int. J. Cell Biol. 2010, 2010, 546163. [Google Scholar] [CrossRef] [PubMed]
- Vaithianathan, T.; Henry, D.; Akmentin, W.; Matthews, G. Nanoscale dynamics of synaptic vesicle trafficking and fusion at the presynaptic active zone. eLife 2016, 5, e13245. [Google Scholar] [CrossRef] [PubMed]
- Mennerick, S.; Matthews, G. Ultrafast exocytosis elicited by calcium current in synaptic terminals of retinal bipolar neurons. Neuron 1996, 17, 1241–1249. [Google Scholar] [CrossRef]
- Goel, M.; Mangel, S.C. Dopamine-Mediated Circadian and Light/Dark-Adaptive Modulation of Chemical and Electrical Synapses in the Outer Retina. Front. Cell. Neurosci. 2021, 15, 647541. [Google Scholar] [CrossRef] [PubMed]
- Ruan, G.-X.; Allen, G.C.; Yamazaki, S.; McMahon, D.G. An Autonomous Circadian Clock in the Inner Mouse Retina Regulated by Dopamine and GABA. PLoS Biol. 2008, 6, e249. [Google Scholar] [CrossRef]
- Arroyo, D.A.; Kirkby, L.A.; Feller, M.B. Retinal Waves Modulate an Intraretinal Circuit of Intrinsically Photosensitive Retinal Ganglion Cells. J. Neurosci. 2016, 36, 6892–6905. [Google Scholar] [CrossRef]
- Blankenship, A.G.; Ford, K.J.; Johnson, J.; Seal, R.P.; Edwards, R.H.; Copenhagen, D.R.; Feller, M.B. Synaptic and extrasynaptic factors governing glutamatergic retinal waves. Neuron 2009, 62, 230–241. [Google Scholar] [CrossRef]
- Tarchick, M.J.; Clute, D.A.; Renna, J.M. Modeling cholinergic retinal waves: Starburst amacrine cells shape wave generation, propagation, and direction bias. Sci. Rep. 2023, 13, 2834. [Google Scholar] [CrossRef]
- Wong, R.O. Retinal waves and visual system development. Annu. Rev. Neurosci. 1999, 22, 29–47. [Google Scholar] [CrossRef]
- Zhang, R.W.; Du, W.J.; Prober, D.A.; Du, J.L. Müller Glial Cells Participate in Retinal Waves via Glutamate Transporters and AMPA Receptors. Cell Rep. 2019, 27, 2871–2880.e2. [Google Scholar] [CrossRef]
- Dong, F.; Zhi, Z.; Pan, M.; Xie, R.; Qin, X.; Lu, R.; Mao, X.; Chen, J.F.; Willcox, M.D.; Qu, J.; et al. Inhibition of experimental myopia by a dopamine agonist: Different effectiveness between form deprivation and hyperopic defocus in guinea pigs. Mol. Vis. 2011, 17, 2824–2834. [Google Scholar] [PubMed]
- Esteve-Rudd, J.; Fernández-Sánchez, L.; Lax, P.; De Juan, E.; Martín-Nieto, J.; Cuenca, N. Rotenone induces degeneration of photoreceptors and impairs the dopaminergic system in the rat retina. Neurobiol. Dis. 2011, 44, 102–115. [Google Scholar] [CrossRef]
- Ishikawa, A.; Ishiguro, S.; Tamai, M. Changes in GABA metabolism in streptozotocin-induced diabetic rat retinas. Curr. Eye Res. 1996, 15, 63–71. [Google Scholar] [CrossRef]
- Napper, G.A.; Pianta, M.J.; Kalloniatis, M. Localization of amino acid neurotransmitters following in vitro ischemia and anoxia in the rat retina. Vis. Neurosci. 2001, 18, 413–427. [Google Scholar] [CrossRef]
- Ortuño-Lizarán, I.; Sánchez-Sáez, X.; Lax, P.; Serrano, G.E.; Beach, T.G.; Adler, C.H.; Cuenca, N. Dopaminergic Retinal Cell Loss and Visual Dysfunction in Parkinson Disease. Ann. Neurol. 2020, 88, 893–906. [Google Scholar] [CrossRef]
- Pisani, F.; Costa, C.; Caccamo, D.; Mazzon, E.; Gorgone, G.; Oteri, G.; Calabresi, P. Tiagabine and vigabatrin reduce the severity of NMDA-induced excitotoxicity in chick retina. Exp. Brain Res. 2006, 171, 511–515. [Google Scholar] [CrossRef]
- Rosenlund, B.L. Effects of insulin on free amino acids in plasma and the role of the amino acid metabolism in the etiology of diabetic microangiopathy. Biochem. Med. Metab. Biol. 1993, 49, 375–391. [Google Scholar] [CrossRef]
- Stone, R.A.; Lin, T.; Laties, A.M.; Iuvone, P.M. Retinal dopamine and form-deprivation myopia. Proc. Natl. Acad. Sci. USA 1989, 86, 704–706. [Google Scholar] [CrossRef]
- van Dijk, H.W.; Verbraak, F.D.; Kok, P.H.; Stehouwer, M.; Garvin, M.K.; Sonka, M.; DeVries, J.H.; Schlingemann, R.O.; Abràmoff, M.D. Early neurodegeneration in the retina of type 2 diabetic patients. Investig. Ophthalmol. Vis. Sci. 2012, 53, 2715–2719. [Google Scholar] [CrossRef]
- Amini, E.; Moghaddasi, M.; Habibi, S.A.H.; Azad, Z.; Miri, S.; Nilforushan, N.; Mirshahi, R.; Cubo, E.; Mohammadzadeh, N.; Rohani, M. Huntington’s disease and neurovascular structure of retina. Neurol. Sci. 2022, 43, 5933–5941. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, X.; Yue, Y.; Tian, T. Retinal Degeneration: A Window to Understand the Origin and Progression of Parkinson’s Disease? Front. Neurosci. 2021, 15, 799526. [Google Scholar] [CrossRef]
- Liao, C.; Xu, J.; Chen, Y.; Ip, N.Y. Retinal Dysfunction in Alzheimer’s Disease and Implications for Biomarkers. Biomolecules 2021, 11, 1215. [Google Scholar] [CrossRef]
- Marchesi, N.; Fahmideh, F.; Boschi, F.; Pascale, A.; Barbieri, A. Ocular Neurodegenerative Diseases: Interconnection between Retina and Cortical Areas. Cells 2021, 10, 2394. [Google Scholar] [CrossRef]
- Chintalapudi, S.R.; Maria, D.; Di Wang, X.; Bailey, J.N.C.; Allingham, R.; Brilliant, M.; Budenz, D.; Fingert, J.; Gaasterland, D.; Gaasterland, T.; et al. Systems genetics identifies a role for Cacna2d1 regulation in elevated intraocular pressure and glaucoma susceptibility. Nat. Commun. 2017, 8, 1755. [Google Scholar] [CrossRef] [PubMed]
- Czapiński, P.; Blaszczyk, B.; Czuczwar, S.J. Mechanisms of action of antiepileptic drugs. Curr. Top. Med. Chem. 2005, 5, 3–14. [Google Scholar] [CrossRef]
- Shen, J.; Wang, Y.; Yao, K. Protection of retinal ganglion cells in glaucoma: Current status and future. Exp. Eye Res. 2021, 205, 108506. [Google Scholar] [CrossRef]
- Wang, Y.X.; Pan, Z.; Xue, C.C.; Xie, H.; Wu, X.; Jonas, J.B. Macular outer nuclear layer, ellipsoid zone and outer photoreceptor segment band thickness, axial length and other determinants. Sci. Rep. 2023, 13, 5386. [Google Scholar] [CrossRef]
- Kawamura, S.; Tachibanaki, S. Rod and cone photoreceptors: Molecular basis of the difference in their physiology. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 2008, 150, 369–377. [Google Scholar] [CrossRef]
- Thoreson, W.B.; Mangel, S.C. Lateral interactions in the outer retina. Prog. Retin. Eye Res. 2012, 31, 407–441. [Google Scholar] [CrossRef]
- Martemyanov, K.A.; Sampath, A.P. The Transduction Cascade in Retinal ON-Bipolar Cells: Signal Processing and Disease. Annu. Rev. Vis. Sci. 2017, 3, 25–51. [Google Scholar] [CrossRef]
- Euler, T.; Haverkamp, S.; Schubert, T.; Baden, T. Retinal bipolar cells: Elementary building blocks of vision. Nat. Rev. Neurosci. 2014, 15, 507–519. [Google Scholar] [CrossRef]
- Grimes, W.N.; Aytürk, D.G.; Hoon, M.; Yoshimatsu, T.; Gamlin, C.; Carrera, D.; Nath, A.; Nadal-Nicolás, F.M.; Ahlquist, R.M.; Sabnis, A.; et al. A high-density narrow-field inhibitory retinal interneuron with direct coupling to Müller glia. J. Neurosci. 2021, 41, 6018–6037. [Google Scholar] [CrossRef]
- Yu, D.Y.; Cringle, S.J.; Balaratnasingam, C.; Morgan, W.H.; Yu, P.K.; Su, E.N. Retinal ganglion cells: Energetics, compartmentation, axonal transport, cytoskeletons and vulnerability. Prog. Retin. Eye Res. 2013, 36, 217–246. [Google Scholar] [CrossRef]
- Reichenbach, A.; Bringmann, A. New functions of Müller cells. Glia 2013, 61, 651–678. [Google Scholar] [CrossRef]
- Christensen, I.; Lu, B.; Yang, N.; Huang, K.; Wang, P.; Tian, N. The Susceptibility of Retinal Ganglion Cells to Glutamatergic Excitotoxicity Is Type-Specific. Front. Neurosci. 2019, 13, 219. [Google Scholar] [CrossRef]
- Zhang, F.; Kurokawa, K.; Lassoued, A.; Crowell, J.A.; Miller, D.T. Cone photoreceptor classification in the living human eye from photostimulation-induced phase dynamics. Proc. Natl. Acad. Sci. USA 2019, 116, 7951–7956. [Google Scholar] [CrossRef]
- Park, P.S. Constitutively active rhodopsin and retinal disease. Adv. Pharmacol. 2014, 70, 1–36. [Google Scholar]
- Connaughton, V.P.; Graham, D.; Nelson, R. Identification and morphological classification of horizontal, bipolar, and amacrine cells within the zebrafish retina. J. Comp. Neurol. 2004, 477, 371–385. [Google Scholar] [CrossRef]
- Song, P.I.; Matsui, J.I.; Dowling, J.E. Morphological types and connectivity of horizontal cells found in the adult zebrafish (Danio rerio) retina. J. Comp. Neurol. 2008, 506, 328–338. [Google Scholar] [CrossRef]
- Bertalmío, M. Chapter 2-The biological basis of vision: The retina. In Vision Models for High Dynamic Range and Wide Colour Gamut Imaging; Bertalmío, M., Ed.; Academic Press: Cambridge, MA, USA, 2020; pp. 11–46. [Google Scholar]
- Matthews, G.G. Neurobiology: Molecules, Cells and Systems; Wiley: Hoboken, NJ, USA, 2000. [Google Scholar]
- Balasubramanian, R.; Gan, L. Development of Retinal Amacrine Cells and Their Dendritic Stratification. Curr. Ophthalmol. Rep. 2014, 2, 100–106. [Google Scholar] [CrossRef]
- Werblin, F.S. Regenerative hyperpolarization in rods. J. Physiol. 1975, 244, 53–81. [Google Scholar] [CrossRef]
- Oakley, B., 2nd; Flaming, D.G.; Brown, K.T. Effects of the rod receptor potential upon retinal extracellular potassium concentration. J. Gen. Physiol. 1979, 74, 713–737. [Google Scholar] [CrossRef]
- Nakatani, K.; Yau, K.W. Calcium and magnesium fluxes across the plasma membrane of the toad rod outer segment. J. Physiol. 1988, 395, 695–729. [Google Scholar] [CrossRef]
- Euler, T.; Masland, R.H. Light-Evoked Responses of Bipolar Cells in a Mammalian Retina. J. Neurophysiol. 2000, 83, 1817–1829. [Google Scholar] [CrossRef]
- Baden, T.; Berens, P.; Franke, K.; Román Rosón, M.; Bethge, M.; Euler, T. The functional diversity of retinal ganglion cells in the mouse. Nature 2016, 529, 345–350. [Google Scholar] [CrossRef]
- Field, G.D.; Gauthier, J.L.; Sher, A.; Greschner, M.; Machado, T.A.; Jepson, L.H.; Shlens, J.; Gunning, D.E.; Mathieson, K.; Dabrowski, W.; et al. Functional connectivity in the retina at the resolution of photoreceptors. Nature 2010, 467, 673–677. [Google Scholar] [CrossRef]
- La Vail, M.M.; Rapaport, D.H.; Rakic, P. Cytogenesis in the monkey retina. J. Comp. Neurol. 1991, 309, 86–114. [Google Scholar] [CrossRef]
- Carter-Dawson, L.D.; LaVail, M.M. Rods and cones in the mouse retina. I. Structural analysis using light and electron microscopy. J. Comp. Neurol. 1979, 188, 245–262. [Google Scholar] [CrossRef]
- Haverkamp, S.; Wässle, H.; Duebel, J.; Kuner, T.; Augustine, G.J.; Feng, G.; Euler, T. The primordial, blue-cone color system of the mouse retina. J. Neurosci. 2005, 25, 5438–5445. [Google Scholar] [CrossRef]
- Nikonov, S.S.; Kholodenko, R.; Lem, J.; Pugh, E.N., Jr. Physiological features of the S- and M-cone photoreceptors of wild-type mice from single-cell recordings. J. Gen. Physiol. 2006, 127, 359–374. [Google Scholar] [CrossRef]
- Wikler, K.C.; Williams, R.W.; Rakic, P. Photoreceptor mosaic: Number and distribution of rods and cones in the rhesus monkey retina. J. Comp. Neurol. 1990, 297, 499–508. [Google Scholar] [CrossRef]
- Wässle, H.; Boycott, B.B. Functional architecture of the mammalian retina. Physiol. Rev. 1991, 71, 447–480. [Google Scholar] [CrossRef]
- Wässle, H. Parallel processing in the mammalian retina. Nat. Rev. Neurosci. 2004, 5, 747–757. [Google Scholar] [CrossRef]
- Roorda, A.; Metha, A.B.; Lennie, P.; Williams, D.R. Packing arrangement of the three cone classes in primate retina. Vis. Res. 2001, 41, 1291–1306. [Google Scholar] [CrossRef]
- Dowling, J.E.; Wells, G.P. Synaptic organization of the frog retina: An electron microscopic analysis comparing the retinas of frogs and primates. Proc. R. Soc. Lond. Ser. B Biol. Sci. 1997, 170, 205–228. [Google Scholar]
- Sterling, P.; Matthews, G. Structure and function of ribbon synapses. Trends Neurosci. 2005, 28, 20–29. [Google Scholar] [CrossRef]
- Zenisek, D.; Horst, N.K.; Merrifield, C.; Sterling, P.; Matthews, G. Visualizing synaptic ribbons in the living cell. J. Neurosci. 2004, 24, 9752–9759. [Google Scholar] [CrossRef]
- Vaithianathan, T.; Matthews, G. Visualizing synaptic vesicle turnover and pool refilling driven by calcium nanodomains at presynaptic active zones of ribbon synapses. Proc. Natl. Acad. Sci. USA 2014, 111, 8655–8660. [Google Scholar] [CrossRef]
- Heidelberger, R.; Wang, M.M.; Sherry, D.M. Differential distribution of synaptotagmin immunoreactivity among synapses in the goldfish, salamander, and mouse retina. Vis. Neurosci. 2003, 20, 37–49. [Google Scholar] [CrossRef]
- Von Gersdorff, H.; Matthews, G. Depletion and Replenishment of Vesicle Pools at a Ribbon-Type Synaptic Terminal. J. Neurosci. 1997, 17, 1919. [Google Scholar] [CrossRef]
- von Gersdorff, H.; Vardi, E.; Matthews, G.; Sterling, P. Evidence That Vesicles on the Synaptic Ribbon of Retinal Bipolar Neurons Can Be Rapidly Released. Neuron 1996, 16, 1221–1227. [Google Scholar] [CrossRef]
- Gary, M.; Peter, S. Evidence That Vesicles Undergo Compound Fusion on the Synaptic Ribbon. J. Neurosci. 2008, 28, 5403. [Google Scholar]
- Ling-Gang, W.; Timothy, A.R.; Leon, L. Modes of Vesicle Retrieval at Ribbon Synapses, Calyx-Type Synapses, and Small Central Synapses. J. Neurosci. 2007, 27, 11793. [Google Scholar]
- Cho, S.; von Gersdorff, H. Ca2+ influx and neurotransmitter release at ribbon synapses. Cell Calcium 2012, 52, 208–216. [Google Scholar] [CrossRef]
- Coggins, M.; Zenisek, D. Evidence that exocytosis is driven by calcium entry through multiple calcium channels in goldfish retinal bipolar cells. J. Neurophysiol. 2009, 101, 2601–2619. [Google Scholar]
- Zenisek, D.; Davila, V.; Wan, L.; Almers, W. Imaging calcium entry sites and ribbon structures in two presynaptic cells. J. Neurosci. 2003, 23, 2538–2548. [Google Scholar]
- Pangrsic, T.; Singer, J.H.; Koschak, A. Voltage-Gated Calcium Channels: Key Players in Sensory Coding in the Retina and the Inner Ear. Physiol. Rev. 2018, 98, 2063–2096. [Google Scholar] [CrossRef]
- Kushner, J.; Ferrer, X.; Marx, S.O. Roles and Regulation of Voltage-gated Calcium Channels in Arrhythmias. J. Innov. Card Rhythm. Manag. 2019, 10, 3874–3880. [Google Scholar] [CrossRef]
- Fox, A.P.; Nowycky, M.C.; Tsien, R.W. Kinetic and pharmacological properties distinguishing three types of calcium currents in chick sensory neurones. J. Physiol. 1987, 394, 149–172. [Google Scholar] [CrossRef]
- Neelands, T.R.; King, A.P.J.; Macdonald, R.L. Functional Expression of L-, N-, P/Q-, and R-Type Calcium Channels in the Human NT2-N Cell Line. J. Neurophysiol. 2000, 84, 2933–2944. [Google Scholar] [CrossRef]
- Griguoli, M.; Sgritta, M.; Cherubini, E. Presynaptic BK channels control transmitter release: Physiological relevance and potential therapeutic implications. J. Physiol. 2016, 594, 3489–3500. [Google Scholar] [CrossRef]
- Wang, Z.W. Regulation of synaptic transmission by presynaptic CaMKII and BK channels. Mol. Neurobiol. 2008, 38, 153–166. [Google Scholar] [CrossRef]
- Robitaille, R.; Charlton, M.P. Presynaptic calcium signals and transmitter release are modulated by calcium-activated potassium channels. J. Neurosci. 1992, 12, 297–305. [Google Scholar] [CrossRef] [PubMed]
- Morita, K.; Barrett, E.F. Evidence for two calcium-dependent potassium conductances in lizard motor nerve terminals. J. Neurosci. 1990, 10, 2614–2625. [Google Scholar] [CrossRef] [PubMed]
- Grimes, W.N.; Li, W.; Chávez, A.E.; Diamond, J.S. BK channels modulate pre- and postsynaptic signaling at reciprocal synapses in retina. Nat. Neurosci. 2009, 12, 585–592. [Google Scholar] [CrossRef] [PubMed]
- Jian Wei, X.; Malcolm, M.S. Large-Conductance Calcium-Activated Potassium Channels Facilitate Transmitter Release in Salamander Rod Synapse. J. Neurosci. 2005, 25, 7660. [Google Scholar]
- Naoyuki, T.; Vithiyanjali, S.; Thomas, E.; Peter, R.; Mathias, W.S.; Timm, S. BK Channels Mediate Pathway-Specific Modulation of Visual Signals in the In Vivo Mouse Retina. J. Neurosci. 2012, 32, 4861. [Google Scholar]
- Van Cruchten, S.; Vrolyk, V.; Perron Lepage, M.-F.; Baudon, M.; Voute, H.; Schoofs, S.; Haruna, J.; Benoit-Biancamano, M.-O.; Ruot, B.; Allegaert, K. Pre- and Postnatal Development of the Eye: A Species Comparison. Birth Defects Res. 2017, 109, 1540–1567. [Google Scholar] [CrossRef]
- Hoon, M.; Okawa, H.; Della Santina, L.; Wong, R.O. Functional architecture of the retina: Development and disease. Prog. Retin. Eye Res. 2014, 42, 44–84. [Google Scholar] [CrossRef]
- Cepko, C. Intrinsically different retinal progenitor cells produce specific types of progeny. Nat. Rev. Neurosci. 2014, 15, 615–627. [Google Scholar] [CrossRef]
- Graw, J. Eye development. Curr. Top. Dev. Biol. 2010, 90, 343–386. [Google Scholar]
- Harada, T.; Harada, C.; Parada, L.F. Molecular regulation of visual system development: More than meets the eye. Genes Dev. 2007, 21, 367–378. [Google Scholar] [CrossRef]
- Marquardt, T.; Gruss, P. Generating neuronal diversity in the retina: One for nearly all. Trends Neurosci. 2002, 25, 32–38. [Google Scholar] [CrossRef] [PubMed]
- Cantrup, R.; Kaushik, G.; Schuurmans, C. Control of Retinal Development by Tumor Suppressor Genes. In Tumor Suppressor Genes; Cheng, Y., Ed.; IntechOpen: London, UK, 2012. [Google Scholar]
- Turner, D.L.; Snyder, E.Y.; Cepko, C.L. Lineage-independent determination of cell type in the embryonic mouse retina. Neuron 1990, 4, 833–845. [Google Scholar] [CrossRef]
- Wetts, R.; Fraser, S.E. Multipotent Precursors Can Give Rise to All Major Cell Types of the Frog Retina. Science 1988, 239, 1142–1145. [Google Scholar] [CrossRef]
- Holt, C.E.; Bertsch, T.W.; Ellis, H.M.; Harris, W.A. Cellular determination in the Xenopus retina is independent of lineage and birth date. Neuron 1988, 1, 15–26. [Google Scholar] [CrossRef]
- Turner, D.L.; Cepko, C.L. A common progenitor for neurons and glia persists in rat retina late in development. Nature 1987, 328, 131–136. [Google Scholar] [CrossRef]
- Alvarez-Hernan, G.; de Mera-Rodríguez, J.A.; Gañán, Y.; Solana-Fajardo, J.; Martín-Partido, G.; Rodríguez-León, J.; Francisco-Morcillo, J. Development and postnatal neurogenesis in the retina: A comparison between altricial and precocial bird species. Neural Regen. Res. 2021, 16, 16–20. [Google Scholar]
- Bodnarenko, S.R.; Chalupa, L.M. Stratification of ON and OFF ganglion cell dendrites depends on glutamate-mediated afferent activity in the developing retina. Nature 1993, 364, 144–146. [Google Scholar] [CrossRef]
- Bodnarenko, S.R.; Jeyarasasingam, G.; Chalupa, L.M. Development and regulation of dendritic stratification in retinal ganglion cells by glutamate-mediated afferent activity. J. Neurosci. 1995, 15, 7037–7045. [Google Scholar] [CrossRef]
- Chang, Y.-C.; Chen, C.-Y.; Chiao, C.-C. Visual Experience–Independent Functional Expression of NMDA Receptors in the Developing Rabbit Retina. Investig. Ophthalmol. Vis. Sci. 2010, 51, 2744–2754. [Google Scholar] [CrossRef]
- Liets, L.C.; Chalupa, L.M. Glutamate-mediated responses in developing retinal ganglion cells. Prog. Brain Res. 2001, 134, 1–16. [Google Scholar]
- Pourcho, R.G.; Qin, P.; Goebel, D.J. Cellular and subcellular distribution of NMDA receptor subunit NR2B in the retina. J. Comp. Neurol. 2001, 433, 75–85. [Google Scholar] [CrossRef]
- DeVries, S.H.; Schwartz, E.A. Kainate receptors mediate synaptic transmission between cones and ‘Off’ bipolar cells in a mammalian retina. Nature 1999, 397, 157–160. [Google Scholar] [CrossRef]
- Kaneko, A. Physiological and morphological identification of horizontal, bipolar and amacrine cells in goldfish retina. J. Physiol. 1970, 207, 623–633. [Google Scholar] [CrossRef]
- Werblin, F.S.; Dowling, J.E. Organization of the retina of the mudpuppy, Necturus maculosus. II. Intracellular recording. J. Neurophysiol. 1969, 32, 339–355. [Google Scholar] [CrossRef]
- Gustafson, E.C.; Morgans, C.W.; Tekmen, M.; Sullivan, S.J.; Esguerra, M.; Konno, R.; Miller, R.F. Retinal NMDA receptor function and expression are altered in a mouse lacking D-amino acid oxidase. J. Neurophysiol. 2013, 110, 2718–2726. [Google Scholar] [CrossRef]
- Popova, E. ON-OFF Interactions in the Retina: Role of Glycine and GABA. Curr. Neuropharmacol. 2014, 12, 509–526. [Google Scholar] [CrossRef]
- Zhang, J.; Diamond, J.S. Distinct perisynaptic and synaptic localization of NMDA and AMPA receptors on ganglion cells in rat retina. J. Comp. Neurol. 2006, 498, 810–820. [Google Scholar] [CrossRef] [PubMed]
- Catsicas, M.; Mobbs, P. GABAb receptors regulate chick retinal calcium waves. J. Neurosci. 2001, 21, 897–910. [Google Scholar] [CrossRef] [PubMed]
- Fischer, K.F.; Lukasiewicz, P.D.; Wong, R.O. Age-dependent and cell class-specific modulation of retinal ganglion cell bursting activity by GABA. J. Neurosci. 1998, 18, 3767–3778. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Du, L.; Peng, G.; Li, W. GABA inhibits proliferation and self-renewal of mouse retinal progenitor cell. Cell Death Discov. 2019, 5, 80. [Google Scholar] [CrossRef] [PubMed]
- Shaye, H.; Stauch, B.; Gati, C.; Cherezov, V. Molecular mechanisms of metabotropic GABA(B) receptor function. Sci. Adv. 2021, 7, eabg3362. [Google Scholar] [CrossRef] [PubMed]
- Matthews, G.; Ayoub, G.S.; Heidelberger, R. Presynaptic inhibition by GABA is mediated via two distinct GABA receptors with novel pharmacology. J. Neurosci. 1994, 14, 1079–1090. [Google Scholar] [CrossRef] [PubMed]
- Kirsch, J.; Betz, H. Glycine-receptor activation is required for receptor clustering in spinal neurons. Nature 1998, 392, 717–720. [Google Scholar] [CrossRef] [PubMed]
- Lynch, J.W. Native glycine receptor subtypes and their physiological roles. Neuropharmacology 2009, 56, 303–309. [Google Scholar] [CrossRef]
- Haverkamp, S. Glycine Receptor Diversity in the Mammalian Retina. In Webvision: The Organization of the Retina and Visual System; Kolb, H., Nelson, R., Fernandez, E., Jones, B.W., Eds.; University of Utah Health Sciences Center: Salt Lake City, UT, USA, 1995. [Google Scholar]
- Hsueh, H.A.; Molnar, A.; Werblin, F.S. Amacrine-to-amacrine cell inhibition in the rabbit retina. J. Neurophysiol. 2008, 100, 2077–2088. [Google Scholar] [CrossRef] [PubMed]
- Sassoe-Pognetto, M.; Wassle, H.; Grunert, U. Glycinergic synapses in the rod pathway of the rat retina: Cone bipolar cells express the alpha 1 subunit of the glycine receptor. J. Neurosci. 1994, 14, 5131–5146. [Google Scholar] [CrossRef] [PubMed]
- Witkovsky, P. Dopamine and retinal function. Doc. Ophthalmol. 2004, 108, 17–39. [Google Scholar] [CrossRef]
- Missale, C.; Nash, S.R.; Robinson, S.W.; Jaber, M.; Caron, M.G. Dopamine Receptors: From Structure to Function. Physiol. Rev. 1998, 78, 189–225. [Google Scholar] [CrossRef]
- Hammond, P. Receptive field mechanisms of sustained and transient retinal ganglion cells in the cat. Exp. Brain Res. 1975, 23, 113–128. [Google Scholar] [CrossRef]
- Troy, J.B.; Shou, T. The receptive fields of cat retinal ganglion cells in physiological and pathological states: Where we are after half a century of research. Prog. Retin. Eye Res. 2002, 21, 263–302. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.-P.; Burbridge, T.J.; Ye, M.; Chen, M.; Ge, X.; Zhou, Z.J.; Crair, M.C. Retinal Wave Patterns Are Governed by Mutual Excitation among Starburst Amacrine Cells and Drive the Refinement and Maintenance of Visual Circuits. J. Neurosci. 2016, 36, 3871–3886. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.J.; Fain, G.L. Starburst amacrine cells change from spiking to nonspiking neurons during retinal development. Proc. Natl. Acad. Sci. USA 1996, 93, 8057–8062. [Google Scholar] [CrossRef] [PubMed]
- Laspas, P.; Zhutdieva, M.B.; Brochhausen, C.; Musayeva, A.; Zadeh, J.K.; Pfeiffer, N.; Xia, N.; Li, H.; Wess, J.; Gericke, A. The M1 muscarinic acetylcholine receptor subtype is important for retinal neuron survival in aging mice. Sci. Rep. 2019, 9, 5222. [Google Scholar] [CrossRef] [PubMed]
- Strang, C.E.; Long, Y.; Gavrikov, K.E.; Amthor, F.R.; Keyser, K.T. Nicotinic and muscarinic acetylcholine receptors shape ganglion cell response properties. J. Neurophysiol. 2014, 113, 203–217. [Google Scholar] [CrossRef]
- Elstrott, J.; Anishchenko, A.; Greschner, M.; Sher, A.; Litke, A.M.; Chichilnisky, E.J.; Feller, M.B. Direction selectivity in the retina is established independent of visual experience and cholinergic retinal waves. Neuron 2008, 58, 499–506. [Google Scholar] [CrossRef]
- Casson, R.J. Possible role of excitotoxicity in the pathogenesis of glaucoma. Clin. Exp. Ophthalmol. 2006, 34, 54–63. [Google Scholar] [CrossRef] [PubMed]
- Harada, C.; Nakamura, K.; Namekata, K.; Okumura, A.; Mitamura, Y.; Iizuka, Y.; Kashiwagi, K.; Yoshida, K.; Ohno, S.; Matsuzawa, A.; et al. Role of apoptosis signal-regulating kinase 1 in stress-induced neural cell apoptosis in vivo. Am. J. Pathol. 2006, 168, 261–269. [Google Scholar] [CrossRef]
- Naskar, R.; Vorwerk, C.K.; Dreyer, E.B. Concurrent downregulation of a glutamate transporter and receptor in glaucoma. Investig. Ophthalmol. Vis. Sci. 2000, 41, 1940–1944. [Google Scholar]
- Hartwick, A.T.; Hamilton, C.M.; Baldridge, W.H. Glutamatergic calcium dynamics and deregulation of rat retinal ganglion cells. J. Physiol. 2008, 586, 3425–3446. [Google Scholar] [CrossRef]
- Sattler, R.; Tymianski, M. Molecular mechanisms of calcium-dependent excitotoxicity. J. Mol. Med. 2000, 78, 3–13. [Google Scholar] [CrossRef]
- Smith, S.B. Diabetic Retinopathy and the NMDA Receptor. Drug. News Perspect. 2002, 15, 226–232. [Google Scholar] [CrossRef]
- Harnois, C.; Di Paolo, T. Decreased dopamine in the retinas of patients with Parkinson’s disease. Investig. Ophthalmol. Vis. Sci. 1990, 31, 2473–2475. [Google Scholar]
- Moschos, M.M.; Tagaris, G.; Markopoulos, L.; Margetis, L.; Tsapakis, S.; Kanakis, M.; Koutsandrea, C. Morphologic Changes and Functional Retinal Impairment in Patients with Parkinson Disease without Visual Loss. Eur. J. Ophthalmol. 2011, 21, 24–29. [Google Scholar]
- Zeisel, S.H.; Da Costa, K.-A.; Franklin, P.D.; Alexander, E.A.; Lamont, J.T.; Sheard, N.F.; Beiser, A. Choline, an essential nutrient for humans. FASEB J. 1991, 5, 2093–2098. [Google Scholar] [CrossRef]
- Finlayson, P.G.; Iezzi, R. Glutamate stimulation of retinal ganglion cells in normal and s334ter-4 rat retinas: A candidate for a neurotransmitter-based retinal prosthesis. Investig. Ophthalmol. Vis. Sci. 2010, 51, 3619–3628. [Google Scholar] [CrossRef]
- Lee, S.; Chen, L.; Chen, M.; Ye, M.; Seal, R.P.; Zhou, Z.J. An unconventional glutamatergic circuit in the retina formed by vGluT3 amacrine cells. Neuron 2014, 84, 708–715. [Google Scholar] [CrossRef] [PubMed]
- Roth, B.L. Molecular pharmacology of metabotropic receptors targeted by neuropsychiatric drugs. Nat. Struct. Mol. Biol. 2019, 26, 535–544. [Google Scholar] [CrossRef] [PubMed]
- Galli, L.; Maffei, L. Spontaneous impulse activity of rat retinal ganglion cells in prenatal life. Science 1988, 242, 90–91. [Google Scholar] [CrossRef] [PubMed]
- Miyazaki, T.; Yamasaki, M.; Hashimoto, K.; Kohda, K.; Yuzaki, M.; Shimamoto, K.; Tanaka, K.; Kano, M.; Watanabe, M. Glutamate transporter GLAST controls synaptic wrapping by Bergmann glia and ensures proper wiring of Purkinje cells. Proc. Natl. Acad. Sci. USA 2017, 114, 7438–7443. [Google Scholar] [CrossRef]
- Gründer, T.; Kohler, K.; Kaletta, A.; Guenther, E. The distribution and developmental regulation of NMDA receptor subunit proteins in the outer and inner retina of the rat. J. Neurobiol. 2000, 44, 333–342. [Google Scholar] [CrossRef]
- Hartveit, E.; Brandstätter, J.H.; Sassoè-Pognetto, M.; Laurie, D.J.; Seeburg, P.H.; Wässle, H. Localization and developmental expression of the NMDA receptor subunit NR2A in the mammalian retina. J. Comp. Neurol. 1994, 348, 570–582. [Google Scholar] [CrossRef]
- Mehta, B.; Ke, J.-B.; Zhang, L.; Baden, A.D.; Markowitz, A.L.; Nayak, S.; Briggman, K.L.; Zenisek, D.; Singer, J.H. Global Ca2+ Signaling Drives Ribbon-Independent Synaptic Transmission at Rod Bipolar Cell Synapses. J. Neurosci. 2014, 34, 6233–6244. [Google Scholar] [CrossRef] [PubMed]
- Mehta, B.; Snellman, J.; Chen, S.; Li, W.; Zenisek, D. Synaptic ribbons influence the size and frequency of miniature-like evoked postsynaptic currents. Neuron 2013, 77, 516–527. [Google Scholar] [CrossRef] [PubMed]
- Thoreson, W.B. Transmission at rod and cone ribbon synapses in the retina. Pflug. Arch 2021, 473, 1469–1491. [Google Scholar] [CrossRef] [PubMed]
- Dhingra, A.; Vardi, N. mGlu Receptors in the Retina-WIREs Membrane Transport and Signaling. Wiley Interdiscip. Rev. Membr. Transp. Signal. 2012, 1, 641–653. [Google Scholar] [CrossRef]
- Nawy, S. The metabotropic receptor mGluR6 may signal through G(o), but not phosphodiesterase, in retinal bipolar cells. J. Neurosci. 1999, 19, 2938–2944. [Google Scholar] [CrossRef]
- Shen, Y.; Heimel, J.A.; Kamermans, M.; Peachey, N.S.; Gregg, R.G.; Nawy, S. A transient receptor potential-like channel mediates synaptic transmission in rod bipolar cells. J. Neurosci. 2009, 29, 6088–6093. [Google Scholar] [CrossRef]
- Morgans, C.W.; Brown, R.L.; Duvoisin, R.M. TRPM1: The endpoint of the mGluR6 signal transduction cascade in retinal ON-bipolar cells. Bioessays 2010, 32, 609–614. [Google Scholar] [CrossRef]
- Lie-Venema, H.; Hakvoort, T.B.; van Hemert, F.J.; Moorman, A.F.; Lamers, W.H. Regulation of the spatiotemporal pattern of expression of the glutamine synthetase gene. Prog. Nucleic Acid. Res. Mol. Biol. 1998, 61, 243–308. [Google Scholar]
- Novelli, A.; Reilly, J.A.; Lysko, P.G.; Henneberry, R.C. Glutamate becomes neurotoxic via the N-methyl-D-aspartate receptor when intracellular energy levels are reduced. Brain Res. 1988, 451, 205–212. [Google Scholar] [CrossRef]
- Nguyen, D.; Alavi, M.V.; Kim, K.Y.; Kang, T.; Scott, R.T.; Noh, Y.H.; Lindsey, J.D.; Wissinger, B.; Ellisman, M.H.; Weinreb, R.N.; et al. A new vicious cycle involving glutamate excitotoxicity, oxidative stress and mitochondrial dynamics. Cell Death Dis. 2011, 2, e240. [Google Scholar] [CrossRef]
- Peichl, L. Alpha ganglion cells in mammalian retinae: Common properties, species differences, and some comments on other ganglion cells. Vis. Neurosci. 1991, 7, 155–169. [Google Scholar] [CrossRef]
- Sanes, J.R.; Masland, R.H. The Types of Retinal Ganglion Cells: Current Status and Implications for Neuronal Classification. Annu. Rev. Neurosci. 2015, 38, 221–246. [Google Scholar] [CrossRef]
- Lucas, D.R.; Newhouse, J.P. The toxic effect of sodium L-glutamate on the inner layers of the retina. AMA Arch. Ophthalmol. 1957, 58, 193–201. [Google Scholar] [CrossRef]
- Izumi, Y.; Shimamoto, K.; Benz, A.M.; Hammerman, S.B.; Olney, J.W.; Zorumski, C.F. Glutamate transporters and retinal excitotoxicity. Glia 2002, 39, 58–68. [Google Scholar] [CrossRef]
- Shimamoto, K.; Lebrun, B.; Yasuda-Kamatani, Y.; Sakaitani, M.; Shigeri, Y.; Yumoto, N.; Nakajima, T. DL-threo-beta-benzyloxyaspartate, a potent blocker of excitatory amino acid transporters. Mol. Pharmacol. 1998, 53, 195–201. [Google Scholar] [CrossRef]
- Wasilewa, P.; Hockwin, O.; Korte, I. Glycogen concentration changes in retina, vitreous body and other eye tissues caused by disturbances of blood circulation. Albrecht. Von Graefes Arch. Klin. Exp. Ophthalmol. 1976, 199, 115–120. [Google Scholar] [CrossRef]
- Kosenko, E.; Llansola, M.; Montoliu, C.; Monfort, P.; Rodrigo, R.; Hernandez-Viadel, M.; Erceg, S.; Sánchez-Perez, A.M.; Felipo, V. Glutamine synthetase activity and glutamine content in brain: Modulation by NMDA receptors and nitric oxide. Neurochem. Int. 2003, 43, 493–499. [Google Scholar] [CrossRef]
- Fernandez, D.C.; Chianelli, M.S.; Rosenstein, R.E. Involvement of glutamate in retinal protection against ischemia/reperfusion damage induced by post-conditioning. J. Neurochem. 2009, 111, 488–498. [Google Scholar] [CrossRef]
- Osborne, N.N.; Casson, R.J.; Wood, J.P.; Chidlow, G.; Graham, M.; Melena, J. Retinal ischemia: Mechanisms of damage and potential therapeutic strategies. Prog. Retin. Eye Res. 2004, 23, 91–147. [Google Scholar] [CrossRef]
- Barnett, N.L.; Pow, D.V.; Bull, N.D. Differential perturbation of neuronal and glial glutamate transport systems in retinal ischaemia. Neurochem. Int. 2001, 39, 291–299. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, C.; Su, G. Cellular Signaling in Müller Glia: Progenitor Cells for Regenerative and Neuroprotective Responses in Pharmacological Models of Retinal Degeneration. J. Ophthalmol. 2019, 2019, 5743109. [Google Scholar] [CrossRef]
- Bringmann, A.; Uckermann, O.; Pannicke, T.; Iandiev, I.; Reichenbach, A.; Wiedemann, P. Neuronal versus glial cell swelling in the ischaemic retina. Acta Ophthalmol. Scand. 2005, 83, 528–538. [Google Scholar] [CrossRef]
- Barnett, N.L.; Grozdanic, S.D. Glutamate transporter localization does not correspond to the temporary functional recovery and late degeneration after acute ocular ischemia in rats. Exp. Eye Res. 2004, 79, 513–524. [Google Scholar] [CrossRef]
- Harada, T.; Harada, C.; Nakamura, K.; Quah, H.M.; Okumura, A.; Namekata, K.; Saeki, T.; Aihara, M.; Yoshida, H.; Mitani, A.; et al. The potential role of glutamate transporters in the pathogenesis of normal tension glaucoma. J. Clin. Investig. 2007, 117, 1763–1770. [Google Scholar] [CrossRef]
- Osaka, N.; Takahashi, T.; Murakami, S.; Matsuzawa, A.; Noguchi, T.; Fujiwara, T.; Aburatani, H.; Moriyama, K.; Takeda, K.; Ichijo, H. ASK1-dependent recruitment and activation of macrophages induce hair growth in skin wounds. J. Cell Biol. 2007, 176, 903–909. [Google Scholar] [CrossRef]
- Ambati, J.; Chalam, K.V.; Chawla, D.K.; D’Angio, C.T.; Guillet, E.G.; Rose, S.J.; Vanderlinde, R.E.; Ambati, B.K. Elevated gamma-aminobutyric acid, glutamate, and vascular endothelial growth factor levels in the vitreous of patients with proliferative diabetic retinopathy. Arch. Ophthalmol. 1997, 115, 1161–1166. [Google Scholar] [CrossRef]
- Hernández, C.; Simó, R. Neuroprotection in diabetic retinopathy. Curr. Diab. Rep. 2012, 12, 329–337. [Google Scholar] [CrossRef]
- Cervantes-Villagrana, A.R.; Garcia-Román, J.; González-Espinosa, C.; Lamas, M. Pharmacological inhibition of N-methyl d-aspartate receptor promotes secretion of vascular endothelial growth factor in müller cells: Effects of hyperglycemia and hypoxia. Curr. Eye Res. 2010, 35, 733–741. [Google Scholar] [CrossRef]
- Kusari, J.; Zhou, S.X.; Padillo, E.; Clarke, K.G.; Gil, D.W. Inhibition of Vitreoretinal VEGF Elevation and Blood–Retinal Barrier Breakdown in Streptozotocin-Induced Diabetic Rats by Brimonidine. Investig. Ophthalmol. Vis. Sci. 2010, 51, 1044–1051. [Google Scholar] [CrossRef]
- Li, Q.; Puro, D.G. Diabetes-induced dysfunction of the glutamate transporter in retinal Müller cells. Investig. Ophthalmol. Vis. Sci. 2002, 43, 3109–3116. [Google Scholar]
- Zeng, K.; Xu, H.; Mi, M.; Zhang, Q.; Zhang, Y.; Chen, K.; Chen, F.; Zhu, J.; Yu, X. Dietary taurine supplementation prevents glial alterations in retina of diabetic rats. Neurochem. Res. 2009, 34, 244–254. [Google Scholar] [CrossRef]
- Paradies, G.; Petrosillo, G.; Paradies, V.; Ruggiero, F.M. Role of cardiolipin peroxidation and Ca2+ in mitochondrial dysfunction and disease. Cell Calcium 2009, 45, 643–650. [Google Scholar] [CrossRef]
- Aydın, A.; Orhan, H.; Sayal, A.; Özata, M.; Şahin, G.; Işımer, A. Oxidative stress and nitric oxide related parameters in type II diabetes mellitus: Effects of glycemic control. Clin. Biochem. 2001, 34, 65–70. [Google Scholar] [CrossRef]
- Dong, L.Y.; Jin, J.; Lu, G.; Kang, X.L. Astaxanthin attenuates the apoptosis of retinal ganglion cells in db/db mice by inhibition of oxidative stress. Mar. Drugs 2013, 11, 960–974. [Google Scholar] [CrossRef]
- Mittal, R.; Kumar, A.; Singh, D.P.; Bishnoi, M.; Nag, T.C. Ameliorative potential of rutin in combination with nimesulide in STZ model of diabetic neuropathy: Targeting Nrf2/HO-1/NF-kB and COX signalling pathway. Inflammopharmacology 2018, 26, 755–768. [Google Scholar] [CrossRef]
- Xu, Z.; Wei, Y.; Gong, J.; Cho, H.; Park, J.K.; Sung, E.R.; Huang, H.; Wu, L.; Eberhart, C.; Handa, J.T.; et al. NRF2 plays a protective role in diabetic retinopathy in mice. Diabetologia 2014, 57, 204–213. [Google Scholar] [CrossRef]
- Firl, A.; Sack, G.S.; Newman, Z.L.; Tani, H.; Feller, M.B. Extrasynaptic glutamate and inhibitory neurotransmission modulate ganglion cell participation during glutamatergic retinal waves. J. Neurophysiol. 2013, 109, 1969–1978. [Google Scholar] [CrossRef]
- Wong, R.O. Effects of glutamate and its analogs on intracellular calcium levels in the developing retina. Vis. Neurosci. 1995, 12, 907–917. [Google Scholar] [CrossRef]
- Mesnard, C.S.; Barta, C.L.; Sladek, A.L.; Zenisek, D.; Thoreson, W.B. Eliminating Synaptic Ribbons from Rods and Cones Halves the Releasable Vesicle Pool and Slows Down Replenishment. Int. J. Mol. Sci. 2022, 23, 6429. [Google Scholar] [CrossRef]
- Frank, T.; Rutherford, M.A.; Strenzke, N.; Neef, A.; Pangršič, T.; Khimich, D.; Fejtova, A.; Gundelfinger, E.D.; Liberman, M.C.; Harke, B.; et al. Bassoon and the synaptic ribbon organize Ca2+ channels and vesicles to add release sites and promote refilling. Neuron 2010, 68, 724–738. [Google Scholar] [CrossRef]
- Chen, M.; Van Hook, M.J.; Zenisek, D.; Thoreson, W.B. Properties of ribbon and non-ribbon release from rod photoreceptors revealed by visualizing individual synaptic vesicles. J. Neurosci. 2013, 33, 2071–2086. [Google Scholar] [CrossRef]
- Krizaj, D.; Lai, F.A.; Copenhagen, D.R. Ryanodine stores and calcium regulation in the inner segments of salamander rods and cones. J. Physiol. 2003, 547, 761–774. [Google Scholar] [CrossRef] [PubMed]
- Sernagor, E.; Young, C.; Eglen, S.J. Developmental modulation of retinal wave dynamics: Shedding light on the GABA saga. J. Neurosci. 2003, 23, 7621–7629. [Google Scholar] [CrossRef] [PubMed]
- Moore-Dotson, J.M.; Eggers, E.D. Reductions in Calcium Signaling Limit Inhibition to Diabetic Retinal Rod Bipolar Cells. Investig. Ophthalmol. Vis. Sci. 2019, 60, 4063–4073. [Google Scholar] [CrossRef]
- Hou, M.; Duan, L.; Slaughter, M.M. Synaptic inhibition by glycine acting at a metabotropic receptor in tiger salamander retina. J. Physiol. 2008, 586, 2913–2926. [Google Scholar] [CrossRef]
- Zhang, P.-P.; Zhang, G.; Zhou, W.; Weng, S.-J.; Yang, X.-L.; Zhong, Y.-M. Signaling mechanism for modulation by ATP of glycine receptors on rat retinal ganglion cells. Sci. Rep. 2016, 6, 28938. [Google Scholar] [CrossRef]
- Marc, A.M.; Veeramuthu, B.; Xiaohan, W.; von Gersdorff, H. Glycine Release Is Potentiated by cAMP via EPAC2 and Ca2+; Stores in a Retinal Interneuron. J. Neurosci. 2021, 41, 9503. [Google Scholar]
- Ivanova, T.N.; Alonso-Gomez, A.L.; Iuvone, P.M. Dopamine D4 receptors regulate intracellular calcium concentration in cultured chicken cone photoreceptor cells: Relationship to dopamine receptor-mediated inhibition of cAMP formation. Brain Res. 2008, 1207, 111–119. [Google Scholar] [CrossRef]
- Jackson, C.R.; Chaurasia, S.S.; Zhou, H.; Haque, R.; Storm, D.R.; Iuvone, P.M. Essential roles of dopamine D4 receptors and the type 1 adenylyl cyclase in photic control of cyclic AMP in photoreceptor cells. J. Neurochem. 2009, 109, 148–157. [Google Scholar] [CrossRef]
- Dubocovich, M.L. Melatonin is a potent modulator of dopamine release in the retina. Nature 1983, 306, 782–784. [Google Scholar] [CrossRef]
- Nowak, J.Z.; Z̵urawska, E.; Zawilska, J. Melatonin and its generating system in vertebrate retina: Circadian rhythm, effect of environmental lighting and interaction with dopamine. Neurochem. Int. 1989, 14, 397–406. [Google Scholar] [CrossRef]
- Hellmer, C.B.; Hall, L.M.; Bohl, J.M.; Sharpe, Z.J.; Smith, R.G.; Ichinose, T. Cholinergic feedback to bipolar cells contributes to motion detection in the mouse retina. Cell Rep. 2021, 37, 110106. [Google Scholar] [CrossRef]
- Lee, S.; Kim, K.; Zhou, Z.J. Role of ACh-GABA Cotransmission in Detecting Image Motion and Motion Direction. Neuron 2010, 68, 1159–1172. [Google Scholar] [CrossRef]
- Ruan, Y.; Patzak, A.; Pfeiffer, N.; Gericke, A. Muscarinic Acetylcholine Receptors in the Retina-Therapeutic Implications. Int. J. Mol. Sci. 2021, 22, 4989. [Google Scholar] [CrossRef]
- Wu, X.-S.; Wu, L.-G. The Yin and Yang of Calcium Effects on Synaptic Vesicle Endocytosis. J. Neurosci. 2014, 34, 2652–2659. [Google Scholar] [CrossRef]
- Haverkamp, S.; Wässle, H. Immunocytochemical analysis of the mouse retina. J. Comp. Neurol. 2000, 424, 1–23. [Google Scholar] [CrossRef]
- Vaughn, J.E.; Famiglietti, E.V.; Barber, R.P., Jr.; Saito, K.; Roberts, E.; Ribak, C.E. GABAergic amacrine cells in rat retina: Immunocytochemical identification and synaptic connectivity. J. Comp. Neurol. 1981, 197, 113–127. [Google Scholar] [CrossRef] [PubMed]
- Mosinger, J.L.; Yazulla, S.; Studholme, K.M. GABA-like immunoreactivity in the vertebrate retina: A species comparison. Exp. Eye Res. 1986, 42, 631–644. [Google Scholar] [CrossRef]
- Davanger, S.; Ottersen, O.P.; Storm-Mathisen, J. Glutamate, GABA, and glycine in the human retina: An immunocytochemical investigation. J. Comp. Neurol. 1991, 311, 483–494. [Google Scholar] [CrossRef]
- Agardh, E.; Ehinger, B.; Wu, J.Y. GABA and GAD-like immunoreactivity in the primate retina. Histochemistry 1987, 86, 485–490. [Google Scholar] [CrossRef] [PubMed]
- Yu, B.C.Y.; Watt, C.B.; Lam, D.M.K.; Fry, K.R. GABAergic ganglion cells in the rabbit retina. Brain Res. 1988, 439, 376–382. [Google Scholar] [CrossRef] [PubMed]
- Sandell, J.H. GABA as a developmental signal in the inner retina and optic nerve. Perspect. Dev. Neurobiol. 1998, 5, 269–278. [Google Scholar]
- Schnitzer, J.; Rusoff, A.C. Horizontal cells of the mouse retina contain glutamic acid decarboxylase-like immunoreactivity during early developmental stages. J. Neurosci. 1984, 4, 2948–2955. [Google Scholar] [CrossRef]
- Buddhala, C.; Hsu, C.C.; Wu, J.Y. A novel mechanism for GABA synthesis and packaging into synaptic vesicles. Neurochem. Int. 2009, 55, 9–12. [Google Scholar] [CrossRef]
- Mikkelsen, M.; Harris, A.D.; Edden, R.A.E.; Puts, N.A.J. Macromolecule-suppressed GABA measurements correlate more strongly with behavior than macromolecule-contaminated GABA+ measurements. Brain Res. 2018, 1701, 204–211. [Google Scholar] [CrossRef]
- Hyland, N.; Cryan, J. A Gut Feeling about GABA: Focus on GABAB Receptors. Front. Pharmacol. 2010, 1, 124. [Google Scholar] [CrossRef]
- Macdonald, R.L.; Olsen, R.W. GABAA receptor channels. Annu. Rev. Neurosci. 1994, 17, 569–602. [Google Scholar] [CrossRef]
- Bormann, J. Electrophysiology of GABAA and GABAB receptor subtypes. Trends Neurosci. 1988, 11, 112–116. [Google Scholar] [CrossRef]
- Popova, E. Ionotropic GABA Receptors and Distal Retinal ON and OFF Responses. Scientifica 2014, 2014, 149187. [Google Scholar] [CrossRef]
- Sigel, E.; Buhr, A. The benzodiazepine binding site of GABAA receptors. Trends Pharmacol. Sci. 1997, 18, 425–429. [Google Scholar] [CrossRef] [PubMed]
- Edgar, P.P.; Schwartz, R.D. Functionally relevant gamma-aminobutyric acidA receptors: Equivalence between receptor affinity (Kd) and potency (EC50)? Mol. Pharmacol. 1992, 41, 1124–1129. [Google Scholar]
- Haefely, W.; Martin, J.; Richards, J.G.; Schoch, P. The multiplicity of actions of benzodiazepine receptor ligands. Can. J. Psychiatry. Rev. Can. Psychiatr. 1993, 38, S102–S108. [Google Scholar]
- Korpi, E.R.; Seeburg, P.H. Natural mutation of GABAA receptor α6 subunit alters benzodiazepine affinity but not allosteric GABA effects. Eur. J. Pharmacol. Mol. Pharmacol. 1993, 247, 23–27. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.; Drewe, J.A.; Lan, N.C. Cloning and characterization of the human GABAA receptor α4 subunit: Identification of a unique diazepam-insensitive binding site. Eur. J. Pharmacol. Mol. Pharmacol. 1995, 291, 319–325. [Google Scholar] [CrossRef]
- Auferkorte, O.N.; Baden, T.; Kaushalya, S.K.; Zabouri, N.; Rudolph, U.; Haverkamp, S.; Euler, T. GABAA Receptors Containing the α2 Subunit Are Critical for Direction-Selective Inhibition in the Retina. PLoS ONE 2012, 7, e35109. [Google Scholar] [CrossRef]
- Koulen, P.; Malitschek, B.; Kuhn, R.; Bettler, B.; Wässle, H.; Brandstätter, J.H. Presynaptic and postsynaptic localization of GABAB receptors in neurons of the rat retina. Eur. J. Neurosci. 1998, 10, 1446–1456. [Google Scholar] [CrossRef] [PubMed]
- Kamermans, M.; Werblin, F. GABA-mediated positive autofeedback loop controls horizontal cell kinetics in tiger salamander retina. J. Neurosci. 1992, 12, 2451–2463. [Google Scholar] [CrossRef]
- Schwartz, E.A. Depolarization without calcium can release gamma-aminobutyric acid from a retinal neuron. Science 1987, 238, 350–355. [Google Scholar] [CrossRef]
- Warrier, A.; Borges, S.; Dalcino, D.; Walters, C.; Wilson, M. Calcium from internal stores triggers GABA release from retinal amacrine cells. J. Neurophysiol. 2005, 94, 4196–4208. [Google Scholar] [CrossRef]
- Brecha, N.C.; Weigmann, C. Expression of GAT-1, a high-affinity gamma-aminobutyric acid plasma membrane transporter in the rat retina. J. Comp. Neurol. 1994, 345, 602–611. [Google Scholar] [CrossRef]
- Honda, S.; Yamamoto, M.; Saito, N. Immunocytochemical localization of three subtypes of GABA transporter in rat retina. Mol. Brain Res. 1995, 33, 319–325. [Google Scholar] [CrossRef]
- Schousboe, A. Role of astrocytes in the maintenance and modulation of glutamatergic and GABAergic neurotransmission. Neurochem. Res. 2003, 28, 347–352. [Google Scholar] [CrossRef]
- Moran, J.; Pasantes-Morales, H.; Redburn, D.A. Glutamate receptor agonists release [3H]GABA preferentially from horizontal cells. Brain Res. 1986, 398, 276–287. [Google Scholar] [CrossRef]
- Marc, R.E. Structural organization of GABAergic circuitry in ectotherm retinas. Prog. Brain Res. 1992, 90, 61–92. [Google Scholar]
- Barnett, N.L.; Osborne, N.N. Redistribution of GABA immunoreactivity following central retinal artery occlusion. Brain Res. 1995, 677, 337–340. [Google Scholar] [CrossRef]
- Malmgren, K.; Ben-Menachem, E.; Frisén, L. Vigabatrin Visual Toxicity: Evolution and Dose Dependence. Epilepsia 2001, 42, 609–615. [Google Scholar] [CrossRef]
- Biermann, J.; Grieshaber, P.; Goebel, U.; Martin, G.; Thanos, S.; Di Giovanni, S.; Lagrèze, W.A. Valproic acid-mediated neuroprotection and regeneration in injured retinal ganglion cells. Investig. Ophthalmol. Vis. Sci. 2010, 51, 526–534. [Google Scholar] [CrossRef]
- Schur, R.M.; Gao, S.; Yu, G.; Chen, Y.; Maeda, A.; Palczewski, K.; Lu, Z.R. New GABA modulators protect photoreceptor cells from light-induced degeneration in mouse models. FASEB J. 2018, 32, 3289–3300. [Google Scholar] [CrossRef]
- Eggers, E.D.; Klein, J.S.; Moore-Dotson, J.M. Slow changes in Ca2(+) cause prolonged release from GABAergic retinal amacrine cells. J. Neurophysiol. 2013, 110, 709–719. [Google Scholar] [CrossRef]
- Hirano, A.A.; Vuong, H.E.; Kornmann, H.L.; Schietroma, C.; Stella, S.L.; Barnes, S.; Brecha, N.C. Vesicular Release of GABA by Mammalian Horizontal Cells Mediates Inhibitory Output to Photoreceptors. Front. Cell. Neurosci. 2020, 14, 600777. [Google Scholar] [CrossRef]
- Verweij, J.; Kamermans, M.; Spekreijse, H. Horizontal cells feed back to cones by shifting the cone calcium-current activation range. Vis. Res. 1996, 36, 3943–3953. [Google Scholar] [CrossRef]
- Pow, D.V.; Barnett, N.L. Changing patterns of spatial buffering of glutamate in developing rat retinae are mediated by the Müller cell glutamate transporter GLAST. Cell Tissue Res. 1999, 297, 57–66. [Google Scholar] [CrossRef]
- Sánchez-Chávez, G.; Velázquez-Flores, M.Á.; Ruiz Esparza-Garrido, R.; Salceda, R. Glycine receptor subunits expression in the developing rat retina. Neurochem. Int. 2017, 108, 177–182. [Google Scholar] [CrossRef]
- Young, T.L.; Cepko, C.L. A Role for Ligand-Gated Ion Channels in Rod Photoreceptor Development. Neuron 2004, 41, 867–879. [Google Scholar] [CrossRef]
- Famiglietti, E.V., Jr.; Kolb, H. A bistratified amacrine cell and synaptic cirucitry in the inner plexiform layer of the retina. Brain Res. 1975, 84, 293–300. [Google Scholar] [CrossRef]
- Bormann, J.; Rundström, N.; Betz, H.; Langosch, D. Residues within transmembrane segment M2 determine chloride conductance of glycine receptor homo- and hetero-oligomers. EMBO J. 1993, 12, 3729–3737. [Google Scholar] [CrossRef]
- Betz, H. Structure and function of inhibitory glycine receptors. Q. Rev. Biophys. 1992, 25, 381–394. [Google Scholar] [CrossRef]
- Eulenburg, V.; Knop, G.; Sedmak, T.; Schuster, S.; Hauf, K.; Schneider, J.; Feigenspan, A.; Joachimsthaler, A.; Brandstätter, J.H. GlyT1 determines the glycinergic phenotype of amacrine cells in the mouse retina. Brain Struct. Funct. 2018, 223, 3251–3266. [Google Scholar] [CrossRef]
- Roux, M.J.; Martínez-Maza, R.; Le Goff, A.; López-Corcuera, B.; Aragón, C.; Supplisson, S. The Glial and the Neuronal Glycine Transporters Differ in Their Reactivity to Sulfhydryl Reagents*. J. Biol. Chem. 2001, 276, 17699–17705. [Google Scholar] [CrossRef]
- Jiang, Z.; Li, B.; Jursky, F.; Shen, W. Differential distribution of glycine transporters in Müller cells and neurons in amphibian retinas. Vis. Neurosci. 2007, 24, 157–168. [Google Scholar] [CrossRef]
- Pow, D.V.; Hendrickson, A.E. Expression of glycine and the glycine transporter glyt-1 in the developing rat retina. Vis. Neurosci. 2000, 17, 1–9. [Google Scholar] [CrossRef]
- Pow, D.V.; Hendrickson, A.E. Distribution of the glycine transporter glyt-1 in mammalian and nonmammalian retinae. Vis. Neurosci. 1999, 16, 231–239. [Google Scholar] [CrossRef]
- Gomeza, J.; Hülsmann, S.; Ohno, K.; Eulenburg, V.; Szöke, K.; Richter, D.; Betz, H. Inactivation of the glycine transporter 1 gene discloses vital role of glial glycine uptake in glycinergic inhibition. Neuron 2003, 40, 785–796. [Google Scholar] [CrossRef]
- Latal, A.T.; Kremer, T.; Gomeza, J.; Eulenburg, V.; Hülsmann, S. Development of synaptic inhibition in glycine transporter 2 deficient mice. Mol. Cell. Neurosci. 2010, 44, 342–352. [Google Scholar] [CrossRef]
- Guidry, C. The role of Müller cells in fibrocontractive retinal disorders. Prog. Retin. Eye Res. 2005, 24, 75–86. [Google Scholar] [CrossRef]
- Gholami, S.; Kamali, Y.; Reza Rostamzad, M. Glycine Supplementation Ameliorates Retinal Neuronal Damage in an Experimental Model of Diabetes in Rats: A Light and Electron Microscopic Study. J. Ophthalmic. Vis. Res. 2019, 14, 448–456. [Google Scholar] [CrossRef]
- Freed, M.A.; Liang, Z. Synaptic noise is an information bottleneck in the inner retina during dynamic visual stimulation. J. Physiol. 2014, 592, 635–651. [Google Scholar] [CrossRef]
- Hattar, S.; Liao, H.W.; Takao, M.; Berson, D.M.; Yau, K.W. Melanopsin-Containing Retinal Ganglion Cells: Architecture, Projections, and Intrinsic Photosensitivity. Science 2002, 295, 1065–1070. [Google Scholar] [CrossRef]
- Versaux-Botteri, C.; Verney, C.; Zecevic, N.; Nguyen-Legros, J. Early appearance of tyrosine hydroxylase immunoreactivity in the retina of human embryos. Dev. Brain Res. 1992, 69, 283–287. [Google Scholar] [CrossRef]
- Wulle, I.; Schnitzer, J. Distribution and morphology of tyrosine hydroxylase-immunoreactive neurons in the developing mouse retina. Dev. Brain Res. 1989, 48, 59–72. [Google Scholar] [CrossRef]
- Iuvone, P.M.; Tosini, G.; Pozdeyev, N.; Haque, R.; Klein, D.C.; Chaurasia, S.S. Circadian clocks, clock networks, arylalkylamine N-acetyltransferase, and melatonin in the retina. Prog. Retin. Eye Res. 2005, 24, 433–456. [Google Scholar] [CrossRef] [PubMed]
- Mao, J.; Liu, S.; Qin, W.; Li, F.; Wu, X.; Tan, Q. Levodopa inhibits the development of form-deprivation myopia in guinea pigs. Optom. Vis. Sci. 2010, 87, 53–60. [Google Scholar]
- Gao, Q.; Liu, Q.; Ma, P.; Zhong, X.; Wu, J.; Ge, J. Effects of direct intravitreal dopamine injections on the development of lid-suture induced myopia in rabbits. Graefes Arch. Clin. Exp. Ophthalmol. 2006, 244, 1329–1335. [Google Scholar] [CrossRef]
- Ashby, R.S.; Schaeffel, F. The effect of bright light on lens compensation in chicks. Investig. Ophthalmol. Vis. Sci. 2010, 51, 5247–5253. [Google Scholar] [CrossRef]
- Backhouse, S.; Collins, A.V.; Phillips, J.R. Influence of periodic vs continuous daily bright light exposure on development of experimental myopia in the chick. Ophthalmic Physiol. Opt. 2013, 33, 563–572. [Google Scholar] [CrossRef]
- Lan, W.; Feldkaemper, M.; Schaeffel, F. Intermittent episodes of bright light suppress myopia in the chicken more than continuous bright light. PLoS ONE 2014, 9, e110906. [Google Scholar] [CrossRef]
- Ford, K.J.; Feller, M.B. Assembly and disassembly of a retinal cholinergic network. Vis. Neurosci. 2012, 29, 61–71. [Google Scholar] [CrossRef] [PubMed]
- Feller, M.B.; Wellis, D.P.; Stellwagen, D.; Werblin, F.S.; Shatz, C.J. Requirement for Cholinergic Synaptic Transmission in the Propagation of Spontaneous Retinal Waves. Science 1996, 272, 1182–1187. [Google Scholar] [CrossRef]
- Burbridge, T.J.; Xu, H.-P.; Ackman, J.B.; Ge, X.; Zhang, Y.; Ye, M.-J.; Zhou, Z.J.; Xu, J.; Contractor, A.; Crair, M.C. Visual Circuit Development Requires Patterned Activity Mediated by Retinal Acetylcholine Receptors. Neuron 2014, 84, 1049–1064. [Google Scholar] [CrossRef]
- Sernagor, E.; Grzywacz, N.M. Influence of spontaneous activity and visual experience on developing retinal receptive fields. Curr. Biol. 1996, 6, 1503–1508. [Google Scholar] [CrossRef] [PubMed]
- Wong, W.T.; Wong, R.O. Changing specificity of neurotransmitter regulation of rapid dendritic remodeling during synaptogenesis. Nat. Neurosci. 2001, 4, 351–352. [Google Scholar] [CrossRef] [PubMed]
- Mehta, V.; Sernagor, E. Early neural activity and dendritic growth in turtle retinal ganglion cells. Eur. J. Neurosci. 2006, 24, 773–786. [Google Scholar] [CrossRef] [PubMed]
- Voigt, T. Cholinergic amacrine cells in the rat retina. J. Comp. Neurol. 1986, 248, 19–35. [Google Scholar] [CrossRef] [PubMed]
- Townes-Anderson, E.; Vogt, B.A. Distribution of muscarinic acetylcholine receptors on processes of isolated retinal cells. J. Comp. Neurol. 1989, 290, 369–383. [Google Scholar] [CrossRef]
- Hall, L.M.; Hellmer, C.B.; Koehler, C.C.; Ichinose, T. Bipolar Cell Type-Specific Expression and Conductance of Alpha-7 Nicotinic Acetylcholine Receptors in the Mouse Retina. Investig. Ophthalmol. Vis. Sci. 2019, 60, 1353–1361. [Google Scholar] [CrossRef]
- Strang, C.E.; Renna, J.M.; Amthor, F.R.; Keyser, K.T. Nicotinic acetylcholine receptor expression by directionally selective ganglion cells. Vis. Neurosci. 2007, 24, 523–533. [Google Scholar] [CrossRef]
- Keyser, K.T.; MacNeil, M.A.; Dmitrieva, N.; Wang, F.; Masland, R.H.; Lindstrom, J.M. Amacrine, ganglion, and displaced amacrine cells in the rabbit retina express nicotinic acetylcholine receptors. Vis. Neurosci. 2000, 17, 743–752. [Google Scholar] [CrossRef]
- Dmitrieva, N.A.; Strang, C.E.; Keyser, K.T. Expression of alpha 7 nicotinic acetylcholine receptors by bipolar, amacrine, and ganglion cells of the rabbit retina. J. Histochem. Cytochem. 2007, 55, 461–476. [Google Scholar] [CrossRef]
- Fischer, A.J.; McKinnon, L.A.; Nathanson, N.M.; Stell, W.K. Identification and localization of muscarinic acetylcholine receptors in the ocular tissues of the chick. J. Comp. Neurol. 1998, 392, 273–284. [Google Scholar] [CrossRef]
- Bernard, V.; Normand, E.; Bloch, B. Phenotypical characterization of the rat striatal neurons expressing muscarinic receptor genes. J. Neurosci. 1992, 12, 3591–3600. [Google Scholar] [CrossRef]
- Vaney, D.I.; Sivyer, B.; Taylor, W.R. Direction selectivity in the retina: Symmetry and asymmetry in structure and function. Nat. Rev. Neurosci. 2012, 13, 194–208. [Google Scholar] [CrossRef] [PubMed]
- Tiriac, A.; Bistrong, K.; Pitcher, M.N.; Tworig, J.M.; Feller, M.B. The influence of spontaneous and visual activity on the development of direction selectivity maps in mouse retina. Cell Rep. 2022, 38, 110225. [Google Scholar] [CrossRef] [PubMed]
- Lusthaus, J.; Goldberg, I. Current management of glaucoma. Med. J. Aust. 2019, 210, 180–187. [Google Scholar] [CrossRef]
Neurotransmitter | Retinal Development | Normal Retinal Physiology |
---|---|---|
Glutamate | ||
GABA |
| |
Glycine |
| |
Dopamine |
|
|
Acetylcholine (ACh) |
|
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boff, J.M.; Shrestha, A.P.; Madireddy, S.; Viswaprakash, N.; Della Santina, L.; Vaithianathan, T. The Interplay between Neurotransmitters and Calcium Dynamics in Retinal Synapses during Development, Health, and Disease. Int. J. Mol. Sci. 2024, 25, 2226. https://doi.org/10.3390/ijms25042226
Boff JM, Shrestha AP, Madireddy S, Viswaprakash N, Della Santina L, Vaithianathan T. The Interplay between Neurotransmitters and Calcium Dynamics in Retinal Synapses during Development, Health, and Disease. International Journal of Molecular Sciences. 2024; 25(4):2226. https://doi.org/10.3390/ijms25042226
Chicago/Turabian StyleBoff, Johane M., Abhishek P. Shrestha, Saivikram Madireddy, Nilmini Viswaprakash, Luca Della Santina, and Thirumalini Vaithianathan. 2024. "The Interplay between Neurotransmitters and Calcium Dynamics in Retinal Synapses during Development, Health, and Disease" International Journal of Molecular Sciences 25, no. 4: 2226. https://doi.org/10.3390/ijms25042226
APA StyleBoff, J. M., Shrestha, A. P., Madireddy, S., Viswaprakash, N., Della Santina, L., & Vaithianathan, T. (2024). The Interplay between Neurotransmitters and Calcium Dynamics in Retinal Synapses during Development, Health, and Disease. International Journal of Molecular Sciences, 25(4), 2226. https://doi.org/10.3390/ijms25042226