Recent Analytical Methodologies in Lipid Analysis
Abstract
:1. Introduction
2. Sample Pretreatment
2.1. Extraction of Lipids
2.2. Derivatization
3. Instrumental Analysis of Lipids
3.1. Direct Infusion MS
3.2. Mass Spectrometry Imaging
3.3. Ion Mobility Spectrometry (IMS-MS)
3.4. LC-MS
3.5. Supercritical Fluid Chromatography—Mass Spectrometry (SFC-MS)
3.6. Gas Chromatography—Mass Spectrometry (GC-MS)
Sample | Analytes | Extraction Type | Extraction Solvent | Method | Approach | Results | Ref. |
---|---|---|---|---|---|---|---|
Biological samples | |||||||
rat serum, brain tissue | SP | LLE | CHCl3:MeOH (9:1) | RPLC-MS/MS | targeted | method for quantification of SP in biological samples | [138] |
human plasma, mouse serum | lipidomic profiling | BUME | BuOH:MeOH (1:1) | LC-MS/MS | untargeted | 88 lipid species were identified as significantly different between wild type CerS2 null mice | [139] |
human serum | lipid profiling | LLE | CHCl3:MeOH (3:1) | UHPLC-HRMS | untargeted | potentially 12 lipids can serve as diagnostic markers of colorectal adenoma | [140] |
serum | HDL | LLE (Folch method) | CHCl3:MeOH | LC-MS/MS | targeted | association of MetS with impairment of phospholipid metabolism in HDL, with obesity and insulin resistance | [141] |
plasma | SP | OPE | MeOH | LC-MS/MS | targeted | 33 identified SP | [142] |
mouse tissue | lipid profiling | OPE | MeOH:H2O (80:20) | LC-MS/MS | - | identification of major cardiolipin molecular species by BRI-DIA and hybrid methods | [143] |
rat serum | lipid markers of CHD | LLE | MTBE | UPLC-HDMS | - | GP and SP metabolism as targets for the treatment of CHD | [144] |
porcine brain extract | lipidomic profile | LLE | MTBE | RP-LC-MS | - | development of microgradient fractionation of total lipid extract for lipidomic analysis. | [145] |
renal biopsies | lipid biomarkers of Fabry disease | LLE (Folch method) | CHCl3:MeOH | UHPLC-HRMS | untargeted | identification of biomarkers of Fabry disease | [146] |
pancreatic cancer cells, extracellular vesicles | lipids and metabolites | LLE | CHCl3:MeOH | SFC-MS | - | identification of 494 lipids | [135] |
human serum | PCs | SPE | eluted with IPA | LC-MS/MS | - | elevation of oxidized PCs in the acute phase of KD | [147] |
human cancer cells and EVs | lipidomic profile | LLE (Bligh and Dyer method) | CHCl3:MeOH | SFC-MS | - | breast cancer EVs selectively loaded with lipids supporting tumor progression | [148] |
human plasma | polar lipids | OPE | MeOH | LC-MS/MS | method development for monitoring of 398 polar lipids | [149] | |
plasma, urine | oxidation products of PUFA | LLE (Folch method) | CHCl3:MeOH | LC-QTOF-MS/MS | targeted | method development for measuring of oxidation products of PUFA | [150] |
human CSF | VLCFA | SPE, LLE + derivatization | octane:EtOH (88:12) + DAABD-AE | UPLC-MS/MS | targeted | assay development for measuring of VLCFA biomarkers | [151] |
human plasma | lipidome | LLE, UAE | CHCl3:MeOH (3:1) | UHPLC-MS | targeted, untargeted | PC (18:1/P-16:0), PC (o-22:3/22:3), PC(P-18:1/16:1) as biomarkers of metabolic syndrome | [152] |
human plasma | lipidomic biomarkers | OPE | IPA | LC-MS | targeted | reference for bladder cancer and renal cell carcinoma biomarker discovery | [153] |
human fibroblasts | unsaturated FA | LLE | MTBE | LC-MS | targeted | complete characterization of FA species | [154] |
mouse plasma | CE, FA, PC, NAE, SM | LLE (Folch method) | CHCl3:MeOH | UHPLC-HR-MS | untargeted | identification of plasma lipid species associated with pain and/or pathology in a DMM model of OA | [155] |
human plasma | LPCs | OPE, UAE | MeOH:ACN | LC-ESI-MS/MS | targeted | identification of 60 LPCs | [156] |
human plasma | lipidomic screening | LLE (Bligh and Dyer method) | CH3OH–CH2Cl2 | UPLC-MS | untargeted | increasing of TAGs levels of advanced-stage CRC patients compared with early-stage CRC patients | [157] |
human serum | LPC, PC, LPE, PE, LPS, PS, LPG, PG, LPI, PI, LPA, PA, SM, MAG, DAG, TAG, CL, Cer, CE | LLE (Folch method) | CHCl3:MeOH (2:1, v/v) | RPLC-MS/MS | untargeted | identification of 753 lipids | [158] |
mouse tissues and fluids | acylcarnitines | OPE + derivatization | MeOH:H2O + 3-NPH | LC-MS | targeted | identification of 123 acylcarnitines | [159] |
plasma, fecal | SCFAs | OPE + derivatization | H2O + 2- bromoacetophenone | LC-MS/MS | targeted | identification of 7 SCFAs | [160] |
plasma, tissue | lipid mediators | SPE | eluted with methyl formate | LC-MS/MS | untargeted | novel tool for studying complete profile of lipid mediators in biological samples | [161] |
human serum | lysosphingomyelin-509 | OPE | EtOH:H2O (3:1, v/v) | LC-MS | targeted | identification of lysosphingomyelin-509 | [162] |
mouse liver | lipid profile | LLE | MeOH:DCM (1:3) | UPLC-MS | - | significant differences in lipid profiles of SCID and chimeric PXB liver-humanized mice | [163] |
Food | |||||||
green, red lettuce | sulfolipids, galactolipids | LLE (Folch method) | CHCl3:MeOH (3:2) | LC-ESI-MS/MS | targeted | oxidized SQDG as potential markers for abiotic stress factors | [164] |
geopropolis | lipid profiles | LLE | MeOH, CHCl3 | LC-HRMS | - | identification of 61 lipids | [165] |
oil palm | lipid profiles | LLE | MTBE | LC-MS | targeted | lipidomic tools for analysis of lipid composition variability in oil from palm | [166] |
fish oil, mushroom extract | FuFA-containing TAGs | LLE, UAE | cyclohexane:EtOAc (46:54)IPA:n-hexane (1:4) | LC-HRMS | - | identification of 39 different FuFA-containing TAGs | [167] |
olive fruit seeds | polar lipids | LLE (Folch method) | CHCl3:MeOH (2:1) | HILIC-HR-MS/MS | untargeted | identification of 94 lipids | [168] |
coffee | specific lipids of interest for each coffee origin | LLE | MTBE | LC-MS/MS | targeted | determination of coffee origin based on its lipid profile | [169] |
donkey meat | lipid profiles | LLE (Folch method) | CHCl3:MeOH (2:1) | LC-MS | untargeted | identification of 1143 lipids | [170] |
milk | HFAs | OPE | MeOH | LC-HRMS | - | quantification of 19 free HFAs | [171] |
extra virgin olive oil | FFAs, FFA methyl- and ethylesters, MAGs, triterpenoids, TAGs | OPE | IPA | LC-MS/MS | - | potent tool for studying variability of lipid species in olive oil | [172] |
potatoes | polar lipids | LLE (Bligh and Dyer, Folch, ”Green” Folch, Matyash, extraction with n-hexane) | CHCl3:MeOH EtOAc:MeOH MTBE n-hexane | UPLC-MS | targeted, untargeted | “Green” Folch method (with EtOAc)—the most suitable extraction method | [173] |
Pharmaceuticals | |||||||
dietary supplements | lipid profiling | - | - | LC-MS | - | production of different lipid classes by different based ingredients products | [174] |
Bacteria | |||||||
Pseudomonas aeruginosa | phospholipids | LLE (Bligh and Dyer) | CHCl3:MeOH | LC-MS/MS | - | the growth medium can influence membrane lipid composition | [175] |
C. eiseniae, Olivibacter sp. | glycerophosholipids | LLE | MTBE MeOH | UHPLC-HR-MS | - | identification of 2 novel glycerophospholipids, 2 novel LAAs | [176] |
Escherichia coli | GPs | LLE | MTBE | UPLC-MS/MS | targeted | transferability of method to any UPLC-MS/MS system with no hardware modification need | [177] |
Fungi | |||||||
marine fungi | ergosterol | LLE (Bligh and Dyer) | CHCl3:MeOH | LC-MS/MS | targeted | highly sensitive method for measuring fungal biomass | [178] |
Plants | |||||||
plant tissue | polar and non-polar lipids | LLE | different solvents optimization of extraction | UHPLC-MS/MS | - | method development for evaluating of polar and non-polar lipids | [125] |
tobacco hairy roots | GPL | LLE (Bligh and Dyer) | CHF3:MeOH | HILIC-MS/MS | targeted | method development for simultaneous determination of different phospholipids | [179] |
Arabidopsis thaliana | lipid profiling | LLE | CHCl3:MeOH:H2O (1:2.5:1) MeOH:MTBE (1:3) IPA + CHCl3:MeOH:H2O (30:41.5:3.5) IPA + CHCl3:H2O (5:2) + CHCl3:MeOH (2:1) | LC-MS | targeted, untargeted | single-step extraction method for untargeted lipidomic analysis | [34] |
4. Data Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Züllig, T.; Trötzmüller, M.; Köfeler, H.C. Lipidomics from Sample Preparation to Data Analysis: A Primer. Anal. Bioanal. Chem. 2020, 412, 2191–2209. [Google Scholar] [CrossRef] [PubMed]
- Xu, T.; Hu, C.; Xuan, Q.; Xu, G. Recent Advances in Analytical Strategies for Mass Spectrometry-Based Lipidomics. Anal. Chim. Acta 2020, 1137, 156–169. [Google Scholar] [CrossRef] [PubMed]
- Natesan, V.; Kim, S.J. Lipid Metabolism, Disorders and Therapeutic Drugs—Review. Biomol. Ther. 2021, 29, 596–604. [Google Scholar] [CrossRef] [PubMed]
- Bai, L.; Bu, F.; Li, X.; Zhang, S.; Min, L. Mass Spectrometry-Based Extracellular Vesicle Micromolecule Detection in Cancer Biomarker Discovery: An Overview of Metabolomics and Lipidomics. View 2023, 4, 20220086. [Google Scholar] [CrossRef]
- Han, X. Lipidomics for Studying Metabolism. Nat. Rev. Endocrinol. 2016, 12, 668–679. [Google Scholar] [CrossRef] [PubMed]
- Rod-In, W.; Monmai, C.; Shin, I.; You, S.G.; Park, W.J. Neutral Lipids, Glycolipids, and Phospholipids, Isolated from Sandfish (Arctoscopus japonicus) Eggs, Exhibit Anti-Inflammatory Activity in LPS-Stimulated RAW264.7 Cells through NF-κB and MAPKs Pathways. Mar. Drugs 2020, 18, 480. [Google Scholar] [CrossRef]
- Song, Y.; Cai, C.; Song, Y.; Sun, X.; Liu, B.; Xue, P.; Zhu, M.; Chai, W.; Wang, Y.; Wang, C.; et al. A Comprehensive Review of Lipidomics and Its Application to Assess Food Obtained from Farm Animals. Food Sci. Anim. Resour. 2022, 42, 1–17. [Google Scholar] [CrossRef]
- Lee, H.C.; Yokomizo, T. Applications of Mass Spectrometry-Based Targeted and Non-Targeted Lipidomics. Biochem. Biophys. Res. Commun. 2018, 504, 576–581. [Google Scholar] [CrossRef]
- Kao, Y.C.; Ho, P.C.; Tu, Y.K.; Jou, I.M.; Tsai, K.J. Lipids and Alzheimer’s Disease. Int. J. Mol. Sci. 2020, 21, 1505. [Google Scholar] [CrossRef]
- Shamim, A.; Mahmood, T.; Ahsan, F.; Kumar, A.; Bagga, P. Lipids: An Insight into the Neurodegenerative Disorders. Clin. Nutr. Exp. 2018, 20, 1–19. [Google Scholar] [CrossRef]
- Saini, R.K.; Prasad, P.; Shang, X.; Keum, Y.S. Advances in Lipid Extraction Methods—A Review. Int. J. Mol. Sci. 2021, 22, 13643. [Google Scholar] [CrossRef] [PubMed]
- Ulmer, C.Z.; Koelmel, J.P.; Jones, C.M.; Garrett, T.J.; Aristizabal-Henao, J.J.; Vesper, H.W.; Bowden, J.A. A Review of Efforts to Improve Lipid Stability during Sample Preparation and Standardization Efforts to Ensure Accuracy in the Reporting of Lipid Measurements. Lipids 2021, 56, 3–16. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.E.; Zhu, S.; Liu, H. Recent Progresses of Derivatization Approaches in the Targeted Lipidomics Analysis by Mass Spectrometry. J. Sep. Sci. 2020, 43, 1838–1846. [Google Scholar] [CrossRef]
- Lange, M.; Ni, Z.; Criscuolo, A.; Fedorova, M. Liquid Chromatography Techniques in Lipidomics Research. Chromatographia 2019, 82, 77–100. [Google Scholar] [CrossRef]
- Li, L.; Han, J.; Wang, Z.; Liu, J.; Wei, J.; Xiong, S.; Zhao, Z. Mass Spectrometry Methodology in Lipid Analysis. Int. J. Mol. Sci. 2014, 15, 10492–10507. [Google Scholar] [CrossRef] [PubMed]
- Belhaj, M.R.; Lawler, N.G.; Hoffman, N.J. Metabolomics and Lipidomics: Expanding the Molecular Landscape of Exercise Biology. Metabolites 2021, 11, 151. [Google Scholar] [CrossRef]
- O’Donnell, V.B.; Ekroos, K.; Liebisch, G.; Wakelam, M. Lipidomics: Current State of the Art in a Fast Moving Field. Wiley Interdiscip. Rev. Syst. Biol. Med. 2020, 12, e1466. [Google Scholar] [CrossRef]
- Long, N.P.; Park, S.; Anh, N.H.; Kim, S.J.; Kim, H.M.; Yoon, S.J.; Lim, J.; Kwon, S.W. Advances in Liquid Chromatography–Mass Spectrometry-Based Lipidomics: A Look Ahead. J. Anal. Test. 2020, 4, 183–197. [Google Scholar] [CrossRef]
- Köfeler, H.C.; Ahrends, R.; Baker, E.S.; Ekroos, K.; Han, X.; Hoffmann, N.; Holcapek, M.; Wenk, M.R.; Liebisch, G. Recommendations for Good Practice in MS-Based Lipidomics. J. Lipid Res. 2021, 62, 100138. [Google Scholar] [CrossRef]
- Howlader, M.S.; French, W.T. Pretreatment and Lipid Extraction from Wet Microalgae: Challenges, Potential, and Application for Industrial-Scale Application. In Microalgae Biotechnology for Food, Health and High Value Products, 1st ed.; Alam, M.A., Xu, J.L., Wang, Z., Eds.; Springer Nature: Singapore, 2020; pp. 469–483. [Google Scholar]
- Teo, C.C.; Chong, W.P.K.; Tan, E.; Basri, N.B.; Low, Z.J.; Ho, Y.S. Advances in Sample Preparation and Analytical Techniques for Lipidomics Study of Clinical Samples. TrAC Trends Anal. Chem. 2015, 66, 1–18. [Google Scholar] [CrossRef]
- Patel, A.; Mikes, F.; Matsakas, L. An Overview of Current Pretreatment Methods Used to Improve Lipid Extraction from Oleaginous Microorganisms. Molecules 2018, 23, 1562. [Google Scholar] [CrossRef] [PubMed]
- Elst, K.; Maesen, M.; Jacobs, G.; Bastiaens, L.; Voorspoels, S.; Servaes, K. Supercritical CO2 Extraction of Nannochloropsis Sp.: A Lipidomic Study on the Influence of Pretreatment on Yield and Composition. Molecules 2018, 23, 1854. [Google Scholar] [CrossRef]
- Lee, S.Y.; Cho, J.M.; Chang, Y.K.; Oh, Y.K. Cell Disruption and Lipid Extraction for Microalgal Biorefineries: A Review. Bioresour. Technol. 2017, 244, 1317–1328. [Google Scholar] [CrossRef] [PubMed]
- Pati, S.; Nie, B.; Arnold, R.D.; Cummings, B.S. Extraction, Chromatographic and Mass Spectrometric Methods for Lipid Analysis. Biomed. Chromatogr. 2016, 30, 695–709. [Google Scholar] [CrossRef]
- Jurowski, K.; Kochan, K.; Walczak, J.; Barańska, M.; Piekoszewski, W.; Buszewski, B. Comprehensive Review of Trends and Analytical Strategies Applied for Biological Samples Preparation and Storage in Modern Medical Lipidomics: State of the Art. TrAC Trends Anal. Chem. 2017, 86, 276–289. [Google Scholar] [CrossRef]
- Liakh, I.; Sledzinski, T.; Kaska, L.; Mozolewska, P.; Mika, A. Sample Preparation Methods for Lipidomics Approaches Used in Studies of Obesity. Molecules 2020, 25, 5307. [Google Scholar] [CrossRef] [PubMed]
- Löfgren, L.; Forsberg, G.B.; Ståhlman, M. The BUME Method: A New Rapid and Simple Chloroform-Free Method for Total Lipid Extraction of Animal Tissue. Sci. Rep. 2016, 6, 27688. [Google Scholar] [CrossRef]
- Alshehry, Z.H.; Barlow, C.K.; Weir, J.M.; Zhou, Y.; McConville, M.J.; Meikle, P.J. An Efficient Single Phase Method for the Extraction of Plasma Lipids. Metabolites 2015, 5, 389–403. [Google Scholar] [CrossRef]
- Liebisch, G.; Höring, M.; Stieglmeier, C.; Schnabel, K.; Hallmark, T.; Ekroos, K.; Burkhardt, R. Benchmarking One-Phase Lipid Extractions for Plasma Lipidomics. Anal. Chem. 2022, 94, 12292–12296. [Google Scholar] [CrossRef]
- Bögl, T.; Mlynek, F.; Himmelsbach, M.; Buchberger, W. Comparison of One-Phase and Two-Phase Extraction Methods for Porcine Tissue Lipidomics Applying a Fast and Reliable Tentative Annotation Workflow. Talanta 2022, 236, 122849. [Google Scholar] [CrossRef]
- Folch, J.; Lees, M.; Sloane Stanley, G.H. A Simple Method for the Isolation and Purification of Total Lipides from Animal Tissues. J. Biol. Chem. 1957, 226, 497–509. [Google Scholar] [CrossRef]
- Bligh, E.G.; Dyer, W.J. The National Research Council of Canada a Rapid Method of Total Lipid Extraction and Purification. Can. J. Biochem. Physiol. 1959, 37, 911–917. [Google Scholar] [CrossRef]
- Kehelpannala, C.; Rupasinghe, T.W.T.; Hennessy, T.; Bradley, D.; Ebert, B.; Roessner, U. A Comprehensive Comparison of Four Methods for Extracting Lipids from Arabidopsis Tissues. Plant Methods 2020, 16, 155. [Google Scholar] [CrossRef]
- Breil, C.; Abert Vian, M.; Zemb, T.; Kunz, W.; Chemat, F. “Bligh and Dyer” and Folch Methods for Solid–Liquid–Liquid Extraction of Lipids from Microorganisms. Comprehension of Solvatation Mechanisms and towards Substitution with Alternative Solvents. Int. J. Mol. Sci. 2017, 18, 708. [Google Scholar] [CrossRef]
- Omar, A.M.; Zhang, Q. Evaluation of Lipid Extraction Protocols for Untargeted Analysis of Mouse Tissue Lipidome. Metabolites 2023, 13, 1002. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.H.; Liu, L.Y.; Yang, M.H.; Lee, M.H. Ethyl Acetate/Ethyl Alcohol Mixtures as an Alternative to Folch. J. Agric. Food Chem. 2004, 52, 4984–4986. [Google Scholar] [CrossRef] [PubMed]
- Matyash, V.; Liebisch, G.; Kurzchalia, T.V.; Shevchenko, A.; Schwudke, D. Lipid Extraction by Methyl-Tert-Butyl Ether for High-Throughput Lipidomics. J. Lipid Res. 2008, 49, 1137–1146. [Google Scholar] [CrossRef] [PubMed]
- Aldana, J.; Romero-otero, A.; Cala, M.P. Exploring the Lipidome: Current Lipid Extraction Techniques for Mass Spectrometry Analysis. Metabolites 2020, 10, 231. [Google Scholar] [CrossRef] [PubMed]
- Wong, M.W.K.; Braidy, N.; Pickford, R.; Sachdev, P.S.; Poljak, A. Comparison of Single Phase and Biphasic Extraction Protocols for Lipidomic Studies Using Human Plasma. Front. Neurol. 2019, 10, 879. [Google Scholar] [CrossRef]
- Vale, G.; Martin, S.A.; Mitsche, M.A.; Thompson, B.M.; Eckert, K.M.; McDonald, J.G. Three-Phase Liquid Extraction: A Simple and Fast Method for Lipidomic Workflows. J. Lipid Res. 2019, 60, 694–706. [Google Scholar] [CrossRef]
- de Jesus, S.S.; Filho, R.M. Recent Advances in Lipid Extraction Using Green Solvents. Renew. Sust. Energ. Rev. 2020, 133, 110289. [Google Scholar] [CrossRef]
- Probst, K.V.; Wales, M.D.; Rezac, M.E.; Vadlani, P.V. Evaluation of green solvents: Oil extraction from oleaginous yeast Lipomyces starkeyi using cyclopentyl methyl ether (CPME). Biotechnol. Prog. 2017, 33, 1096–1103. [Google Scholar] [CrossRef]
- de Jesus, S.S.; Ferreira, G.F.; Moreira, L.S.; Wolf Maciel, M.R.; Maciel Filho, R. Comparison of Several Methods for Effective Lipid Extraction from Wet Microalgae Using Green Solvents. Renew. Energy 2019, 143, 130–141. [Google Scholar] [CrossRef]
- Bang, G.; Kim, Y.H.; Yoon, J.; Yu, Y.J.; Chung, S.; Kim, J.A. On-chip lipid extraction using superabsorbent polymers for mass spectrometry. Anal. Chem. 2017, 89, 13365–13373. [Google Scholar] [CrossRef]
- Choi, J.H.; Bang, G.; Kim, J.A.; Kim, Y.H. A Simple and Rapid Extraction of Lipids in Plasma Using Spin Column with Superabsorbent Polymer Beads for Mass Spectrometry. J. Anal. Sci. Technol. 2023, 14, 22. [Google Scholar] [CrossRef]
- Silva Dos Reis, A.; Santos, A.S.; Francisco De Carvalho Gonçalves, J. Ultrasound-Assisted Lipid Extractions, Enriched with Sterols and Tetranortriterpenoids, from: Carapa Guianensis Seeds and the Application of Lipidomics Using GC/MS. RSC Adv. 2021, 11, 33160–33168. [Google Scholar] [CrossRef]
- Xie, Y.; Wu, B.; Wu, Z.; Tu, X.; Xu, S.; Lv, X.; Yin, H.; Xiang, J.; Chen, H.; Wei, F. Ultrasound-Assisted One-Phase Solvent Extraction Coupled with Liquid Chromatography-Quadrupole Time-of-Flight Mass Spectrometry for Efficient Profiling of Egg Yolk Lipids. Food Chem. 2020, 319, 126547. [Google Scholar] [CrossRef]
- Wang, Q.; Oshita, K.; Takaoka, M.; Shiota, K. Influence of Water Content and Cell Disruption on Lipid Extraction Using Subcritical Dimethyl Ether in Wet Microalgae. Bioresour. Technol. 2021, 329, 124892. [Google Scholar] [CrossRef]
- Zhou, J.; Wang, M.; Saraiva, J.A.; Martins, A.P.; Pinto, C.A.; Prieto, M.A.; Simal-Gandara, J.; Cao, H.; Xiao, J.; Barba, F.J. Extraction of Lipids from Microalgae Using Classical and Innovative Approaches. Food Chem. 2022, 384, 132236. [Google Scholar] [CrossRef]
- Kanda, H.; Fukuta, Y.; Wahyudiono; Goto, M. Enhancement of Lipid Extraction from Soya Bean by Addition of Dimethyl Ether as Entrainer into Supercritical Carbon Dioxide. Foods 2021, 10, 1223. [Google Scholar] [CrossRef]
- Fernández-Acosta, K.; Salmeron, I.; Chavez-Flores, D.; Perez-Reyes, I.; Ramos, V.; Ngadi, M.; Kwofie, E.M.; Perez-Vega, S. Evaluation of Different Variables on the Supercritical CO2 Extraction of Oat (Avena sativa L.) Oil; Main Fatty Acids, Polyphenols, and Antioxidant Content. J. Cereal Sci. 2019, 88, 118–124. [Google Scholar] [CrossRef]
- Belayneh, H.D.; Wehling, R.L.; Reddy, A.K.; Cahoon, E.B.; Ciftci, O.N. Ethanol-Modified Supercritical Carbon Dioxide Extraction of the Bioactive Lipid Components of Camelina Sativa Seed. J. Am. Oil Chem. Soc. 2017, 94, 855–865. [Google Scholar] [CrossRef]
- Apffel, A.; Zhao, L.; Sartain, M.J. A Novel Solid Phase Extraction Sample Preparation Method for Lipidomic Analysis of Human Plasma Using Liquid Chromatography/Mass Spectrometry. Metabolites 2021, 11, 294. [Google Scholar] [CrossRef]
- Reyes-Garcés, N.; Gionfriddo, E. Recent Developments and Applications of Solid Phase Microextraction as a Sample Preparation Approach for Mass-Spectrometry-Based Metabolomics and Lipidomics. TrAC Trends Anal. Chem. 2019, 113, 172–181. [Google Scholar] [CrossRef]
- Ramani Venkata, A.; Ramesh, M. A Concise Review on Lipidomics Analysis in Biological Samples. ADMET DMPK 2021, 9, 1–22. [Google Scholar] [CrossRef]
- Giera, M. Bioanalytical Derivatization: Is There Still Room for Development? Bioanalysis 2015, 7, 2439–2441. [Google Scholar] [CrossRef]
- El-Maghrabey, M.H.; Kishikawa, N.; Kuroda, N. Current Trends in Isotope-Coded Derivatization Liquid Chromatographic-Mass Spectrometric Analyses with Special Emphasis on Their Biomedical Application. Biomed. Chromatogr. 2020, 34, e4756. [Google Scholar] [CrossRef]
- Li, M.; Yang, L.; Bai, Y.; Liu, H. Analytical Methods in Lipidomics and Their Applications. Anal. Chem. 2014, 86, 161–175. [Google Scholar] [CrossRef]
- Gowda, D.; Li, Y.; Gowda, S.G.B.; Ohno, M.; Chiba, H.; Hui, S.P. Determination of Short-Chain Fatty Acids by N,N-Dimethylethylenediamine Derivatization Combined with Liquid Chromatography/Mass Spectrometry and Their Implication in Influenza Virus Infection. Anal. Bioanal. Chem. 2022, 414, 6419–6430. [Google Scholar] [CrossRef]
- Fu, H.; Zhang, Q.; Huang, X.; Ma, Z.; Zheng, X.; Li, S.; Duan, H.; Sun, X.; Lin, F.; Zhao, L.; et al. A Rapid and Convenient Derivatization Method for Quantitation of Short-Chain Fatty Acids in Human Feces by Ultra-Performance Liquid Chromatography/Tandem Mass Spectrometry. Rapid Commun. Mass Spectrom. 2020, 34, e8730. [Google Scholar] [CrossRef]
- Wang, F.H.; Guo, X.F.; Fan, Y.C.; Tang, H.B.; Liang, W.; Wang, H. Determination of Trans-Fatty Acids in Food Samples Based on the Precolumn Fluorescence Derivatization by High Performance Liquid Chromatography. J. Sep. Sci. 2022, 45, 1425–1433. [Google Scholar] [CrossRef] [PubMed]
- Kvasnička, A.; Najdekr, L.; Dobešová, D.; Piskláková, B.; Ivanovová, E.; Friedecký, D. Clinical Lipidomics in the Era of the Big Data. Clin. Chem. Lab. Med. 2023, 61, 587–598. [Google Scholar] [CrossRef] [PubMed]
- Lia, J.; Vosegaard, T.; Guo, Z. Applications of nuclear magnetic resonance in lipid analyses: An emerging powerful tool for lipidomics studies. Prog. Lipid Res. 2017, 68, 37–56. [Google Scholar] [CrossRef]
- Swinnen, J.V.; Dehairs, J. A Beginner’s Guide to Lipidomics. Biochem 2022, 44, 20–24. [Google Scholar] [CrossRef]
- Holčapek, M.; Liebisch, G.; Ekroos, K. Lipidomic Analysis. Anal. Bioanal. Chem. 2020, 412, 2187–2189. [Google Scholar] [CrossRef]
- Hyötyläinen, T.; Orešič, M. Bioanalytical Techniques in Nontargeted Clinical Lipidomics. Bioanalysis 2016, 8, 351–364. [Google Scholar] [CrossRef]
- Höring, M.; Ejsing, C.S.; Hermansson, M.; Liebisch, G. Quantification of Cholesterol and Cholesteryl Ester by Direct Flow Injection High-Resolution Fourier Transform Mass Spectrometry Utilizing Species-Specific Response Factors. Anal. Chem. 2019, 91, 3459–3466. [Google Scholar] [CrossRef]
- Nielsen, I.Ø.; Vidas Olsen, A.; Dicroce-Giacobini, J.; Papaleo, E.; Andersen, K.K.; Jäättelä, M.; Maeda, K.; Bilgin, M. Comprehensive Evaluation of a Quantitative Shotgun Lipidomics Platform for Mammalian Sample Analysis on a High-Resolution Mass Spectrometer. J. Am. Soc. Mass Spectrom. 2020, 31, 894–907. [Google Scholar] [CrossRef]
- Hu, C.; Duan, Q.; Han, X. Strategies to Improve/Eliminate the Limitations in Shotgun Lipidomics. Proteomics 2020, 20, e1900070. [Google Scholar] [CrossRef]
- Su, B.; Bettcher, L.F.; Hsieh, W.Y.; Hornburg, D.; Pearson, M.J.; Blomberg, N.; Giera, M.; Snyder, M.P.; Raftery, D.; Bensinger, S.J.; et al. A DMS Shotgun Lipidomics Workflow Application to Facilitate High-Throughput, Comprehensive Lipidomics. J. Am. Soc. Mass Spectrom. 2021, 32, 2655–2663. [Google Scholar] [CrossRef]
- Marques, C.; Liu, L.; Duncan, K.D.; Lanekoff, I. A Direct Infusion Probe for Rapid Metabolomics of Low-Volume Samples. Anal. Chem. 2022, 94, 12875–12883. [Google Scholar] [CrossRef]
- Xu, T.; Li, H.; Feng, D.; Dou, P.; Shi, X.; Hu, C.; Xu, G. Lipid Profiling of 20 Mammalian Cells by Capillary Microsampling Combined with High-Resolution Spectral Stitching Nanoelectrospray Ionization Direct-Infusion Mass Spectrometry. Anal. Chem. 2021, 93, 10031–10038. [Google Scholar] [CrossRef]
- Chung, H.J.; Lee, H.; Na, G.; Jung, H.; Kim, D.G.; Shin, S.I.; Jung, S.E.; Choi, I.D.; Lee, J.H.; Sim, J.H.; et al. Metabolic and Lipidomic Profiling of Vegetable Juices Fermented with Various Probiotics. Biomolecules 2020, 10, 725. [Google Scholar] [CrossRef]
- Bukowski, M.R.; Picklo, M.J. Simple, Rapid Lipidomic Analysis of Triacylglycerols in Bovine Milk by Infusion-Electrospray Mass Spectrometry. Lipids 2021, 56, 243–255. [Google Scholar] [CrossRef] [PubMed]
- Ledoux, L.; Zirem, Y.; Renaud, F.; Duponchel, L.; Salzet, M.; Ogrinc, N.; Fournier, I. Comparing MS Imaging of Lipids by WALDI and MALDI: Two Technologies for Evaluating a Common Ground Truth in MS Imaging. Analyst 2023, 148, 4982–4986. [Google Scholar] [CrossRef] [PubMed]
- Sommella, E.; Salviati, E.; Caponigro, V.; Grimaldi, M.; Musella, S.; Bertamino, A.; Cacace, L.; Palladino, R.; Di Mauro, G.; Marini, F.; et al. MALDI Mass Spectrometry Imaging Highlights Specific Metabolome and Lipidome Profiles in Salivary Gland Tumor Tissues. Metabolites 2022, 12, 530. [Google Scholar] [CrossRef]
- Li, D.; Ouyang, Z.; Ma, X. Mass Spectrometry Imaging for Single-Cell or Subcellular Lipidomics: A Review of Recent Advancements and Future Development. Molecules 2023, 28, 2712. [Google Scholar] [CrossRef]
- Khan, S.; Andrew, R. Mass Spectrometry Imaging of Lipids. In Lipidomics: Current and Emerging Techniques, 1st ed.; Griffiths, W., Wang, Y., Eds.; The Royal Society of Chemistry: London, UK, 2020; pp. 88–121. [Google Scholar]
- Qin, S.; Miao, D.; Zhang, X.; Zhang, Y.; Bai, Y. Methods Developments of Mass Spectrometry Based Single Cell Metabolomics. TrAC Trends Anal. Chem. 2023, 164, 117086. [Google Scholar] [CrossRef]
- Hu, R.; Li, Y.; Yang, Y.; Liu, M. Mass Spectrometry-Based Strategies for Single-Cell Metabolomics. Mass Spectrom. Rev. 2023, 42, 67–94. [Google Scholar] [CrossRef] [PubMed]
- Jia, F.; Zhao, X.; Zhao, Y. Advancements in ToF-SIMS Imaging for Life Sciences. Front. Chem. 2023, 11, 1237408. [Google Scholar] [CrossRef]
- Ren, J.; Li, H.-W.; Chen, L.; Zhang, M.; Liu, Y.-X.; Zhang, B.-W.; Xu, R.; Miao, Y.-Y.; Xu, X.-M.; Hua, X.; et al. Mass Spectrometry Imaging-Based Single-Cell Lipidomics Profiles Metabolic Signatures of Heart Failure. Research 2023, 6, 0019. [Google Scholar] [CrossRef]
- Nabi, M.M.; Mamun, M.A.; Islam, A.; Hasan, M.M.; Waliullah, A.S.M.; Tamannaa, Z.; Sato, T.; Kahyo, T.; Setou, M. Mass Spectrometry in the Lipid Study of Cancer. Expert Rev. Proteom. 2021, 18, 201–219. [Google Scholar] [CrossRef]
- dos Santos, A.C.A.; Vuckovic, D. Current Status and Advances in Untargeted LC-MS Tissue Lipidomics Studies in Cardiovascular Health. TrAC Trends Anal. Chem. 2024, 170, 117419. [Google Scholar] [CrossRef]
- Martín-Saiz, L.; Abad-García, B.; Solano-Iturri, J.D.; Mosteiro, L.; Martín-Allende, J.; Rueda, Y.; Pérez-Fernández, A.; Unda, M.; Coterón-Ochoa, P.; Goya, A.; et al. Using the Synergy between HPLC-MS and MALDI-MS Imaging to Explore the Lipidomics of Clear Cell Renal Cell Carcinoma. Anal. Chem. 2023, 95, 2285–2293. [Google Scholar] [CrossRef]
- Mamun, A.; Islam, A.; Eto, F.; Sato, T.; Kahyo, T.; Setou, M. Mass Spectrometry-Based Phospholipid Imaging: Methods and Findings. Expert. Rev. Proteom. 2020, 17, 843–854. [Google Scholar] [CrossRef]
- Bowman, A.P.; Heeren, R.M.A.; Ellis, S.R. Advances in Mass Spectrometry Imaging Enabling Observation of Localised Lipid Biochemistry within Tissues. TrAC Trends Anal. Chem. 2019, 120, 115197. [Google Scholar] [CrossRef]
- Qi, K.; Wu, L.; Liu, C.; Pan, Y. Recent Advances of Ambient Mass Spectrometry Imaging and Its Applications in Lipid and Metabolite Analysis. Metabolites 2021, 11, 780. [Google Scholar] [CrossRef]
- He, M.J.; Pu, W.; Wang, X.; Zhang, W.; Tang, D.; Dai, Y. Comparing DESI-MSI and MALDI-MSI Mediated Spatial Metabolomics and Their Applications in Cancer Studies. Front. Oncol. 2022, 12, 891018. [Google Scholar] [CrossRef]
- Nguyen, S.N.; Kyle, J.E.; Dautel, S.E.; Sontag, R.; Luders, T.; Corley, R.; Ansong, C.; Carson, J.; Laskin, J. Lipid Coverage in Nanospray Desorption Electrospray Ionization Mass Spectrometry Imaging of Mouse Lung Tissues. Anal. Chem. 2019, 91, 11629–11635. [Google Scholar] [CrossRef]
- Khamehgir-Silz, P.; Gerbig, S.; Volk, N.; Schulz, S.; Spengler, B.; Hecker, M.; Wagner, A.H. Comparative Lipid Profiling of Murine and Human Atherosclerotic Plaques Using High-Resolution MALDI MSI. Pflugers Arch. 2022, 474, 231–242. [Google Scholar] [CrossRef]
- Moerman, A.M.; Visscher, M.; Slijkhuis, N.; Van Gaalen, K.; Heijs, B.; Klein, T.; Burgers, P.C.; De Rijke, Y.B.; Van Beusekom, H.M.M.; Luider, T.M.; et al. Lipid Signature of Advanced Human Carotid Atherosclerosis Assessed by Mass Spectrometry Imaging. J. Lipid Res. 2021, 62, 100020. [Google Scholar] [CrossRef] [PubMed]
- Rocha, B.; Cillero-Pastor, B.; Ruiz-Romero, C.; Paine, M.R.L.; Cañete, J.D.; Heeren, R.M.A.; Blanco, F.J. Identification of a Distinct Lipidomic Profile in the Osteoarthritic Synovial Membrane by Mass Spectrometry Imaging. Osteoarthr. Cartil 2021, 29, 750–761. [Google Scholar] [CrossRef] [PubMed]
- Denti, V.; Mahajneh, A.; Capitoli, G.; Clerici, F.; Piga, I.; Pagani, L.; Chinello, C.; Bolognesi, M.M.; Paglia, G.; Galimberti, S.; et al. Lipidomic Typing of Colorectal Cancer Tissue Containing Tumour-Infiltrating Lymphocytes by MALDI Mass Spectrometry Imaging. Metabolites 2021, 11, 599. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, T.; Xie, P.; Song, Y.; Wang, J.; Cai, Z. Mass Spectrometry Imaging Revealed Alterations of Lipid Metabolites in Multicellular Tumor Spheroids in Response to Hydroxychloroquine. Anal. Chim. Acta 2021, 1184, 339011. [Google Scholar] [CrossRef]
- Visscher, M.; Moerman, A.M.; Burgers, P.C.; Van Beusekom, H.M.M.; Luider, T.M.; Verhagen, H.J.M.; Van der Steen, A.F.W.; Van der Heiden, K.; Van Soest, G. Data Processing Pipeline for Lipid Profiling of Carotid Atherosclerotic Plaque with Mass Spectrometry Imaging. J. Am. Soc. Mass Spectrom. 2019, 30, 1790–1800. [Google Scholar] [CrossRef]
- Lukowski, J.; Pamreddy, A.; Velickovic, D.; Zhang, G.; Pasa-Tolic, L.; Alexandrov, T.; Sharma, K.; Anderton, C.R. Storage conditions of human kidney tissue sections affect spatial lipidomics analysis reproducibility. J. Am. Soc. Mass Spectrom. 2020, 31, 2538–2546. [Google Scholar] [CrossRef] [PubMed]
- Dimovska Nilsson, K.; Karagianni, A.; Kaya, I.; Henricsson, M.; Fletcher, J.S. (CO2)n+, (H2O)n+, and (H2O)n+ (CO2) Gas Cluster Ion Beam Secondary Ion Mass Spectrometry: Analysis of Lipid Extracts, Cells, and Alzheimer’s Model Mouse Brain Tissue. Anal. Bioanal. Chem. 2021, 413, 4181–4194. [Google Scholar] [CrossRef]
- Fu, T.; Knittelfelder, O.; Geffard, O.; Clément, Y.; Testet, E.; Elie, N.; Touboul, D.; Abbaci, K.; Shevchenko, A.; Lemoine, J.; et al. Shotgun Lipidomics and Mass Spectrometry Imaging Unveil Diversity and Dynamics in Gammarus Fossarum Lipid Composition. iScience 2021, 24, 102115. [Google Scholar] [CrossRef]
- Sämfors, S.; Ståhlman, M.; Klevstig, M.; Borén, J.; Fletcher, J.S. Localised Lipid Accumulation Detected in Infarcted Mouse Heart Tissue Using ToF-SIMS. Int. J. Mass Spectrom. 2019, 437, 77–86. [Google Scholar] [CrossRef]
- Seubnooch, P.; Montani, M.; Tsouka, S.; Claude, E.; Rafiqi, U.; Perren, A.; Dufour, J.F.; Masoodi, M. Characterisation of Hepatic Lipid Signature Distributed across the Liver Zonation Using Mass Spectrometry Imaging. JHEP Rep. 2023, 5, 100725. [Google Scholar] [CrossRef]
- Slijkhuis, N.; Towers, M.; Mirzaian, M.; Korteland, S.A.; Heijs, B.; van Gaalen, K.; Nieuwenhuizen, I.; Nigg, A.; van der Heiden, K.; de Rijke, Y.B.; et al. Identifying Lipid Traces of Atherogenic Mechanisms in Human Carotid Plaque. Atherosclerosis 2023, 385, 117340. [Google Scholar] [CrossRef]
- Sun, B.; Jiang, S.; Li, M.; Zhang, Y.; Zhou, Y.; Wei, X.; Wang, H.; Si, N.; Bian, B.; Zhao, H. Lipidomics Combined with Transcriptomic and Mass Spectrometry Imaging Analysis of the Asiatic Toad (Bufo Gargarizans) during Metamorphosis and Bufadienolide Accumulation. Chin. Med. 2022, 17, 123. [Google Scholar] [CrossRef] [PubMed]
- Henderson, F.; Jones, E.; Denbigh, J.; Christie, L.; Chapman, R.; Hoyes, E.; Claude, E.; Williams, K.J.; Roncaroli, F.; McMahon, A. 3D DESI-MS Lipid Imaging in a Xenograft Model of Glioblastoma: A Proof of Principle. Sci. Rep. 2020, 10, 16512. [Google Scholar] [CrossRef] [PubMed]
- Cordeiro, F.B.; Jarmusch, A.K.; León, M.; Ferreira, C.R.; Pirro, V.; Eberlin, L.S.; Hallett, J.; Miglino, M.A.; Cooks, R.G. Mammalian Ovarian Lipid Distributions by Desorption Electrospray Ionization–Mass Spectrometry (DESI-MS) Imaging. Anal. Bioanal. Chem. 2020, 412, 1251–1262. [Google Scholar] [CrossRef] [PubMed]
- León, M.; Ferreira, C.R.; Eberlin, L.S.; Jarmusch, A.K.; Pirro, V.; Rodrigues, A.C.B.; Favaron, P.O.; Miglino, M.A.; Cooks, R.G. Metabolites and Lipids Associated with Fetal Swine Anatomy via Desorption Electrospray Ionization—Mass Spectrometry Imaging. Sci. Rep. 2019, 9, 7247. [Google Scholar] [CrossRef] [PubMed]
- Sanders, J.D.; Shields, S.W.; Escobar, E.E.; Lanzillotti, M.B.; Butalewicz, J.P.; James, V.K.; Blevins, M.S.; Sipe, S.N.; Brodbelt, J.S. Enhanced Ion Mobility Separation and Characterization of Isomeric Phosphatidylcholines Using Absorption Mode Fourier Transform Multiplexing and Ultraviolet Photodissociation Mass Spectrometry. Anal. Chem. 2022, 94, 4252–4259. [Google Scholar] [CrossRef] [PubMed]
- Kaszycki, J.L.; La Rotta, A.; Colsch, B.; Fenaille, F.; Dauly, C.; Kamleh, A.; Wu, C. Separation of Biologically Relevant Isomers on an Orbitrap Mass Spectrometer Using High-Resolution Drift Tube Ion Mobility and Varied Drift Gas Mixtures. Rapid Commun. Mass Spectrom. 2019, 33, 3–10. [Google Scholar] [CrossRef] [PubMed]
- Lacalle-Bergeron, L.; Goterris-Cerisuelo, R.; Beltran, J.; Sancho, J.V.; Navarro-Moreno, C.; Martinez-Garcia, F.; Portolés, T. Untargeted Metabolomics Approach Using UHPLC-IMS-QTOF MS for Surface Body Samples to Identify Low-Volatility Chemosignals Related to Maternal Care in Mice. Talanta 2023, 258, 124389. [Google Scholar] [CrossRef]
- Rose, B.S.; Leaptrot, K.L.; Harris, R.A.; Sherrod, S.D.; May, J.C.; McLean, J.A. High Confidence Shotgun Lipidomics Using Structurally Selective Ion Mobility-Mass Spectrometry. Methods Mol. Biol. 2021, 2306, 11–37. [Google Scholar] [CrossRef]
- Hoffmann, N.; Mayer, G.; Has, C.; Kopczynski, D.; Machot, F.A.; Schwudke, D.; Ahrends, R.; Marcus, K.; Eisenacher, M.; Turewicz, M. A Current Encyclopedia of Bioinformatics Tools, Data Formats and Resources for Mass Spectrometry Lipidomics. Metabolites 2022, 12, 584. [Google Scholar] [CrossRef]
- Paglia, G.; Smith, A.J.; Astarita, G. Ion Mobility Mass Spectrometry in the Omics Era: Challenges and Opportunities for Metabolomics and Lipidomics. Mass Spectrom. Rev. 2022, 41, 722–765. [Google Scholar] [CrossRef]
- Zandkarimi, F.; Brown, L.M. Application of Ion Mobility Mass Spectrometry in Lipidomics. Adv. Exp. Med. Biol. 2019, 1140, 317–326. [Google Scholar] [CrossRef] [PubMed]
- Chouinard, C.D.; Nagy, G.; Smith, R.D.; Baker, E.S. Ion Mobility-Mass Spectrometry in Metabolomic, Lipidomic, and Proteomic Analyses; Elsevier B.V.: Amsterdam, The Netherlands, 2019; pp. 123–159. [Google Scholar]
- Tu, J.; Zhou, Z.; Li, T.; Zhu, Z.J. The Emerging Role of Ion Mobility-Mass Spectrometry in Lipidomics to Facilitate Lipid Separation and Identification. TrAC Trends Anal. Chem. 2019, 116, 332–339. [Google Scholar] [CrossRef]
- D’Atri, V.; Causon, T.; Hernandez-Alba, O.; Mutabazi, A.; Veuthey, J.L.; Cianferani, S.; Guillarme, D. Adding a New Separation Dimension to MS and LC–MS: What Is the Utility of Ion Mobility Spectrometry? J. Sep. Sci. 2018, 41, 20–67. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.; Shen, X.; Chen, X.; Tu, J.; Xiong, X.; Zhu, Z.J. LipidIMMS Analyzer: Integrating Multi-Dimensional Information to Support Lipid Identification in Ion Mobility—Mass Spectrometry Based Lipidomics. Bioinformatics 2019, 35, 698–700. [Google Scholar] [CrossRef]
- Wu, B.; Wei, F.; Xu, S.; Xie, Y.; Lv, X.; Chen, H.; Huang, F. Mass Spectrometry-Based Lipidomics as a Powerful Platform in Foodomics Research. Trends Food Sci. Technol. 2021, 107, 358–376. [Google Scholar] [CrossRef]
- Zhu, P.; Bu, G.; Hu, R.; Ruan, X.; Fu, R.; Zhang, Z.; Wan, Q.; Liu, X.; Miao, Y.; Chen, S. Lipidomic Characterization of Oocytes at Single-Cell Level Using Nanoflow Chromatography-Trapped Ion Mobility Spectrometry-Mass Spectrometry. Molecules 2023, 28, 4202. [Google Scholar] [CrossRef]
- Lerner, R.; Baker, D.; Schwitter, C.; Neuhaus, S.; Hauptmann, T.; Post, J.M.; Kramer, S.; Bindila, L. Four-Dimensional Trapped Ion Mobility Spectrometry Lipidomics for High Throughput Clinical Profiling of Human Blood Samples. Nat. Commun. 2023, 14, 937. [Google Scholar] [CrossRef] [PubMed]
- Jiang, L.X.; Hernly, E.; Hu, H.; Hilger, R.T.; Neuweger, H.; Yang, M.; Laskin, J. Nanospray Desorption Electrospray Ionization (Nano-DESI) Mass Spectrometry Imaging with High Ion Mobility Resolution. J. Am. Soc. Mass. Spectrom. 2023, 34, 1798–1804. [Google Scholar] [CrossRef]
- Merciai, F.; Musella, S.; Sommella, E.; Bertamino, A.; D’Ursi, A.M.; Campiglia, P. Development and Application of a Fast Ultra-High Performance Liquid Chromatography-Trapped Ion Mobility Mass Spectrometry Method for Untargeted Lipidomics. J. Chromatogr. A 2022, 1673, 463124. [Google Scholar] [CrossRef]
- Vasilopoulou, C.G.; Sulek, K.; Brunner, A.D.; Meitei, N.S.; Schweiger-Hufnagel, U.; Meyer, S.W.; Barsch, A.; Mann, M.; Meier, F. Trapped Ion Mobility Spectrometry and PASEF Enable In-Depth Lipidomics from Minimal Sample Amounts. Nat. Commun. 2020, 11, 331. [Google Scholar] [CrossRef]
- Romsdahl, T.B.; Cocuron, J.C.; Pearson, M.J.; Alonso, A.P.; Chapman, K.D. A Lipidomics Platform to Analyze the Fatty Acid Compositions of Non-Polar and Polar Lipid Molecular Species from Plant Tissues: Examples from Developing Seeds and Seedlings of Pennycress (Thlaspi arvense). Front. Plant Sci. 2022, 13, 1038161. [Google Scholar] [CrossRef]
- Lísa, M.; Cífková, E.; Khalikova, M.; Ovčačíková, M.; Holčapek, M. Lipidomic Analysis of Biological Samples: Comparison of Liquid Chromatography, Supercritical Fluid Chromatography and Direct Infusion Mass Spectrometry Methods. J. Chromatogr. A 2017, 1525, 96–108. [Google Scholar] [CrossRef]
- Avela, H.F.; Sirén, H. Advances in Analytical Tools and Current Statistical Methods Used in Ultra-High-Performance Liquid Chromatography-Mass Spectrometry of Glycero-, Glycerophospho- and Sphingolipids. Int. J. Mass Spectrom. 2020, 457, 116408. [Google Scholar] [CrossRef]
- Rustam, Y.H.; Reid, G.E. Analytical Challenges and Recent Advances in Mass Spectrometry Based Lipidomics. Anal. Chem. 2018, 90, 374–397. [Google Scholar] [CrossRef] [PubMed]
- Avela, H.F.; Sirén, H. Advances in Lipidomics. Clin. Chim. Acta 2020, 510, 123–141. [Google Scholar] [CrossRef]
- Züllig, T.; Köfeler, H.C. High Resolution Mass Spectrometry in Lipidomics. Mass Spectrom. Rev. 2021, 40, 162–176. [Google Scholar] [CrossRef] [PubMed]
- Ovčačíková, M.; Lísa, M.; Cífková, E.; Holčapek, M. Retention Behavior of Lipids in Reversed-Phase Ultrahigh-Performance Liquid Chromatography-Electrospray Ionization Mass Spectrometry. J. Chromatogr. A 2016, 1450, 76–85. [Google Scholar] [CrossRef]
- Chen, L.; Dean, B.; Liang, X. A Technical Overview of Supercritical Fluid Chromatography-Mass Spectrometry (SFC-MS) and Its Recent Applications in Pharmaceutical Research and Development. Drug Discov. Today Technol. 2021, 40, 69–75. [Google Scholar] [CrossRef]
- Soga, T. Advances in Capillary Electrophoresis Mass Spectrometry for Metabolomics. TrAC Trends Anal. Chem. 2023, 158, 116883. [Google Scholar] [CrossRef]
- Wolrab, D.; Peterka, O.; Chocholoušková, M.; Holčapek, M. Ultrahigh-Performance Supercritical Fluid Chromatography / Mass Spectrometry in the Lipidomic Analysis. TrAC Trends Anal. Chem. 2022, 149, 116546. [Google Scholar] [CrossRef]
- Hayasaka, R.; Tabata, S.; Hasebe, M.; Ikeda, S.; Ohnuma, S.; Mori, M.; Soga, T.; Tomita, M.; Hirayama, A. Metabolomic Analysis of Small Extracellular Vesicles Derived from Pancreatic Cancer Cells Cultured under Normoxia and Hypoxia. Metabolites 2021, 11, 215. [Google Scholar] [CrossRef]
- Wu, Z.; Bagarolo, G.I.; Thoröe-Boveleth, S.; Jankowski, J. “Lipidomics”: Mass Spectrometric and Chemometric Analyses of Lipids. Adv. Drug Deliv. Rev. 2020, 159, 294–307. [Google Scholar] [CrossRef]
- Wu, Z.; Shon, J.C.; Liu, K.-H. Mass Spectrometry-Based Lipidomics and Its Application ToBiomedical Research. J. Lifestyle Med. 2014, 4, 17–33. [Google Scholar] [CrossRef]
- Zeng, K.; Zhou, X.; Liu, W.; Nie, C.; Zhang, Y. Determination of Endogenous Sphingolipid Content in Stroke Rats and HT22 Cells Subjected to Oxygen-Glucose Deprivation by LC—MS/MS. Lipids Health Dis. 2023, 22, 13. [Google Scholar] [CrossRef] [PubMed]
- Chang, J.K.; Teo, G.; Pewzner-Jung, Y.; Cuthbertson, D.J.; Futerman, A.H.; Wenk, M.R.; Choi, H.; Torta, F. Q-RAI Data-Independent Acquisition for Lipidomic Quantitative Profiling. Sci. Rep. 2023, 13, 19281. [Google Scholar] [CrossRef]
- Zhou, H.; Nong, Y.; Zhu, Y.; Liang, Y.; Zhang, J.; Chen, H.; Zhu, P.; Zhang, Q. Serum Untargeted Lipidomics by UHPLC-ESI-HRMS Aids the Biomarker Discovery of Colorectal Adenoma. BMC Cancer 2022, 22, 314. [Google Scholar] [CrossRef]
- Mocciaro, G.; D’amore, S.; Jenkins, B.; Kay, R.; Murgia, A.; Herrera-marcos, L.V.; Neun, S.; Sowton, A.P.; Hall, Z.; Palma-Duran, S.A.; et al. Lipidomic Approaches to Study HDL Metabolism in Patients with Central Obesity Diagnosed with Metabolic Syndrome. Int. J. Mol. Sci. 2022, 23, 6786. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Li, H.; Han, Y.; Wang, T.; Wang, Y.; Gong, J.; Gao, K.; Chen, W.; Li, W.; Zhang, H.; et al. A Simple and Rapid Method for Extraction and Measurement of Circulating Sphingolipids Using LC–MS/MS: A Targeted Lipidomic Analysis. Anal. Bioanal. Chem. 2022, 414, 2041–2054. [Google Scholar] [CrossRef]
- Duan, L.; Scheidemantle, G.; Lodge, M.; Cummings, M.J.; Pham, E.; Wang, X.; Kennedy, A.; Liu, X. Prioritize Biologically Relevant Ions for Data-Independent Acquisition (BRI-DIA) in LC–MS/MS-Based Lipidomics Analysis. Metabolomics 2022, 18, 55. [Google Scholar] [CrossRef] [PubMed]
- Gao, X.; Hu, X.H.; Zhang, Q.; Wang, X.J.; Wen, X.H.; Wang, Y.; Zhang, Y.X.; Sun, W.J. Exploring Lipid Biomarkers of Coronary Heart Disease for Elucidating the Biological Effects of Gelanxinning Capsule by Lipidomics Method Based on LC–MS. Biomed. Chromatogr. 2021, 35, e5091. [Google Scholar] [CrossRef] [PubMed]
- Lísa, M.; Řehulková, H.; Hančová, E.; Řehulka, P. Lipidomic Analysis Using Hydrophilic Interaction Liquid Chromatography Microgradient Fractionation of Total Lipid Extracts. J. Chromatogr. A 2021, 1653, 462380. [Google Scholar] [CrossRef] [PubMed]
- Yazd, H.S.; Bazargani, S.F.; Vanbeek, C.A.; King-Morris, K.; Heldermon, C.; Segal, M.S.; Clapp, W.L.; Garrett, T.J. LC-MS Lipidomics of Renal Biopsies for the Diagnosis of Fabry Disease. J. Mass Spectrom. Adv. Clin. Lab. 2021, 22, 71–78. [Google Scholar] [CrossRef] [PubMed]
- Nakashima, Y.; Sakai, Y.; Mizuno, Y.; Furuno, K.; Hirono, K.; Takatsuki, S.; Suzuki, H.; Onouchi, Y.; Kobayashi, T.; Tanabe, K.; et al. Lipidomics Links Oxidized Phosphatidylcholines and Coronary Arteritis in Kawasaki Disease. Cardiovasc. Res. 2021, 117, 96–108. [Google Scholar] [CrossRef] [PubMed]
- Nishida-Aoki, N.; Izumi, Y.; Takeda, H.; Takahashi, M.; Ochiya, T.; Bamba, T. Lipidomic Analysis of Cells and Extracellular Vesicles from High-and Low-Metastatic Triple-Negative Breast Cancer. Metabolites 2020, 10, 67. [Google Scholar] [CrossRef]
- López-Bascón, M.A.; Calderón-Santiago, M.; Díaz-Lozano, A.; Camargo, A.; López-Miranda, J.; Priego-Capote, F. Development of a Qualitative/Quantitative Strategy for Comprehensive Determination of Polar Lipids by LC–MS/MS in Human Plasma. Anal. Bioanal. Chem. 2020, 412, 489–498. [Google Scholar] [CrossRef]
- Leung, H.H.; Leung, K.S.; Durand, T.; Galano, J.M.; Lee, J.C.Y. Measurement of Enzymatic and Nonenzymatic Polyunsaturated Fatty Acid Oxidation Products in Plasma and Urine of Macular Degeneration Using LC-QTOF-MS/MS. Lipids 2020, 55, 693–706. [Google Scholar] [CrossRef]
- Williams, J.; Zhu, K.; Crampon, E.; Iffland, A. Fit-for-Purpose Biomarker LC-MS/MS Qualification for the Quantitation of Very Long Chain Fatty Acids in Human Cerebrospinal Fluid. Bioanalysis 2020, 12, 143–158. [Google Scholar] [CrossRef]
- Gong, L.L.; Yang, S.; Zhang, W.; Han, F.F.; Lv, Y.L.; Xuan, L.L.; Liu, H.; Liu, L. hong Discovery of Metabolite Profiles of Metabolic Syndrome Using Untargeted and Targeted LC–MS Based Lipidomics Approach. J. Pharm. Biomed. Anal. 2020, 177, 112848. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, M.; Cheng, X.; Liu, X.; Sun, H.; Guo, Z.; Li, J.; Tang, X.; Wang, Z.; Sun, W.; et al. LC-MS-Based Plasma Metabolomics and Lipidomics Analyses for Differential Diagnosis of Bladder Cancer and Renal Cell Carcinoma. Front. Oncol. 2020, 10, 717. [Google Scholar] [CrossRef]
- Takashima, S.; Toyoshi, K.; Yamamoto, T.; Shimozawa, N. Positional Determination of the Carbon–Carbon Double Bonds in Unsaturated Fatty Acids Mediated by Solvent Plasmatization Using LC–MS. Sci. Rep. 2020, 10, 12988. [Google Scholar] [CrossRef]
- Pousinis, P.; Gowler, P.R.W.; Burston, J.J.; Ortori, C.A.; Chapman, V.; Barrett, D.A. Lipidomic Identification of Plasma Lipids Associated with Pain Behaviour and Pathology in a Mouse Model of Osteoarthritis. Metabolomics 2020, 16, 32. [Google Scholar] [CrossRef]
- Zhang, Q.; Xu, H.; Liu, R.; Gao, P.; Yang, X.; Jin, W.; Zhang, Y.; Bi, K.; Li, Q. A Novel Strategy for Targeted Lipidomics Based on LC-Tandem-MS Parameters Prediction, Quantification, and Multiple Statistical Data Mining: Evaluation of Lysophosphatidylcholines as Potential Cancer Biomarkers. Anal. Chem. 2019, 91, 3389–3396. [Google Scholar] [CrossRef]
- Liu, T.; Peng, F.; Yu, J.; Tan, Z.; Rao, T.; Chen, Y.; Wang, Y.; Liu, Z.; Zhou, H.; Peng, J. LC-MS-Based Lipid Profile in Colorectal Cancer Patients: TAGs Are the Main Disturbed Lipid Markers of Colorectal Cancer Progression. Anal. Bioanal. Chem. 2019, 411, 5079–5088. [Google Scholar] [CrossRef] [PubMed]
- Vu, N.; Narvaez-Rivas, M.; Chen, G.Y.; Rewers, M.J.; Zhang, Q. Accurate Mass and Retention Time Library of Serum Lipids for Type 1 Diabetes Research. Anal. Bioanal. Chem. 2019, 411, 5937–5949. [Google Scholar] [CrossRef] [PubMed]
- Meierhofer, D. Acylcarnitine Profiling by Low-Resolution LC-MS. PLoS ONE 2019, 14, e0221342. [Google Scholar] [CrossRef] [PubMed]
- Ma, S.R.; Tong, Q.; Zhao, Z.X.; Cong, L.; Yu, J.B.; Fu, J.; Han, P.; Pan, L.B.; Gu, R.; Peng, R.; et al. Determination of Berberine-Upregulated Endogenous Short-Chain Fatty Acids through Derivatization by 2-Bromoacetophenone. Anal. Bioanal. Chem. 2019, 411, 3191–3207. [Google Scholar] [CrossRef]
- Dasilva, G.; Muñoz, S.; Lois, S.; Medina, I. Non-Targeted LC-MS/MS Assay for Screening over 100 Lipid Mediators from ARA, EPA, and DHA in Biological Samples Based on Mass Spectral Fragmentations. Molecules 2019, 24, 2276. [Google Scholar] [CrossRef]
- Maekawa, M.; Jinnoh, I.; Matsumoto, Y.; Narita, A.; Mashima, R.; Takahashi, H.; Iwahori, A.; Saigusa, D.; Fujii, K.; Abe, A.; et al. Structural Determination of Lysosphingomyelin-509 and Discovery of Novel Class Lipids from Patients with Niemann–Pick Disease Type C. Int. J. Mol. Sci. 2019, 20, 5018. [Google Scholar] [CrossRef]
- King, A.; Baginski, M.; Morikawa, Y.; Rainville, P.D.; Gethings, L.A.; Wilson, I.D.; Plumb, R.S. Application of a Novel Mass Spectral Data Acquisition Approach to Lipidomic Analysis of Liver Extracts from Sitaxentan-Treated Liver-Humanized PXB Mice. J. Proteome Res. 2019, 18, 4055–4064. [Google Scholar] [CrossRef]
- Körber, T.T.; Sitz, T.; Abdalla, M.A.; Mühling, K.H.; Rohn, S. LC-ESI-MS/MS Analysis of Sulfolipids and Galactolipids in Green and Red Lettuce (Lactuca sativa L.) as Influenced by Sulfur Nutrition. Int. J. Mol. Sci. 2023, 24, 3728. [Google Scholar] [CrossRef] [PubMed]
- Fabio Turco, J.; Benhur Mokochinski, J.; Reyes Torres, Y. Lipidomic Analysis of Geopropolis of Brazilian Stingless Bees by LC-HRMS. Food Res. Int. 2023, 16, 112640. [Google Scholar] [CrossRef] [PubMed]
- Martin, J.J.J.; Wu, Q.; Feng, M.; Li, R.; Zhou, L.; Zhang, S.; Yang, C.; Cao, H. Lipidomic Profiles of Lipid Biosynthesis in Oil Palm during Fruit Development. Metabolites 2023, 13, 727. [Google Scholar] [CrossRef]
- Wiedmaier-Czerny, N.; Vetter, W. LC-Orbitrap-HRMS Method for Analysis of Traces of Triacylglycerols Featuring Furan Fatty Acids. Anal. Bioanal. Chem. 2023, 415, 875–885. [Google Scholar] [CrossRef]
- Alves, E.; Rey, F.; Melo, T.; Barros, M.P.; Domingues, P.; Domingues, R. Bioprospecting Bioactive Polar Lipids from Olive (Olea europaea cv. Galega vulgar) Fruit Seeds: LC-HR-MS/MS Fingerprinting and Sub-Geographic Comparison. Foods 2022, 11, 951. [Google Scholar] [CrossRef]
- Aurum, F.S.; Imaizumi, T.; Thammawong, M.; Suhandy, D.; Praseptiangga, D.; Tsuta, M.; Nagata, M.; Nakano, K. Lipidomic Profiling of Indonesian Coffee to Determine Its Geographical Origin by LC–MS/MS. Eur. Food Res. Technol. 2022, 248, 2887–2899. [Google Scholar] [CrossRef]
- Li, M.; Zhu, M.; Chai, W.; Wang, Y.; Fan, D.; Lv, M.; Jiang, X.; Liu, Y.; Wei, Q.; Wang, C. Determination of Lipid Profiles of Dezhou Donkey Meat Using an LC-MS-Based Lipidomics Method. J. Food Sci. 2021, 86, 4511–4521. [Google Scholar] [CrossRef]
- Kokotou, M.G.; Mantzourani, C.; Bourboula, A.; Mountanea, O.G.; Kokotos, G. A Liquid Chromatography-High Resolution Mass Spectrometry (LC-HRMS) Method for the Determination of Free Hydroxy Fatty Acids in Cow and Goat Milk. Molecules 2020, 25, 3947. [Google Scholar] [CrossRef] [PubMed]
- Lukić, I.; Ros, A.D.; Guella, G.; Camin, F.; Masuero, D.; Mulinacci, N.; Vrhovsek, U.; Mattivi, F. Lipid Profiling and Stable Isotopic Data Analysis for Differentiation of Extra Virgin Olive Oils Based on Their Origin. Molecules 2020, 25, 4. [Google Scholar] [CrossRef]
- Claassen, C.; Kuballa, J.; Rohn, S. Polar Lipids in Starch-Rich Commodities to Be Analyzed with LC-MS-Based Metabolomics—Optimization of Ionization Parameters and High-Throughput Extraction Protocols. Metabolites 2019, 9, 167. [Google Scholar] [CrossRef]
- Zartmann, A.; Völcker, L.; Hammann, S. Quantitative Analysis of Fatty Acids and Vitamin E and Total Lipid Profiling of Dietary Supplements from the German Market. Eur. Food Res. Technol. 2023, 249, 1035–1048. [Google Scholar] [CrossRef]
- Deschamps, E.; Schaumann, A.; Schmitz-Afonso, I.; Afonso, C.; Dé, E.; Loutelier-Bourhis, C.; Alexandre, S. Membrane Phospholipid Composition of Pseudomonas Aeruginosa Grown in a Cystic Fibrosis Mucus-Mimicking Medium. Biochim. Biophys. Acta Biomembr. 2021, 1863, 183482. [Google Scholar] [CrossRef] [PubMed]
- Bill, M.K.; Brinkmann, S.; Oberpaul, M.; Patras, M.A.; Leis, B.; Marner, M.; Maitre, M.P.; Hammann, P.E.; Vilcinskas, A.; Schuler, S.M.M.; et al. Novel Glycerophospholipid, Lipo-and N-Acyl Amino Acids from Bacteroidetes: Isolation, Structure Elucidation and Bioactivity. Molecules 2021, 26, 5195. [Google Scholar] [CrossRef] [PubMed]
- Wozny, K.; Lehmann, W.D.; Wozny, M.; Akbulut, B.S.; Brügger, B. A Method for the Quantitative Determination of Glycerophospholipid Regioisomers by UPLC-ESI-MS/MS. Anal. Bioanal. Chem. 2019, 411, 915–924. [Google Scholar] [CrossRef] [PubMed]
- Alekseyeva, K.S.; Mähnert, B.; Berthiller, F.; Breyer, E.; Herndl, G.J.; Baltar, F. Adapting an Ergosterol Extraction Method with Marine Yeasts for the Quantification of Oceanic Fungal Biomass. J. Fungi 2021, 7, 690. [Google Scholar] [CrossRef] [PubMed]
- Flor, S.; Sosa Alderete, L.; Dobrecky, C.; Tripodi, V.; Agostini, E.; Lucangioli, S. LC-ESI-MS/MS Method for the Profiling of Glycerophospholipids and Its Application to the Analysis of Tobacco Hairy Roots as Early Indicators of Phenol Pollution. Chromatographia 2021, 84, 597–608. [Google Scholar] [CrossRef]
- Jankevics, A.; Jenkins, A.; Dunn, W.B.; Najdekr, L. An Improved Strategy for Analysis of Lipid Molecules Utilising a Reversed Phase C30 UHPLC Column and Scheduled MS/MS Acquisition. Talanta 2021, 229, 122262. [Google Scholar] [CrossRef] [PubMed]
- McDonald, J.G.; Ejsing, C.S.; Kopczynski, D.; Holčapek, M.; Aoki, J.; Arita, M.; Arita, M.; Baker, E.S.; Ber-trand-Michel, J.; Bowden, J.A.; et al. Introducing the Lipidomics Minimal Reporting Checklist. Nat. Metab. 2022, 4, 1086–1088. [Google Scholar] [CrossRef]
- Guo, J.; Huan, T. Comparison of Full-Scan, Data-Dependent, and Data-Independent Acquisition Modes in Liquid Chromatography-Mass Spectrometry Based Untargeted Metabolomics. Anal. Chem. 2020, 92, 8072–8080. [Google Scholar] [CrossRef]
- Defossez, E.; Bourquin, J.; von Reuss, S.; Rasmann, S.; Glauser, G. Eight Key Rules for Successful Data-Dependent Acquisition in Mass Spectrometry-Based Metabolomics. Mass Spectrom. Rev. 2023, 42, 131–143. [Google Scholar] [CrossRef]
- Davies, V.; Wandy, J.; Weidt, S.; Van Der Hooft, J.J.J.; Miller, A.; Daly, R.; Rogers, S. Rapid Development of Improved Data-Dependent Acquisition Strategies. Anal. Chem. 2021, 93, 5676–5683. [Google Scholar] [CrossRef] [PubMed]
- Kirkwood, K.I.; Pratt, B.S.; Shulman, N.; Tamura, K.; MacCoss, M.J.; MacLean, B.X.; Baker, E.S. Utilizing Skyline to Analyze Lipidomics Data Containing Liquid Chromatography, Ion Mobility Spectrometry and Mass Spectrometry Dimensions. Nat. Protoc. 2022, 17, 2415–2430. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Liu, Y.; Fields, L.; Shi, X.; Huang, P.; Lu, H.; Schneider, A.J.; Tang, X.; Puglielli, L.; Welham, N.V.; et al. Single-Cell Lipidomics Enabled by Dual-Polarity Ionization and Ion Mobility-Mass Spectrometry Imaging. Nat. Commun. 2023, 14, 5185. [Google Scholar] [CrossRef]
- Calderón, C.; Rubarth, L.; Cebo, M.; Merfort, I.; Lämmerhofer, M. Lipid Atlas of Keratinocytes and Betulin Effects on Its Lipidome Profiled by Comprehensive UHPLC–MS/MS with Data Independent Acquisition Using Targeted Data Processing. Proteomics 2020, 20, e1900113. [Google Scholar] [CrossRef]
- Rombouts, C.; De Spiegeleer, M.; Van Meulebroek, L.; De Vos, W.H.; Vanhaecke, L. Validated Comprehensive Metabolomics and Lipidomics Analysis of Colon Tissue and Cell Lines. Anal. Chim. Acta 2019, 1066, 79–92. [Google Scholar] [CrossRef] [PubMed]
Lipid Class | Example |
---|---|
Fatty acyls | HFAs, FAs |
Glycerolipids | MAG, DAG, TAG |
Glycerophospholipids | PA, PC, PE, PS |
Sphingolipids | Cer, PSL, SM |
Sterol lipids | CE, Chol, CS |
Prenol lipids | quinine, polyprenol, isoprenoid |
Saccharolipids | lipid A |
Polyketides | lovastatin |
Extraction Method | Advantages | Disadvantages | Ref. |
---|---|---|---|
OPE | easy to perform possibility of automation low cost precipitation of proteins and insoluble organic species | may not remove interferences efficiently long centrifugation needed | [26,54] |
LLE | well-established protocols many combinations of solvents could be used (in different ratios) low cost | time-consuming difficult to automate repeated extractions needed challenging organic phase layer transfer | [54] |
SPE | reduction of matrix effect purification of samples wide range of commercially available SPE sorbents | particularly suitable for targeted analysis long optimization of washing and elution solvents | [27] |
SPME | requires very small amount of sample reduction of matrix effect small amounts of solvents needed fast extraction | suitable mainly for GC lower extraction ability | [7,27,55] |
UAE | highly-reproducible time-efficient improve the extraction efficiency in combination with LLE | use of toxic solvents longer extraction times increasing the temperature (because of fictions) which leads to degradation possibly damage hearing | [21] |
MAE | improvement of extraction efficiency reduction of time and organic solvents consumption | potential degradation of thermally instable lipids long optimization of extraction parameters | [21] |
SE | provides a high yield of lipids possibility of use with green solvents | continuous heating at the boiling temperature could lead to lipid oxidation and degradation of heat liable, time consuming | [11] |
SFE(SCO2) | shorter extraction times suitable for neutral, low-polarity lipids supercritical CO2 is green solvent | extraction of polar lipids requires use of organic modifier high initial costs of equipment | [11,26,42] |
Sample | Analytes | Extraction Type | Extraction Solvent | Results | Ref. |
---|---|---|---|---|---|
rat brain tissue | lipid profile | OPE | MeOH | direct infusion probe development for metabolomics | [72] |
20 mammalian cells | 19 lipid subclasses | LLE | CHCl3:MeOH:IPA, (1:2:4) | determination of different lipid species with potential for clinical applications | [73] |
fermented vegetable juices | lipid profiling | LLE | MTBE | fermented juices contain more beneficial metabolites and carotenoids than commercial non-fermented juices | [74] |
mammalian samples | lipidome | LLE (Bligh and Dyer) | CHCl3:MeOH | guideline for setting up and using platform for exploring mammalian lipidome | [69] |
bovine milk | TAG | LLE | CHCl3 | identification of more than 100 TAGs | [75] |
MALDI-MSI | ||||
---|---|---|---|---|
Sample | Analytes | Matrix | Results | Ref. |
human kidney tissues | lipidome | DAN | comparing of LIMS and HPLC-MS—identification of larger number of species with using HPLC-MS | [86] |
rat brain tissue | lipidomic profiles | norharmane | lipidomic spectra showed high consistency between MALDI and WALDI | [76] |
human and murine tissue | lipid profiling | DHB | identification of several atherosclerosis- specific lipid biomarkers | [92] |
salivary gland tumor tissue | lipidomic profile | DHB | MALDI-MSI complementary diagnostic tool | [77] |
human tissue | lipid profiling | DHB | plaque features and specific lipid classes clear colocalization | [93] |
osteoarthritic synovial membrane | lipidomic profile | norharmane | novel insight into lipid profiling of synovial membrane | [94] |
colorectal cancer tissue | lipidomic profile | 9-AA | tool for subtyping the diverse immune environments in CRC | [95] |
tumor spheroids | lipid metabolites | DHB | method for detailed information about spheroids and drug relationship | [96] |
human tissue | lipid profiling | DHB | diacylglycerols are more abundant in thrombotic area in comparison with other plaque areas | [97] |
human kidney tissue | Lipid storage | DHB | sections stored at RT (one week of storage)—largest amount of lipid degradation in comparison with sections stored under N2 at −80 °C | [98] |
SIMS-MSI | ||||
Sample | Analytes | Primary Ion Beam | Results | Ref. |
mammalian CMs | lipid profiling | Ar2000+ Bi3+ | identifying of heart failure associated lipids | [83] |
lipid extracts, cells, mouse brain tissue | lipid profiling | (CO2)n+ (H2O)n+, (H2O)n +(CO2) | imaging of LPC for the first time using TOF-SIMS | [99] |
Gammarus fossarum | lipidome characterization | Bi3+ cluster ions | compositional and spatial information of lipids | [100] |
infarcted mouse heart tissue | spatial distribution of lipids | gas cluster ion beam (Ar4000+) | different spatial lipids distributions; insights changes in lipid metabolism following infarction | [101] |
DESI-MSI | ||||
Sample | Analytes | Solvent System, Technique | Results | Ref. |
mice liver tissue | lipid distribution | MeOH:H2O (98:2) DESI | zone-specific hepatic lipid distribution of three zones | [102] |
human carotid plaque | lipid signatures | MeOH:H2O (98:2) DESI | identified lipid species present in plaque (compared with plasma) | [103] |
asiatic toad | lipid composition | MeOH:H2O (95:5) DESI | significant lipid metabolism changes due to body remodeling during metamorphosis | [104] |
xenograft glioblastoma tumour | lipid profiling | MeOH:H2O (95:5) 3D DESI | heterogeneous lipid expression is important to aid β-oxidation in hypoxic areas glioblastoma | [105] |
cow, sow, mouse ovaries | lipid distribution | DMF:ACN (1:1) DESI | similar lipid signatures of corpora lutea, follicular wall, ovarian stroma independent of the species | [106] |
swine fetuses | lipid distribution | DMF:ACN (1:1) DESI | organ-dependent localization of lipids, indication of key lipids related to physiological organogenesis | [107] |
mouse lung tissues | lipid coverage | MeOH:H2O (9:1) nanoDESI | spatial localization of lipids in tissues. 50% of lipid coverage in comparison with Folch extraction-LC-MS/MS method | [91] |
Sample | Analytes | Extraction Type | Extraction Solvent | Method | Results | Ref. |
---|---|---|---|---|---|---|
porcine oocyte | lipidomic profile | LLE | MeOH:CHCl3 | nanoLC-TIMS-MS | oocyte lipids identification and relative quantification at the single-cell level | [120] |
human plasma, serum | lipid profiling | LLE | MTBE:MeOH (10:3) | UHPLC-TIMS-PASEF-MS | Annotation of 370 lipids in reference plasma and 364 lipids in serum sample | [121] |
mouse brain tissue | lipid localization | - | MeOH:H2O (9:1) nanoDESI | nanoDESI-TIMS-MSI | separation of lipid isomers and isobars and localization in brain tissue | [122] |
plasma | lipid profile | LLE | MTBE | UHPLC-TIMS-MS | approach development for untargeted lipidomics | [123] |
human plasma, mouse liver, HeLa cells | lipidomic profile | LLE | MeOH:MTBE:H2O | nanoLC-TIMS-PASEF-MS | 1108 lipids (0.05 μL plasma), 976 lipids (10 μg liver tissue) and 1351 lipids (~2000 HeLa cells) were identified | [124] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gerhardtova, I.; Jankech, T.; Majerova, P.; Piestansky, J.; Olesova, D.; Kovac, A.; Jampilek, J. Recent Analytical Methodologies in Lipid Analysis. Int. J. Mol. Sci. 2024, 25, 2249. https://doi.org/10.3390/ijms25042249
Gerhardtova I, Jankech T, Majerova P, Piestansky J, Olesova D, Kovac A, Jampilek J. Recent Analytical Methodologies in Lipid Analysis. International Journal of Molecular Sciences. 2024; 25(4):2249. https://doi.org/10.3390/ijms25042249
Chicago/Turabian StyleGerhardtova, Ivana, Timotej Jankech, Petra Majerova, Juraj Piestansky, Dominika Olesova, Andrej Kovac, and Josef Jampilek. 2024. "Recent Analytical Methodologies in Lipid Analysis" International Journal of Molecular Sciences 25, no. 4: 2249. https://doi.org/10.3390/ijms25042249
APA StyleGerhardtova, I., Jankech, T., Majerova, P., Piestansky, J., Olesova, D., Kovac, A., & Jampilek, J. (2024). Recent Analytical Methodologies in Lipid Analysis. International Journal of Molecular Sciences, 25(4), 2249. https://doi.org/10.3390/ijms25042249