The Model of Interstitial Cystitis for Evaluating New Molecular Strategies of Interstitial Regeneration in Humans
Abstract
:1. Introduction
2. Interstitial Cystitis/Bladder Pain Syndrome
2.1. IC/BPS Definition and Evaluation
2.2. IC/BPS Etiology and Pathophysiology
2.3. Histopathology and Nitric Oxide Role in IC/BPS
3. IC/BPS Treatment
3.1. Conservative Treatments
3.2. Investigational Therapies
3.2.1. Hyaluronic Acid
3.2.2. Derived Mesenchymal Stem Cells
3.2.3. Platelet-Rich Plasma
3.2.4. Comparative Analysis among HA, SCs, and PRP
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Castellanos, M.E.; Desai, N.; Hibner, M. Interstitial Cystitis & Bladder Pain Syndrome. Glob Libr. Women’s Med. 2012, 1–26. [Google Scholar]
- Rosenberg, M.T.; Newman, D.K.; Page, S.A. Interstitial cystitis/painful bladder syndrome: Symptom recognition is key to early identification, treatment. Clevel. Clin. J. Med. 2007, 74 (Suppl. S3), S54. [Google Scholar] [CrossRef] [PubMed]
- Richter, B. Bladder Pain Syndrome: Symptoms, Quality of Life, Treatment Intensity, Clinical and Pathological Findings and their Correlations; Det Sundhedsvidenskabelige Fakultet, KU: København, Denmark, 2010. [Google Scholar]
- Activity CE. Interstitial Cystitis/Bladder Pain Syndrome. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2023. [Google Scholar]
- Hanno, P.M.; Erickson, D.; Moldwin, R.; Faraday, M.M. Diagnosis and treatment of interstitial cystitis/bladder pain syndrome: AUA guideline amendment. J. Urol. 2015, 193, 1545–1553. [Google Scholar] [CrossRef] [PubMed]
- Homma, Y.; Akiyama, Y.; Tomoe, H.; Furuta, A.; Ueda, T.; Maeda, D.; Lin, A.T.; Kuo, H.C.; Lee, M.H.; Oh, S.J.; et al. Clinical guidelines for interstitial cystitis/bladder pain syndrome. Int. J. Urol. 2020, 27, 578–589. [Google Scholar] [CrossRef] [PubMed]
- Vij, M.; Srikrishna, S.; Cardozo, L. Interstitial cystitis: Diagnosis and management. Eur. J. Obstet. Gynecol. Reprod. Biol. 2012, 161, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Quentin Clemens, J.; Erickson, D.R.; Varela, N.P.; Henry Lai, H. Diagnosis and Treatment of Interstitial Cystitis/Bladder Pain Syndrome. J. Urol. 2022, 208, 34–42. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.H.; Peng, C.H.; Liu, H.T.; Kuo, H.C. Increased Pro-Inflammatory Cytokines, C-Reactive Protein and Nerve Growth Factor Expressions in Serum of Patients with Interstitial Cystitis/Bladder Pain Syndrome. PLoS ONE 2013, 8, e76779. [Google Scholar] [CrossRef]
- Jhang, J.F.; Jiang, Y.H.; Kuo, H.C. Current Understanding of the Pathophysiology and Novel Treatments of Interstitial Cystitis/Bladder Pain Syndrome. Biomedicines 2022, 10, 2380. [Google Scholar] [CrossRef]
- Neuhaus, J.; Berndt-Paetz, M.; Gonsior, A. Biomarkers in the light of the etiopathology of ic/bps. Diagnostics 2021, 11, 2231. [Google Scholar] [CrossRef]
- Ruggeri, M.; Pavan, M.; Soato, M.; Panfilo, S.; Barbera, C.; Galesso, D.; Miele, D.; Rossi, S.; Di Lucia, A.; Ferrari, F.; et al. Synergy of hydeal-d® and hyaluronic acid for protecting and restoring urothelium: In vitro characterization. Pharmaceutics 2021, 13, 1450. [Google Scholar] [CrossRef]
- Patnaik, S.S.; Laganà, A.S.; Vitale, S.G.; Butticè, S.; Noventa, M.; Gizzo, S.; Valenti, G.; Rapisarda, A.M.C.; La Rosa, V.L.; Magno, C.; et al. Etiology, pathophysiology and biomarkers of interstitial cystitis/painful bladder syndrome. Arch. Gynecol. Obstet. 2017, 295, 1341–1359. [Google Scholar] [CrossRef]
- Ueda, T.; Hanno, P.M.; Saito, R.; Meijlink, J.M.; Yoshimura, N. Current understanding and future perspectives of interstitial cystitis/bladder pain syndrome. Int. Neurourol. J. 2021, 25, 99–110. [Google Scholar] [CrossRef] [PubMed]
- Tamaki, M.; Saito, R.; Ogawa, O.; Yoshimura, N.; Ueda, T. Possible mechanisms inducing glomerulations in interstitial cystitis: Relationship between endoscopic findings and expression of angiogenic growth factors. J. Urol. 2004, 172, 945–948. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.H.; Jhang, J.F.; Hsu, Y.H.; Kuo, H.C. Usefulness of Urinary Biomarkers for Assessing Bladder Condition and Histopathology in Patients with Interstitial Cystitis/Bladder Pain Syndrome. Int. J. Mol. Sci. 2022, 23, 12044. [Google Scholar] [CrossRef] [PubMed]
- Nickel, J.C.; Tripp, D.A.; Pontari, M.; Moldwin, R.; Mayer, R.; Carr, L.K.; Doggweiler, R.; Yang, C.C.; Mishra, N.; Nordling, J. Interstitial cystitis/painful bladder syndrome and associated medical conditions with an emphasis on irritable bowel syndrome, fibromyalgia and chronic fatigue syndrome. J. Urol. 2010, 184, 1358–1363. [Google Scholar] [CrossRef]
- Yueh, H.Z.; Yang, M.H.; Huang, J.Y.; Wei, J.C.C. Risk of Autoimmune Diseases in Patients with Interstitial Cystitis/Bladder Pain Syndrome: A Nationwide Population-Based Study in Taiwan. Front. Med. 2021, 8, 747098. [Google Scholar] [CrossRef]
- Jhang, J.F.; Birder, L.A.; Jiang, Y.H.; Hsu, Y.H.; Ho, H.C.; Kuo, H.C. Dysregulation of bladder corticotropin-releasing hormone receptor in the pathogenesis of human interstitial cystitis/bladder pain syndrome. Sci. Rep. 2019, 9, 19169. [Google Scholar] [CrossRef]
- Whitmore, K.E.; Fall, M.; Sengiku, A.; Tomoe, H.; Logadottir, Y.; Kim, Y.H. Hunner lesion versus non-Hunner lesion interstitial cystitis/bladder pain syndrome. Int. J. Urol. 2019, 26, 26–34. [Google Scholar] [CrossRef]
- Boucher, W.; Kempuraj, D.; Michaelian, M.; Theoharides, T.C. Corticotropin-releasing hormone-receptor 2 is required for acute stress-induced bladder vascular permeability and release of vascular endothelial growth factor. BJU Int. 2010, 106, 1394–1399. [Google Scholar] [CrossRef]
- Grammatopoulos, D.K.; Chrousos, G.P. Functional characteristics of CRH receptors and potential clinical applications of CRH-receptor antagonists. Trends Endocrinol. Metab. 2002, 13, 436–444. [Google Scholar] [CrossRef]
- Furman, D.; Campisi, J.; Verdin, E.; Carrera-Bastos, P.; Targ, S.; Franceschi, C.; Ferrucci, L.; Gilroy, D.W.; Fasano, A.; Miller, G.W.; et al. Chronic inflammation in the etiology of disease across the life span. Nat. Med. 2019, 25, 1822–1832. [Google Scholar] [CrossRef] [PubMed]
- Lynes, W.L.; Flynn, S.D.; Shortliffe, L.D.; Stamey, T.A. The histology of interstitial cystitis. Am. J. Surg. Pathol. 1990, 14, 969–976. [Google Scholar] [CrossRef]
- Hamdy, F.C.; Eardley, I. Oxford Textbook of Urological Surgery; Oxford University Press: Oxford, UK, 2017. [Google Scholar]
- Peeker, R.; Enerbäck, L.; Fall, M.; Aldenborg, F. Recruitment, distribution and phenotypes of mast cells in interstitial cystitis. J. Urol. 2000, 163, 1009–1015. [Google Scholar] [CrossRef]
- Fall, M.; Logadottir, Y.; Peeker, R. Interstitial cystitis is bladder pain syndrome with Hunner’s lesion. Int. J. Urol. 2014, 21, 79–82. [Google Scholar] [CrossRef] [PubMed]
- Parsons, C.L.; Greene, R.A.; Chung, M.; Stanford, E.J.; Singh, G. Abnormal urinary potassium metabolism in patients with interstitial cystitis. J. Urol. 2005, 173, 1182–1185. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez, R.R.; Fong, T.; Belmar, N.; Saban, M.; Felsen, D.; Te, A. Modulating bladder neuro-inflammation: RDP58, a novel anti-inflammatory peptide, decreases inflammation and nerve growth factor production in experimental cystitis. J. Urol. 2005, 173, 630–634. [Google Scholar] [CrossRef]
- Cervigni, M.; Natale, F.; Nasta, L.; Padoa, A.; Voi, R.L.; Porru, D. A combined intravesical therapy with hyaluronic acid and chondroitin for refractory painful bladder syndrome/interstitial cystitis. Int. Urogynecol. J. 2008, 19, 943–947. [Google Scholar] [CrossRef]
- Chrousos, G.P. The Hypothalamic–Pituitary–Adrenal Axis and Immune-Mediated Inflammation. N. Engl. J. Med. 1995, 332, 1351–1363. [Google Scholar] [CrossRef]
- Chrousos, G.P. Stress, chronic inflammation, and emotional and physical well-being: Concurrent effects and chronic sequelae. J. Allergy Clin. Immunol. 2000, 106 (Suppl. S5), S275–S291. [Google Scholar] [CrossRef] [PubMed]
- Akiyama, Y.; Homma, Y.; Maeda, D. Pathology and terminology of interstitial cystitis/bladder pain syndrome: A review. Histol. Histopathol. 2018, 34. [Google Scholar] [CrossRef]
- Lundberg, J.O.N.; Ehren, I.; Jansson, O.; Adolfsson, J.; Lundberg, J.M.; Weitzberg, E.; Alving, K.; Wiklund, N.P. Elevated nitric oxide in the urinary bladder in infectious and noninfectious cystitis. Urology 1996, 48, 700–702. [Google Scholar] [CrossRef] [PubMed]
- Birder, L.; Andersson, K.E. Urothelial signaling. Physiol. Rev. 2013, 93, 653–680. [Google Scholar] [CrossRef]
- Szabó, C.; Ischiropoulos, H.; Radi, R. Peroxynitrite: Biochemistry, pathophysiology and development of therapeutics. Nat. Rev. Drug Discov. 2007, 6, 662–680. [Google Scholar] [CrossRef]
- Alkadi, H. A Review on Free Radicals and Antioxidants. Infect. Disord. Drug Targets 2020, 20, 16–26. [Google Scholar] [CrossRef] [PubMed]
- Logadottir, Y.R.; Ehrén, I.; Fall, M.; Wiklund, N.P.; Peeker, R. Intravesical nitric oxide production discriminates between classic and nonulcer interstitial cystitis. J. Urol. 2004, 171, 1148–1151. [Google Scholar] [CrossRef] [PubMed]
- Hosseini, A.; Ehrén, I.; Wiklund, N.P. Nitric oxide as an objective marker for evaluation of treatment response in patients with classic interstitial cystitis. J. Urol. 2004, 172, 2261–2265. [Google Scholar] [CrossRef]
- Colemeadow, J.; Sahai, A.; Malde, S. Clinical management of bladder pain syndrome/interstitial cystitis: A review on current recommendations and emerging treatment options. Res. Rep. Urol. 2020, 12, 331–343. [Google Scholar] [CrossRef]
- Lindeke-Myers, A.; Hanif, A.M.; Jain, N. Pentosan polysulfate maculopathy. Surv. Ophthalmol. 2022, 67, 83–96. [Google Scholar] [CrossRef]
- Kuret, T.; Peskar, D.; Erman, A.; Veraniĉ, P. A systematic review of therapeutic approaches used in experimental models of interstitial cystitis/bladder pain syndrome. Biomedicines 2021, 9, 865. [Google Scholar] [CrossRef]
- Iavazzo, C.; Athanasiou, S.; Pitsouni, E.; Falagas, M.E. Hyaluronic Acid: An Effective Alternative Treatment of Interstitial Cystitis, Recurrent Urinary Tract Infections, and Hemorrhagic Cystitis? Eur. Urol. 2007, 51, 1534–1541. [Google Scholar] [CrossRef]
- Lee, W.L.; Lee, F.K.; Wang, P.H. Application of hyaluronic acid in patients with interstitial cystitis. J. Chin. Med. Assoc. 2021, 84, 341–343. [Google Scholar] [CrossRef]
- Tsai, C.P.; Yang, J.M.; Liang, S.J.; Lin, Y.H.; Huang, W.C.; Lin, T.Y.; Hsu, C.S.; Chuang, F.C.; Hung, M.J. Factors associated with treatment outcomes after intravesical hyaluronic acid therapy in women with refractory interstitial cystitis: A prospective, multicenter study. J. Chin. Med. Assoc. 2021, 84, 418–422. [Google Scholar] [CrossRef] [PubMed]
- Gottschalk, J.; Elling, L. Current state on the enzymatic synthesis of glycosaminoglycans. Curr. Opin. Chem. Biol. 2021, 61, 71–80. [Google Scholar] [CrossRef] [PubMed]
- Patuel, B.M.; González-lópez, R.; Folkersma, L.R.; Chicharro, R.V.; Líbano, C.Z. Actas Urológicas Españolas Recommendations on the use of intravesical hyaluronic acid instillations in bladder pain syndrome. Actas Urológicas Españolas (Engl. Ed.) 2022, 46, 131–137. [Google Scholar] [CrossRef]
- Jiang, D.; Liang, J.; Noble, P.W. Hyaluronan as an immune regulator in human diseases. Physiol. Rev. 2011, 91, 221–264. [Google Scholar] [CrossRef]
- Rooney, P.; Srivastava, A.; Watson, L.; Quinlan, L.R.; Pandit, A. Hyaluronic acid decreases IL-6 and IL-8 secretion and permeability in an inflammatory model of interstitial cystitis. Acta Biomater. 2015, 19, 66–75. [Google Scholar] [CrossRef] [PubMed]
- Boucher, W.S.; Letourneau, R.; Huang, M.; Kempuraj, D.; Green, M.; Sant, G.R.; Theoharides, T.C. Intravesical Sodium Hyaluronate Inhibits the Rat Urinary Mast Cell Mediator Increase Triggered by Acute Immobilization Stress. J. Urol. 2002, 167, 380–384. [Google Scholar] [CrossRef] [PubMed]
- Kuang, D.M.; Wu, Y.; Chen, N.; Cheng, J.; Zhuang, S.M.; Zheng, L. Tumor-derived hyaluronan induces formation of immunosuppressive macrophages through transient early activation of monocytes. Blood 2007, 110, 587–595. [Google Scholar] [CrossRef] [PubMed]
- Morales, A.; Emerson, L.; Nickel, J.C. Intravesical hyaluronic acid in the treatment of refractory interstitial cystitis. Urology 1997, 49 (Suppl. S5), 45–48. [Google Scholar] [CrossRef]
- Kallestrup, E.B.; Jørgensen, S.S.; Nordling, J.; Hald, T. Treatment of interstitial cystitis with Cystistat®: A hyaluronic acid product. Scand. J. Urol. Nephrol. 2005, 39, 143–147. [Google Scholar] [CrossRef]
- Riedl, C.R.; Engelhardt, P.F.; Daha, K.L.; Morakis, N.; Pflüger, H. Hyaluronan treatment of interstitial cystitis/painful bladder syndrome. Int. Urogynecol. J. 2008, 19, 717–721. [Google Scholar] [CrossRef]
- Shao, Y.; Shen, Z.J.; Rui, W.B.; Zhou, W.L. Intravesical Instillation of Hyaluronic Acid Prolonged the Effect of Bladder Hydrodistention in Patients with Severe Interstitial Cystitis. Urology 2010, 75, 547–550. [Google Scholar] [CrossRef]
- Porru, D.; Leva, F.; Parmigiani, A.; Barletta, D.; Choussos, D.; Gardella, B.; Daccò, M.D.; Nappi, R.E.; Allegri, M.; Tinelli, C.; et al. Impact of Intravesical hyaluronic acid and chondroitin sulfate on bladder pain syndrome/interstitial cystitis. Int. Urogynecol. J. 2012, 23, 1193–1199. [Google Scholar] [CrossRef]
- Cervigni, M.; Sommariva, M.; Tenaglia, R.; Porru, D.; Ostardo, E.; Giammò, A.; Trevisan, S.; Frangione, V.; Ciani, O.; Tarricone, R.; et al. A randomized, open-label, multicenter study of the efficacy and safety of intravesical hyaluronic acid and chondroitin sulfate versus dimethyl sulfoxide in women with bladder pain syndrome/interstitial cystitis. Neurourol. Urodyn. 2017, 36, 1178–1186. [Google Scholar] [CrossRef]
- Hung, M.J.; Tsai, C.P.; Lin, Y.H.; Huang, W.C.; Chen GDen Shen, P.S. Hyaluronic acid improves pain symptoms more than bladder storage symptoms in women with interstitial cystitis. Taiwan J. Obs. Gynecol. 2019, 58, 417–422. [Google Scholar] [CrossRef]
- Engelhardt, P.F.; Morakis, N.; Daha, L.K.; Esterbauer, B.; Riedl, C.R. Long-term results of intravesical hyaluronan therapy in bladder pain syndrome/interstitial cystitis. Int. Urogynecology J. 2011, 22, 401–405. [Google Scholar] [CrossRef]
- Scarneciu, I.; Bungau, S.; Lupu, A.M.; Scarneciu, C.C.; Bratu, O.G.; Martha, O.; Tit, D.M.; Aleya, L.; Lupu, S. Efficacy of instillation treatment with hyaluronic acid in relieving symptoms in patients with BPS/IC and uncomplicated recurrent urinary tract infections—Long-term results of a multicenter study. Eur. J. Pharm. Sci. 2019, 139, 105067. [Google Scholar] [CrossRef]
- Lin, C.J.; Liu, C.K.; Hsieh, H.Y.; Chen, M.J.; Tsai, C.P. Changes in Cystoscopic Findings after Intravesical Hyaluronic Acid Instillation Therapy in Patients with Interstitial Cystitis. Diagnostics 2022, 12, 2009. [Google Scholar] [CrossRef]
- Ferreira, N.D.R.; Sanz, C.K.; Raybolt, A.; Pereira, C.M.; DosSantos, M.F. Action of Hyaluronic Acid as a Damage-Associated Molecular Pattern Molecule and Its Function on the Treatment of Temporomandibular Disorders. Front. Pain Res. 2022, 13, 852249. [Google Scholar] [CrossRef]
- Cho, S.J.; Stout-Delgado, H.W. Aging and Lung Disease. Annu. Rev. Physiol. 2020, 82, 433–459. [Google Scholar] [CrossRef]
- Della Sala, F.; Di Gennaro, M.; Lista, G.; Messina, F.; Ambrosio, L.; Borzacchiello, A. Effect of hyaluronic acid on the differentiation of mesenchymal stem cells into mature type ii pneumocytes. Polymers 2021, 13, 2928. [Google Scholar] [CrossRef]
- Zakusilo, F.T.; Kerry O’Baniona, M.; Gelbard, H.A.; Seluanov, A.; Gorbunova, V. Matters of size: Roles of hyaluronan in CNS aging and disease. Ageing Res. Rev. 2021, 72, 101485. [Google Scholar] [CrossRef]
- Shin, J.H.; Ryu, C.M.; Yu, H.Y.; Park, J.; Kang, A.R.; Shin, J.M.; Hong, K.S.; Kim, E.Y.; Chung, H.M.; Shin, D.M.; et al. Safety of Human Embryonic Stem Cell-derived Mesenchymal Stem Cells for Treating Interstitial Cystitis: A Phase I Study. Stem. Cells Transl Med. 2022, 11, 1010–1020. [Google Scholar] [CrossRef]
- Lander, E.B.; Berman, M.H.; See, J.R. Personal cell therapy for interstitial cystitis with autologous stromal vascular fraction stem cells. Ther. Adv. Urol. 2019, 11, 1756287219868590. [Google Scholar] [CrossRef]
- Jhang, J.F.; Wu, S.Y.; Lin, T.Y.; Kuo, H.C. Repeated intravesical injections of platelet-rich plasma are effective in the treatment of interstitial cystitis: A case control pilot study. LUTS Low Urin. Tract. Sym. 2019, 11, O42–O47. [Google Scholar] [CrossRef]
- Jiang, Y.H.; Kuo, Y.C.; Jhang, J.F.; Lee, C.L.; Hsu, Y.H.; Ho, H.C.; Kuo, H.C. Repeated intravesical injections of platelet-rich plasma improve symptoms and alter urinary functional proteins in patients with refractory interstitial cystitis. Sci. Rep. 2020, 10, 15218. [Google Scholar] [CrossRef]
- Lee, Y.K.; Jiang, Y.H.; Jhang, J.F.; Ho, H.C.; Kuo, H.C. Changes in the Ultrastructure of the Bladder Urothelium in Patients with Interstitial Cystitis after Intravesical Injections of Platelet-Rich Plasma. Biomedicines 2022, 10, 1182. [Google Scholar] [CrossRef]
- Kim, A.; Shin, D.M.; Choo, M.S. Stem Cell Therapy for Interstitial Cystitis/Bladder Pain Syndrome. Curr. Urol. Rep. 2016, 17, 1–9. [Google Scholar] [CrossRef]
- Park, C.W.; Kim, K.S.; Bae, S.; Son, H.K.; Myung, P.K.; Hong, H.J.; Kim, H. Cytokine secretion profiling of human mesenchymal stem cells by antibody array. Int. J. Stem. Cells 2009, 2, 59–68. [Google Scholar] [CrossRef]
- Sun, D.Z.; Abelson, B.; Babbar, P.; Damaser, M.S. Harnessing the mesenchymal stem cell secretome for regenerative urology. Nat. Rev. Urol. 2019, 16, 363–375. [Google Scholar] [CrossRef]
- Wen, C.; Xie, L.; Hu, C. Roles of mesenchymal stem cells and exosomes in interstitial cystitis/bladder pain syndrome. J. Cell. Mol. Med. 2022, 26, 624–635. [Google Scholar] [CrossRef]
- Song, M.; Heo, J.; Chun, J.Y.; Bae, H.S.; Kang, J.W.; Kang, H.; Cho, Y.M.; Kim, S.W.; Shin, D.M.; Choo, M.S. The paracrine effects of mesenchymal stem cells stimulate the regeneration capacity of endogenous stem cells in the repair of a bladder-outlet-obstruction- induced overactive bladder. Stem. Cells Dev. 2014, 23, 654–663. [Google Scholar] [CrossRef]
- Lin, C.S.; Lin, G.; Lue, T.F. Allogeneic and xenogeneic transplantation of adipose-derived stem cells in immunocompetent recipients without immunosuppressants. Stem. Cells Dev. 2012, 21, 2770–2778. [Google Scholar] [CrossRef]
- Mormone, E. Regenerative Medicine as a New Promising Approach in the Treatment of Interstitial Cystitis. Int. J. Stem. Cell Regen. Med. 2022, 4, 1–9. Available online: https://www.pubtexto.com/pdf/?regenerative-medicine-as-a-new-promising-approach-in-the-treatment-of-interstitial-cystitis (accessed on 10 August 2022).
- Kim, A.; Yu, H.Y.; Lim, J.; Ryu, C.M.; Kim, Y.H.; Heo, J.; Han, J.Y.; Lee, S.; Bae, Y.S.; Kim, J.Y.; et al. Improved efficacy and in vivo cellular properties of human embryonic stem cell derivative in a preclinical model of bladder pain syndrome. Sci. Rep. 2017, 7, 8872. [Google Scholar] [CrossRef]
- Lee, S.W.; Ryu, C.M.; Shin, J.H.; Choi, D.; Kim, A.; Yu, H.Y.; Han, J.Y.; Lee, H.Y.; Lim, J.; Kim, Y.H.; et al. The therapeutic effect of human embryonic stem cell-derived multipotent mesenchymal stem cells on chemical-induced cystitis in rats. Int. Neurourol. J. 2018, 22, S34. [Google Scholar] [CrossRef] [PubMed]
- Ryu, C.M.; Yu, H.Y.; Lee, H.Y.; Shin, J.H.; Lee, S.; Ju, H.; Paulson, B.; Lee, S.; Kim, S.; Lim, J.; et al. Longitudinal intravital imaging of transplanted mesenchymal stem cells elucidates their functional integration and therapeutic potency in an animal model of interstitial cystitis/bladder pain syndrome. Theranostics 2018, 8, 5610. [Google Scholar] [CrossRef]
- Lin, C.C.; Huang, Y.C.; Lee, W.C.; Chuang, Y.C. New frontiers or the treatment of interstitial cystitis/bladder pain syndrome-focused on stem cells, platelet-rich plasma, and low-energy shock wave. Int. Neurourol. J. 2020, 24, 211. [Google Scholar] [CrossRef]
- Kim, J.H.; Lee, H.J.; Song, Y.S. Treatment of bladder dysfunction using stem cell or tissue engineering technique. Korean J. Urol. 2014, 55, 228–238. [Google Scholar] [CrossRef]
- Rigotti, G.; Marchi, A.; Sbarbati, A. Adipose-Derived mesenchymal stem cells: Past, present, and future. Aesthetic Plast. Surg. 2009, 33, 271–273. [Google Scholar] [CrossRef]
- Jiang, Y.; Jahagirdar, B.N.; Reinhardt, R.L.; Schwartz, R.E.; Keene, C.D.; Ortiz-Gonzalez, X.R.; Reyes, M.; Lenvik, T.; Lund, T.; Blackstad, M.; et al. Pluripotency of mesenchymal stem cells derived from adult marrow. Nature 2002, 418, 41–49. [Google Scholar] [CrossRef] [PubMed]
- Rigotti, G.; Marchi, A.; Galie, M.; Baroni, G.; Benati, D.; Krampera, M.; Pasini, A.; Sbarbati, A. Clinical treatment of radiotherapy tissue damage by lipoaspirate transplant: A healing process mediated by adipose-derived adult stem cells. Plast. Reconstr. Surg. 2007, 119, 1409–1422. [Google Scholar] [CrossRef] [PubMed]
- Yang, R.; Chen, G.; Muhashi, M.; Aizezi, G.; Jiang, M.; Yuan, H. Adjuvant treatment with adipose-derived mesenchymal stem cells (ADSC) reduces severe refractory hemorrhagic cystitis after RIC-PBSCT: A case report. Medicine 2021, 100, e26316. [Google Scholar] [CrossRef] [PubMed]
- Ramakrishnan, V.M.; Boyd, N.L. The Adipose Stromal Vascular Fraction as a Complex Cellular Source for Tissue Engineering Applications. Tissue Eng.-Part B Rev. 2018, 24, 289–299. [Google Scholar] [CrossRef]
- Nava, S.; Sordi, V.; Pascucci, L.; Tremolada, C.; Ciusani, E.; Zeira, O.; Cadei, M.; Soldati, G.; Pessina, A.; Parati, E.; et al. Long-Lasting Anti-Inflammatory Activity of Human Microfragmented Adipose Tissue. Stem. Cells Int. 2019, 2019, 5901479. [Google Scholar] [CrossRef]
- Kumar, S.; Verma, R.; Tyagi, N.; Gangenahalli, G.; Verma, Y.K. Therapeutics effect of mesenchymal stromal cells in reactive oxygen species-induced damages. Human Cell 2022, 35, 37–50. [Google Scholar] [CrossRef]
- Wang, M.; Yuan, Q.; Xie, L. Mesenchymal stem cell-based immunomodulation: Properties and clinical application. Stem. Cells Int. 2018, 2018, 3057624. [Google Scholar] [CrossRef]
- Kim, W.S.; Park, B.S.; Sung, J.H. The wound-healing and antioxidant effects of adipose-derived stem cells. Expert Opin. Biol. Ther. 2009, 9, 879–887. [Google Scholar] [CrossRef]
- Wiafe, B.; Adesida, A.B.; Churchill, T.; Kadam, R.; Carleton, J.; Metcalfe, P.D. Mesenchymal stem cell therapy inhibited inflammatory and profibrotic pathways induced by partial bladder outlet obstruction and prevented high-pressure urine storage. J. Pediatr. Urol. 2019, 15, 254-e1. [Google Scholar] [CrossRef]
- Mussano, F.; Genova, T.; Munaron, L.; Petrillo, S.; Erovigni, F.; Carossa, S. Cytokine, chemokine, and growth factor profile of platelet-rich plasma. Platelets 2016, 27, 467–471. [Google Scholar] [CrossRef] [PubMed]
- Kuffler, D.P. Platelet-rich plasma and the elimination of neuropathic pain. Mol. Neurobiol. 2013, 48, 315–332. [Google Scholar] [CrossRef]
- Ke, Q.S.; Jhang, J.F.; Lin, T.Y.; Ho, H.C.; Jiang, Y.H.; Hsu, Y.H.; Kuo, H.C. Therapeutic potential of intravesical injections of platelet-rich plasma in the treatment of lower urinary tract disorders due to regenerative deficiency. Tzu Chi Med. J. 2019, 31, 135. [Google Scholar]
- Jhang, J.F.; Ho, H.C.; Hsu, Y.H.; Jiang, Y.H.; Kuo, H.C. Bladder Ultrastructure and Urinary Cytokine Abnormality in Patients with Recurrent Urinary Tract Infection and the Changes after Intravesical Platelet-Rich Plasma Injections. Biomedicines 2022, 10, 245. [Google Scholar] [CrossRef]
- Nicoletti, G.; Saler, M.; Villani, L.; Rumolo, A.; Tresoldi, M.M.; Faga, A. Platelet rich plasma enhancement of skin regeneration in an ex-vivo human experimental model. Front. Bioeng. Biotechnol. 2019, 7, 2. [Google Scholar] [CrossRef]
- Trama, F.; Illiano, E.; Marchesi, A.; Brancorsini, S.; Crocetto, F.; Pandolfo, S.D.; Zucchi, A.; Costantini, E. Use of intravesical injections of platelet-rich plasma for the treatment of bladder pain syndrome: A comprehensive literature review. Antibiotics 2021, 10, 1194. [Google Scholar] [CrossRef]
- Hardy, T.J. Interstitial Cystitis Can Be Improved With Intravesical Instillation of Platelet-Rich Plasma. Cureus 2022, 14, 3–7. [Google Scholar] [CrossRef]
- Jhang, J.F.; Lin, T.Y.; Kuo, H.C. Editorial Comment: Intravesical injections of platelet-rich plasma is effective and safe in treatment of interstitial cystitis refractory to conventional treatment—A prospective clinical trial. Int. Braz. J. Urol. 2021, 47, 456–457. [Google Scholar]
- Jhang, J.F.; Lin, T.Y.; Kuo, H.C. Intravesical injections of platelet-rich plasma is effective and safe in treatment of interstitial cystitis refractory to conventional treatment—A prospective clinical trial. Neurourol. Urodyn. 2019, 38, 703–709. [Google Scholar] [CrossRef] [PubMed]
- Rigotti, G.; Charles-de-Sá, L.; Gontijo-de-Amorim, N.F.; Takiya, C.M.; Amable, P.R.; Borojevic, R.; Benati, D.; Bernardi, P.; Sbarbati, A. Expanded stem cells, Stromal-vascular fraction, and platelet-rich plasma enriched fat: Comparing results of different facial rejuvenation approaches in a clinical trial. Aesthetic Surg. J. 2016, 36, 261–270. [Google Scholar] [CrossRef]
- Charles-de-Sá, L.; Gontijo-de-Amorim, N.F.; Takiya, C.M.; Borojevic, R.; Benati, D.; Bernardi, P.; Sbarbati, A.; Rigotti, G. Effect of Use of Platelet-Rich Plasma (PRP) in Skin with Intrinsic Aging Process. Aesthetic Surg. J. 2018, 38, 321–328. [Google Scholar] [CrossRef]
- Reddy, S.H.R.; Reddy, R.; Babu, N.C.; Ashok, G.N. Stem-cell therapy and platelet-rich plasma in regenerative medicines: A review on pros and cons of the technologies. J. Oral Maxillofac. Pathol. 2018, 22, 367. [Google Scholar] [CrossRef] [PubMed]
- GAO-23-105430, Technology Assessment: Regenerative Medicine, Therapeutic Applications, Challenges, and Policy Options. 2023. Available online: https://www.gao.gov/assets/gao-23-105430-highlights.pdf (accessed on 13 July 2023).
- Wlaschek, M.; Maity, P.; Makrantonaki, E.; Scharffetter-Kochanek, K. Connective Tissue and Fibroblast Senescence in Skin Aging. J. Investig. Dermatol. 2021, 141, 985–992. [Google Scholar] [CrossRef]
- Gilbert, M.M.; Mathes, S.C.; Mahajan, A.S.; Rohan, C.A.; Travers, J.B.; Thyagarajan, A. The role of sirtuins in dermal fibroblast function. Front. Med. 2023, 10, 1021908. [Google Scholar] [CrossRef]
- Trifunovic, S.; Stevanovic, I.; Milosevic, A.; Ristic, N.; Janjic, M.; Bjelobaba, I.; Savic, D.; Bozic, I.; Jakovljevic, M.; Tesovic, K.; et al. The Function of the Hypothalamic–Pituitary–Adrenal Axis During Experimental Autoimmune Encephalomyelitis: Involvement of Oxidative Stress Mediators. Front. Neurosci. 2021, 15, 649485. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.; Zhou, Y.; Li, H.J. Advances in mesenchymal stem cell exosomes: A review. Stem Cell Res. Ther. 2021, 12, 71. [Google Scholar] [CrossRef]
- Paliwal, S.; Chaudhuri, R.; Agrawal, A.; Mohanty, S. Regenerative abilities of mesenchymal stem cells through mitochondrial transfer. J. Biomed. Sci. 2018, 25, 31. [Google Scholar] [CrossRef]
- Han, S.; Sun, H.M.; Hwang, K.C.; Kim, S.W. Adipose-derived stromal vascular fraction cells: Update on clinical utility and efficacy. Crit. Rev. Eukaryot Gene Expr. 2015, 25, 145–152. [Google Scholar] [CrossRef]
- Kaul, A.; Short, W.D.; Keswani, S.G.; Wang, X. Immunologic roles of hyaluronan in dermal wound healing. Biomolecules 2021, 11, 1234. [Google Scholar] [CrossRef]
- Shen, C.C.; Yang, M.Y.; Chang, K.B.; Tseng, C.H.; Yang, Y.P.; Yang, Y.C.; Kung, M.L.; Lai, W.Y.; Lin, T.W.; Hsieh, H.H.; et al. Fabrication of hyaluronic acid-gold nanoparticles with chitosan to modulate neural differentiation of mesenchymal stem cells. J. Chin. Med Assoc. 2021, 84, 1007–1018. [Google Scholar] [CrossRef]
- Singampalli, K.L.; Balaji, S.; Wang, X.; Parikh, U.M.; Kaul, A.; Gilley, J.; Birla, R.K.; Bollyky, P.L.; Keswani, S.G. The Role of an IL-10/Hyaluronan Axis in Dermal Wound Healing. Front. Cell Dev. Biol. 2020, 8, 636. [Google Scholar] [CrossRef]
- Xu, X.; Kong, D.S.; Tian, Y.P.; Xie, Y.L.; Zhang, J.K.; Huang, X.H. Autocross-linked hyaluronic acid gel and adipose-derived mesenchymal stem cell composites for the treatment intrauterine adhesions. Taiwan J. Obstet. Gynecol. 2021, 60, 1031–1037. [Google Scholar] [CrossRef]
- Li, L.; Duan, X.; Fan, Z.; Chen, L.; Xing, F.; Xu, Z.; Chen, Q.; Xiang, Z. Mesenchymal Stem Cells in Combination with Hyaluronic Acid for Articular Cartilage Defects. Sci. Rep. 2018, 8, 9900. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.H.; Man, K.M.; Chen, W.C.; Liu, P.L.; Tsai, K.S.; Tsai, M.Y.; Wu, Y.T.; Chen, H.Y. Platelet-rich plasma ameliorates cyclophosphamide-induced acute interstitial cystitis/painful bladder syndrome in a rat model. Diagnostics 2020, 10, 381. [Google Scholar] [CrossRef]
- Andia, I.; Abate, M. Knee osteoarthritis: Hyaluronic acid, platelet-rich plasma or both in association? Expert Opin. Biol. Ther. 2014, 14, 635–649. [Google Scholar] [CrossRef] [PubMed]
- Copcu, H.E.; Oztan, S. Not Stromal Vascular Fraction (SVF) or Nanofat, but Total Stromal-Cells (TOST): A New Definition. Systemic Review of Mechanical Stromal-Cell Extraction Techniques. Tissue Eng. Regen. Med. 2021, 18, 25–36. [Google Scholar] [CrossRef] [PubMed]
Investigational Therapies | Authors | Year |
---|---|---|
Hyaluronic Acid | Jhang J. et al. [10] | 2022 |
Morales A. et al. [52] | 1997 | |
Kallestrup E.B. et al. [53] | 2005 | |
Riedl C.R. et al. [54] | 2008 | |
Shao Y. et al. [55] | 2010 | |
Porru D. et al. [56] | 2012 | |
Cervigni M. et al. [57] | 2017 | |
Hung M.J. et al. [59] | 2019 | |
Engelhardt P.F. et al. [59] | 2011 | |
Scarneciu I. et al. [60] | 2019 | |
Mesenchymal Stem Cells | Shin J.H. et al. [66] | 2022 |
Lander E.B. et al. [67] | 2019 | |
Platelet Rich Plasma | Jhang J.F. et al. [68] | 2019 |
Jhang Y.H. et al. [69] | 2020 | |
Lee Y.K. et al. [70] | 2022 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mormone, E.; Cisternino, A.; Capone, L.; Caradonna, E.; Sbarbati, A. The Model of Interstitial Cystitis for Evaluating New Molecular Strategies of Interstitial Regeneration in Humans. Int. J. Mol. Sci. 2024, 25, 2326. https://doi.org/10.3390/ijms25042326
Mormone E, Cisternino A, Capone L, Caradonna E, Sbarbati A. The Model of Interstitial Cystitis for Evaluating New Molecular Strategies of Interstitial Regeneration in Humans. International Journal of Molecular Sciences. 2024; 25(4):2326. https://doi.org/10.3390/ijms25042326
Chicago/Turabian StyleMormone, Elisabetta, Antonio Cisternino, Lorenzo Capone, Eugenio Caradonna, and Andrea Sbarbati. 2024. "The Model of Interstitial Cystitis for Evaluating New Molecular Strategies of Interstitial Regeneration in Humans" International Journal of Molecular Sciences 25, no. 4: 2326. https://doi.org/10.3390/ijms25042326
APA StyleMormone, E., Cisternino, A., Capone, L., Caradonna, E., & Sbarbati, A. (2024). The Model of Interstitial Cystitis for Evaluating New Molecular Strategies of Interstitial Regeneration in Humans. International Journal of Molecular Sciences, 25(4), 2326. https://doi.org/10.3390/ijms25042326