Respiratory Dysfunction in Alzheimer’s Disease—Consequence or Underlying Cause? Applying Animal Models to the Study of Respiratory Malfunctions
Abstract
:1. Introduction: Alzheimer’s Disease Neurodegeneration
2. Respiratory Disturbances in AD
3. Sleep-Disordered Breathing
4. Obstructive Sleep Apnea in Alzheimer’s Disease
5. Bidirectional Relationship between Obstructive Sleep Apnea and Alzheimer’s Disease
6. Studying Respiratory Dysfunction in AD Animal Models
6.1. AD Animal Models
6.2. Respiratory Disturbances in Streptozotocin-Induced AD Model
6.2.1. Altered Ventilatory Response to Hypercapnia
6.2.2. Altered Ventilatory Response to Hypoxia
6.3. Respiratory Disturbances in Transgenic AD Models
6.3.1. Respiratory Disturbances in the TgF344-AD Rat Model of AD
6.3.2. Respiratory Disturbances in the Tau-P301L Model of AD
6.3.3. Respiratory Disturbances in the Transgenic AβPP V717I Mouse Model of AD
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Kim, S.; Nam, Y.; Kim, H.S.; Jung, H.; Jeon, S.G.; Hong, S.B.; Moon, M. Alteration of Neural Pathways and Its Implications in Alzheimer’s Disease. Biomedicines 2022, 10, 845. [Google Scholar] [CrossRef] [PubMed]
- Kandimalla, R.; Reddy, P.H. Therapeutics of Neurotransmitters in Alzheimer’s Disease. J. Alzheimer’s Dis. 2017, 57, 1049–1069. [Google Scholar] [CrossRef] [PubMed]
- Ulland, T.K.; Ewald, A.C.; Knutson, A.O.; Marino, K.M.; Smith, S.M.C.; Watters, J.J. Alzheimer’s Disease, Sleep Disordered Breathing, and Microglia: Puzzling out a Common Link. Cells 2021, 10, 2907. [Google Scholar] [CrossRef] [PubMed]
- Hardy, J.A.; Higgins, G.A. Alzheimer’s Disease: The Amyloid Cascade Hypothesis. Science 1992, 256, 184–185. [Google Scholar] [CrossRef] [PubMed]
- Lanoiselée, H.-M.; Nicolas, G.; Wallon, D.; Rovelet-Lecrux, A.; Lacour, M.; Rousseau, S.; Richard, A.-C.; Pasquier, F.; Rollin-Sillaire, A.; Martinaud, O.; et al. APP, PSEN1, and PSEN2 mutations in early-onset Alzheimer disease: A genetic screening study of familial and sporadic cases. PLoS Med. 2017, 14, e1002270. [Google Scholar] [CrossRef] [PubMed]
- Andrade-Guerrero, J.; Santiago-Balmaseda, A.; Jeronimo-Aguilar, P.; Vargas-Rodríguez, I.; Cadena-Suárez, A.R.; Sánchez-Garibay, C.; Pozo-Molina, G.; Méndez-Catalá, C.F.; Cardenas-Aguayo, M.-D.; Diaz-Cintra, S.; et al. Alzheimer’s Disease: An Updated Overview of Its Genetics. Int. J. Mol. Sci. 2023, 24, 3754. [Google Scholar] [CrossRef]
- O’Donoghue, M.C.; Murphy, S.E.; Zamboni, G.; Nobre, A.C.; Mackay, C.E. APOE genotype and cognition in healthy individuals at risk of Alzheimer’s disease: A review. Cortex 2018, 104, 103–123. [Google Scholar] [CrossRef]
- Bookheimer, S.; Burggren, A. APOE-4 Genotype and Neurophysiological Vulnerability to Alzheimer’s and Cognitive Aging. Annu. Rev. Clin. Psychol. 2009, 5, 343–362. [Google Scholar] [CrossRef]
- Haque, R.U.; Levey, A.I. Alzheimer’s disease: A clinical perspective and future nonhuman primate research opportunities. Proc. Natl. Acad. Sci. USA 2019, 116, 26224–26229. [Google Scholar] [CrossRef] [PubMed]
- World Alzheimer Report 2022: Life after Diagnosis: Navigating Treatment, Care and Support 2022. Available online: https://www.alzint.org/resource/world-alzheimer-report-2022/ (accessed on 21 September 2022).
- World Alzheimer Report 2022|Alzheimer’s Disease International (ADI). Available online: https://www.alzint.org/resource/world-alzheimer-report-2022/ (accessed on 15 January 2024).
- Burns, A.; Jacoby, R.; Luthert, P.; Levy, R. Cause of Death in Alzheimer’s Disease. J. Am. Geriatr. Soc. 1990, 19, 341–344. [Google Scholar] [CrossRef] [PubMed]
- Beard, C.; Kokmen, E.; Sigler, C.; Smith, G.E.; Petterson, T.; O’Brien, P.C. Cause of death in Alzheimer’s disease. Ann. Epidemiol. 1996, 6, 195–200. [Google Scholar] [CrossRef] [PubMed]
- Attems, J.; König, C.; Huber, M.; Lintner, F.; Jellinger, K.A. Cause of death in demented and non-demented elderly inpatients; an autopsy study of 308 cases. J. Alzheimer’s Dis. 2005, 8, 57–62. [Google Scholar] [CrossRef] [PubMed]
- Brunnström, H.R.; Englund, E.M. Cause of death in patients with dementia disorders. Eur. J. Neurol. 2009, 16, 488–492. [Google Scholar] [CrossRef] [PubMed]
- Todd, S.; Barr, S.; Passmore, A.P. Cause of death in Alzheimer’s disease: A cohort study. QJM Int. J. Med. 2013, 106, 747–753. [Google Scholar] [CrossRef] [PubMed]
- Romero, J.P.; Benito-León, J.; Louis, E.D.; Bermejo-Pareja, F. Under Reporting of Dementia Deaths on Death Certificates: A Systematic Review of Population-based Cohort Studies. J. Alzheimer’s Dis. 2014, 41, 213–221. [Google Scholar] [CrossRef] [PubMed]
- Foley, N.C.; Affoo, R.H.; Martin, R.E. A Systematic Review and Meta-Analysis Examining Pneumonia-Associated Mortality in Dementia. Dement. Geriatr. Cogn. Disord. 2014, 39, 52–67. [Google Scholar] [CrossRef]
- Manabe, T.; Fujikura, Y.; Mizukami, K.; Akatsu, H.; Kudo, K. Pneumonia-associated death in patients with dementia: A systematic review and meta-analysis. PLoS ONE 2019, 14, e0213825. [Google Scholar] [CrossRef]
- Chouinard, J. Dysphagia in Alzheimer disease: A review. J. Nutr. Health Aging 2000, 4, 214–217. [Google Scholar]
- Kalia, M. Dysphagia and aspiration pneumonia in patients with Alzheimer’s disease. Metabolism 2003, 52, 36–38. [Google Scholar] [CrossRef] [PubMed]
- Kai, K.; Hashimoto, M.; Amano, K.; Tanaka, H.; Fukuhara, R.; Ikeda, M. Relationship between Eating Disturbance and Dementia Severity in Patients with Alzheimer’s Disease. PLoS ONE 2015, 10, e0133666. [Google Scholar] [CrossRef] [PubMed]
- Li, C.-H.; Hsieh, S.-W.; Huang, P.; Liu, H.-Y.; Chen, C.-H.; Hung, C.-H. Pharmacological Management of Dysphagia in Patients with Alzheimer’s Disease: A Narrative Review. Curr. Alzheimer Res. 2022, 19, 743–753. [Google Scholar] [CrossRef]
- Billinger, S.A.; Vidoni, E.D.; Honea, R.A.; Burns, J.M. Cardiorespiratory Response to Exercise Testing in Individuals With Alzheimer’s Disease. Arch. Phys. Med. Rehabil. 2011, 92, 2000–2005. [Google Scholar] [CrossRef] [PubMed]
- Sanches, V.S.; Santos, F.M.; Fernandes, J.M.; Santos, M.L.; Müller, P.T.; Christofoletti, G. Neurodegenerative Disorders Increase Decline in Respiratory Muscle Strength in Older Adults. Respir. Care 2014, 59, 1838–1845. [Google Scholar] [CrossRef]
- Sachdev, P.; Anstey, K.; Parslow, R.; Wen, W.; Maller, J.; Kumar, R.; Christensen, H.; Jorm, A. Pulmonary Function, Cognitive Impairment and Brain Atrophy in a Middle-Aged Community Sample. Dement. Geriatr. Cogn. Disord. 2006, 21, 300–308. [Google Scholar] [CrossRef] [PubMed]
- Frenzel, S.; Bis, J.C.; Gudmundsson, E.F.; O’donnell, A.; Simino, J.; Yaqub, A.; Bartz, T.M.; Brusselle, G.G.O.; Bülow, R.; DeCarli, C.S.; et al. Associations of Pulmonary Function with MRI Brain Volumes: A Coordinated Multi-Study Analysis. J. Alzheimer’s Dis. 2022, 90, 1073–1083. [Google Scholar] [CrossRef] [PubMed]
- Russ, T.C.; Kivimäki, M.; Batty, G.D. Respiratory Disease and Lower Pulmonary Function as Risk Factors for Dementia. Chest 2020, 157, 1538–1558. [Google Scholar] [CrossRef] [PubMed]
- Xiao, T.; Wijnant, S.R.; Licher, S.; Terzikhan, N.; Lahousse, L.; Ikram, M.K.; Brusselle, G.G. Lung Function Impairment and the Risk of Incident Dementia: The Rotterdam Study. J. Alzheimer’s Dis. 2021, 82, 621–630. [Google Scholar] [CrossRef] [PubMed]
- Hassel, E.; Stensvold, D.; Halvorsen, T.; Wisløff, U.; Langhammer, A.; Steinshamn, S. Association between pulmonary function and peak oxygen uptake in elderly: The Generation 100 study. Respir. Res. 2015, 16, 156. [Google Scholar] [CrossRef]
- Yaffe, K.; Laffan, A.M.; Harrison, S.L.; Redline, S.; Spira, A.P.; Ensrud, K.E.; Ancoli-Israel, S.; Stone, K.L. Sleep-Disordered Breathing, Hypoxia, and Risk of Mild Cognitive Impairment and Dementia in Older Women. JAMA 2011, 306, 613–619. [Google Scholar] [CrossRef]
- Zhang, F.; Niu, L.; Li, S.; Le, W. Pathological Impacts of Chronic Hypoxia on Alzheimer’s Disease. ACS Chem. Neurosci. 2018, 10, 902–909. [Google Scholar] [CrossRef]
- Kaushal, A.; Wani, W.Y.; Bal, A.; Gill, K.D.; Kaur, J. Okadaic Acid and Hypoxia Induced Dementia Model of Alzheimer’s Type in Rats. Neurotox. Res. 2019, 35, 621–634. [Google Scholar] [CrossRef]
- Gaig, C.; Iranzo, A. Sleep-Disordered Breathing in Neurodegenerative Diseases. Curr. Neurol. Neurosci. Rep. 2012, 12, 205–217. [Google Scholar] [CrossRef]
- Mitchell, S.L.; Kiely, D.K.; Hamel, M.B. Dying With Advanced Dementia in the Nursing Home. Arch. Intern. Med. 2004, 164, 321–326. [Google Scholar] [CrossRef]
- Parvizi, J.; Van Hoesen, G.W.; Damasio, A. The selective vulnerability of brainstem nuclei to Alzheimer’s disease. Ann. Neurol. 2001, 49, 53–66. [Google Scholar] [CrossRef] [PubMed]
- Ehrenberg, A.J.; Nguy, A.K.; Theofilas, P.; Dunlop, S.; Suemoto, C.K.; Alho, A.T.D.L.; Leite, R.P.; Rodriguez, R.D.; Mejia, M.B.; Rüb, U.; et al. Quantifying the accretion of hyperphosphorylated tau in the locus coeruleus and dorsal raphe nucleus: The pathological building blocks of early Alzheimer’s disease. Neuropathol. Appl. Neurobiol. 2017, 43, 393–408. [Google Scholar] [CrossRef] [PubMed]
- Engelhardt, E.; Laks, J. Alzheimer disease neuropathology:understanding autonomic dysfunction. Dement. Neuropsychol. 2008, 2, 183–191. [Google Scholar] [CrossRef] [PubMed]
- Tulbă, D.; Cozma, L.; Popescu, B.O.; Davidescu, E.I. Dysautonomia in Alzheimer’s Disease. Medicina 2020, 56, 337. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.H.; Ryan, J.; Andreescu, C.; Aizenstein, H.; Lim, H.K. Brainstem morphological changes in Alzheimer’s disease. NeuroReport 2015, 26, 411–415. [Google Scholar] [CrossRef] [PubMed]
- Sforza, E.; Roche, F. Chronic intermittent hypoxia and obstructive sleep apnea: An experimental and clinical approach. Hypoxia 2016, 4, 99–108. [Google Scholar] [CrossRef]
- Snyder, B.; Shell, B.; Cunningham, J.T.; Cunningham, R.L. Chronic intermittent hypoxia induces oxidative stress and inflammation in brain regions associated with early-stage neurodegeneration. Physiol. Rep. 2017, 5, e13258. [Google Scholar] [CrossRef]
- Merelli, A.; Repetto, M.; Lazarowski, A.; Auzmendi, J. Hypoxia, Oxidative Stress, and Inflammation: Three Faces of Neurodegenerative Diseases. J. Alzheimer’s Dis. 2021, 82, S109–S126. [Google Scholar] [CrossRef] [PubMed]
- Dempsey, J.A.; Veasey, S.C.; Morgan, B.J.; O’Donnell, C.P. Pathophysiology of Sleep Apnea. Physiol. Rev. 2010, 90, 47–112. [Google Scholar] [CrossRef] [PubMed]
- Peppard, P.E.; Young, T.; Barnet, J.H.; Palta, M.; Hagen, E.W.; Hla, K.M. Increased Prevalence of Sleep-Disordered Breathing in Adults. Am. J. Epidemiol. 2013, 177, 1006–1014. [Google Scholar] [CrossRef]
- Dempsey, J.A.; Xie, A.; Patz, D.S.; Wang, D. Physiology in Medicine: Obstructive sleep apnea pathogenesis and treatment—Considerations beyond airway anatomy. J. Appl. Physiol. 2014, 116, 3–12. [Google Scholar] [CrossRef]
- Shepard, J.W. Hypertension, cardiac arrhythmias, myocardial infarction, and stroke in relation to obstructive sleep apnea. Clin. Chest Med. 1992, 13, 437–458. [Google Scholar] [CrossRef]
- Krysta, K.; Bratek, A.; Zawada, K.; Stepańczak, R. Cognitive Deficits in Adults with Obstructive Sleep Apnea Compared to Children and Adolescents. J. Neural Transm. 2017, 124, 187–201. [Google Scholar] [CrossRef] [PubMed]
- Patil, S.P.; Ayappa, I.A.; Caples, S.M.; Kimoff, R.J.; Patel, S.R.; Harrod, C.G. Treatment of Adult Obstructive Sleep Apnea with Positive Airway Pressure: An American Academy of Sleep Medicine Clinical Practice Guideline. Sleep Med. 2019, 15, 335–343. [Google Scholar] [CrossRef]
- Seda, G.; Han, T.S. Effect of Obstructive Sleep Apnea on Neurocognitive Performance. Sleep Med. Clin. 2019, 15, 77–85. [Google Scholar] [CrossRef] [PubMed]
- Lal, C.; Ayappa, I.; Ayas, N.; Beaudin, A.E.; Hoyos, C.; Kushida, C.A.; Kaminska, M.; Mullins, A.; Naismith, S.L.; Osorio, R.S.; et al. The Link between Obstructive Sleep Apnea and Neurocognitive Impairment: An Official American Thoracic Society Workshop Report. Ann. Am. Thorac. Soc. 2022, 19, 1245–1256. [Google Scholar] [CrossRef]
- Senaratna, C.V.; Perret, J.L.; Lodge, C.J.; Lowe, A.J.; Campbell, B.E.; Matheson, M.C.; Hamilton, G.S.; Dharmage, S.C. Prevalence of obstructive sleep apnea in the general population: A systematic review. Sleep Med. Rev. 2017, 34, 70–81. [Google Scholar] [CrossRef]
- Garvey, J.F.; Pengo, M.F.; Drakatos, P.; Kent, B.D. Epidemiological aspects of obstructive sleep apnea. J. Thorac. Dis. 2015, 7, 920–929. [Google Scholar] [CrossRef] [PubMed]
- Franklin, K.A.; Lindberg, E. Obstructive sleep apnea is a common disorder in the population—A review on the epidemiology of sleep apnea. J. Thorac. Dis. 2015, 7, 1311–1322. [Google Scholar] [CrossRef] [PubMed]
- Heinzer, R.; Vat, S.; Marques-Vidal, P.; Marti-Soler, H.; Andries, D.; Tobback, N.; Mooser, V.; Preisig, M.; Malhotra, A.; Waeber, G.; et al. Prevalence of sleep-disordered breathing in the general population: The HypnoLaus study. Lancet Respir. Med. 2015, 3, 310–318. [Google Scholar] [CrossRef] [PubMed]
- Hongyo, K.; Ito, N.; Yamamoto, K.; Yasunobe, Y.; Takeda, M.; Oguro, R.; Takami, Y.; Takeya, Y.; Sugimoto, K.; Rakugi, H. Factors associated with the severity of obstructive sleep apnea in older adults. Geriatr. Gerontol. Int. 2016, 17, 614–621. [Google Scholar] [CrossRef] [PubMed]
- Marde, V.S.; Atkare, U.A.; Gawali, S.V.; Tiwari, P.L.; Badole, S.P.; Wankhede, N.L.; Taksande, B.G.; Upaganlawar, A.B.; Umekar, M.J.; Kale, M.B. Alzheimer’s disease and sleep disorders: Insights into the possible disease connections and the potential therapeutic targets. Asian J. Psychiatry 2021, 68, 102961. [Google Scholar] [CrossRef] [PubMed]
- Hirano, A.; Zimmerman, H.M. Alzheimer’s Neurofibrillary Changes. Arch. Neurol. 1962, 7, 227–242. [Google Scholar] [CrossRef] [PubMed]
- Lloret, M.-A.; Cervera-Ferri, A.; Nepomuceno, M.; Monllor, P.; Esteve, D.; Lloret, A. Is Sleep Disruption a Cause or Consequence of Alzheimer’s Disease? Reviewing Its Possible Role as a Biomarker. Int. J. Mol. Sci. 2020, 21, 1168. [Google Scholar] [CrossRef] [PubMed]
- Reynolds, C.F.; Kupfer, D.J.; Taska, L.S.; Hoch, C.C.; E Sewitch, D.; Restifo, K.; Spiker, D.G.; Zimmer, B.; Marin, R.S.; Nelson, J. Sleep apnea in Alzheimer’s dementia: Correlation with mental deterioration. J. Clin. Psychiatry 1985, 46, 257–261. [Google Scholar]
- Erkinjuntti, T.; Partinen, M.; Sulkava, R.; Telakivi, T.; Salmi, T.; Tilvis, R. Sleep Apnea in Multiinfarct Dementia and Alzheimer’s Disease. Sleep 1987, 10, 419–425. [Google Scholar] [CrossRef]
- Eemamian, F.; Ekhazaie, H.; Tahmasian, M.; Leschziner, G.D.; Morrell, M.J.; Hsiung, G.-Y.R.; Erosenzweig, I.; Sepehry, A. The Association Between Obstructive Sleep Apnea and Alzheimer’s Disease: A Meta-Analysis Perspective. Front. Aging Neurosci. 2016, 8, 78. [Google Scholar] [CrossRef]
- Andrade, A.G.; Bubu, O.M.; Varga, A.W.; Osorio, R.S. The Relationship between Obstructive Sleep Apnea and Alzheimer’s Disease. J. Alzheimer’s Dis. 2018, 64, S255–S270. [Google Scholar] [CrossRef]
- Gosselin, N.; Baril, A.-A.; Osorio, R.S.; Kaminska, M.; Carrier, J. Obstructive Sleep Apnea and the Risk of Cognitive Decline in Older Adults. Am. J. Respir. Crit. Care Med. 2019, 199, 142–148. [Google Scholar] [CrossRef]
- Bubu, O.M.; Andrade, A.G.; Umasabor-Bubu, O.Q.; Hogan, M.M.; Turner, A.D.; de Leon, M.J.; Ogedegbe, G.; Ayappa, I.; Jackson, M.L.; Varga, A.W.; et al. Obstructive sleep apnea, cognition and Alzheimer’s disease: A systematic review integrating three decades of multidisciplinary research. Sleep Med. Rev. 2019, 50, 101250. [Google Scholar] [CrossRef]
- Leng, Y.; McEvoy, C.T.; Allen, I.E.; Yaffe, K. Association of Sleep-Disordered Breathing With Cognitive Function and Risk of Cognitive Impairment. JAMA Neurol. 2017, 74, 1237–1245. [Google Scholar] [CrossRef]
- Zhu, X.; Zhao, Y. Sleep-disordered breathing and the risk of cognitive decline: A meta-analysis of 19,940 participants. Sleep Breath. 2017, 22, 165–173. [Google Scholar] [CrossRef] [PubMed]
- Osorio, R.S.; Gumb, T.; Pirraglia, E.; Varga, A.W.; Lu, S.-E.; Lim, J.; Wohlleber, M.E.; Ducca, E.L.; Koushyk, V.; Glodzik, L.; et al. Sleep-disordered breathing advances cognitive decline in the elderly. Neurology 2015, 84, 1964–1971. [Google Scholar] [CrossRef] [PubMed]
- Benedict, C.; Byberg, L.; Cedernaes, J.; Hogenkamp, P.S.; Giedratis, V.; Kilander, L.; Lind, L.; Lannfelt, L.; Schiöth, H.B. Self-reported sleep disturbance is associated with Alzheimer’s disease risk in men. Alzheimer’s Dement. 2014, 11, 1090–1097. [Google Scholar] [CrossRef]
- Lee, J.E.; Yang, S.W.; Ju, Y.J.; Ki, S.K.; Chun, K.H. Sleep-disordered breathing and Alzheimer’s disease: A nationwide cohort study. Psychiatry Res. 2019, 273, 624–630. [Google Scholar] [CrossRef] [PubMed]
- André, C.; Rehel, S.; Kuhn, E.; Landeau, B.; Moulinet, I.; Touron, E.; Ourry, V.; Le Du, G.; Mézenge, F.; Tomadesso, C.; et al. Association of Sleep-Disordered Breathing With Alzheimer Disease Biomarkers in Community-Dwelling Older Adults. JAMA Neurol. 2020, 77, 716–724. [Google Scholar] [CrossRef] [PubMed]
- Cooke, J.R.; Ayalon, L.; Palmer, B.W.; Loredo, J.S.; Corey-Bloom, J.; Natarajan, L.; Liu, L.; Ancoli-Israel, S. Sustained Use of CPAP Slows Deterioration of Cognition, Sleep, and Mood in Patients with Alzheimer’s Disease and Obstructive Sleep Apnea: A Preliminary Study. Sleep Med. 2009, 5, 305–309. [Google Scholar] [CrossRef]
- Richards, K.C.; Gooneratne, N.; Dicicco, B.; Hanlon, A.; Moelter, S.; Onen, F.; Wang, Y.; Sawyer, A.; Weaver, T.; Lozano, A.; et al. CPAP Adherence May Slow 1-Year Cognitive Decline in Older Adults with Mild Cognitive Impairment and Apnea. J. Am. Geriatr. Soc. 2019, 67, 558–564. [Google Scholar] [CrossRef]
- Wang, Y.; Cheng, C.; Moelter, S.; Fuentecilla, J.L.; Kincheloe, K.; Lozano, A.J.; Carter, P.; Gooneratne, N.; Richards, K.C. One Year of Continuous Positive Airway Pressure Adherence Improves Cognition in Older Adults With Mild Apnea and Mild Cognitive Impairment. Nurs. Res. 2020, 69, 157–164. [Google Scholar] [CrossRef]
- Liguori, C.; Cremascoli, R.; Maestri, M.; Fernandes, M.; Izzi, F.; Tognoni, G.; Scarpina, F.; Siciliano, G.; Mercuri, N.B.; Priano, L.; et al. Obstructive Sleep Apnea Syndrome and Alzheimer’s Disease Pathology: May Continuous Positive Airway Pressure Treatment Delay Cognitive Deterioration? Sleep Breath. 2021, 25, 2135–2139. [Google Scholar] [CrossRef]
- Jiang, X.; Wang, Z.; Hu, N.; Yang, Y.; Xiong, R.; Fu, Z. Cognition effectiveness of continuous positive airway pressure treatment in obstructive sleep apnea syndrome patients with cognitive impairment: A meta-analysis. Exp. Brain Res. 2021, 239, 3537–3552. [Google Scholar] [CrossRef]
- Shieu, M.M.; Zaheed, A.B.; Shannon, C.; Chervin, R.D.; Conceicao, A.; Paulson, H.L.; Braley, T.J.; Dunietz, G.L. Positive Airway Pressure and Cognitive Disorders in Adults With Obstructive Sleep Apnea. Neurology 2022, 99, e334–e346. [Google Scholar] [CrossRef]
- Dunietz, G.L.; Chervin, R.D.; Burke, J.F.; Conceicao, A.S.; Braley, T.J. Obstructive sleep apnea treatment and dementia risk in older adults. Sleep 2021, 44, zsab076. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, M.; Placidi, F.; Mercuri, N.B.; Liguori, C. The Importance of Diagnosing and the Clinical Potential of Treating Obstructive Sleep Apnea to Delay Mild Cognitive Impairment and Alzheimer’s Disease: A Special Focus on Cognitive Performance. J. Alzheimer’s Dis. Rep. 2021, 5, 515–533. [Google Scholar] [CrossRef] [PubMed]
- DeVettori, G.; Troxel, W.M.; Duff, K.; Baron, K.G. Positive airway pressure adherence among patients with obstructive sleep apnea and cognitive impairment: A narrative review. Sleep Med. 2023, 111, 28–35. [Google Scholar] [CrossRef] [PubMed]
- Lajoie, A.C.; Gu, Y.; Lim, A.; Benedetti, A.; Kaminska, M. Adherence to continuous positive airway pressure for the treatment of obstructive sleep apnea in neurodegenerative diseases: A systematic review. Sleep Med. Rev. 2023, 71, 101836. [Google Scholar] [CrossRef] [PubMed]
- Polsek, D.; Gildeh, N.; Cash, D.; Winsky-Sommerer, R.; Williams, S.; Turkheimer, F.; Leschziner, G.; Morrell, M.; Rosenzweig, I. Obstructive sleep apnoea and Alzheimer’s disease: In search of shared pathomechanisms. Neurosci. Biobehav. Rev. 2017, 86, 142–149. [Google Scholar] [CrossRef] [PubMed]
- D’Rozario, A.L.; Field, C.J.; Hoyos, C.M.; Naismith, S.L.; Dungan, G.C.; Wong, K.K.H.; Grunstein, R.R.; Bartlett, D.J. Impaired Neurobehavioural Performance in Untreated Obstructive Sleep Apnea Patients Using a Novel Standardised Test Battery. Front. Surg. 2018, 5, 35. [Google Scholar] [CrossRef] [PubMed]
- Beaudin, A.E.; Raneri, J.K.; Ayas, N.T.; Skomro, R.P.; Fox, N.; Allen, A.J.M.H.; Bowen, M.W.; Nocon, A.; Lynch, E.J.; Wang, M.; et al. Cognitive Function in a Sleep Clinic Cohort of Patients with Obstructive Sleep Apnea. Ann. Am. Thorac. Soc. 2021, 18, 865–875. [Google Scholar] [CrossRef] [PubMed]
- Weihs, A.; Frenzel, S.; Grabe, H.J. The Link Between Obstructive Sleep Apnoea and Neurodegeneration and Cognition. Curr. Sleep Med. Rep. 2021, 7, 87–96. [Google Scholar] [CrossRef]
- Gao, F.; Wei, S.; Dang, L.; Gao, Y.; Gao, L.; Shang, S.; Chen, C.; Huo, K.; Wang, J.; Wang, J.; et al. Sleep disturbance is associated with mild cognitive impairment: A community population-based cross-sectional study. BMC Public Health 2022, 22, 2000. [Google Scholar] [CrossRef] [PubMed]
- Chien, W.-C.; Lin, C.-W.; Liu, C.-K.; Chen, S.-L.; Chou, M.-C.; Hsu, C.-Y. The Associations between Polysomnographic Parameters and Memory Impairment among Patients with Obstructive Sleep Apnea: A 10-Year Hospital-Based Longitudinal Study. Biomedicines 2023, 11, 621. [Google Scholar] [CrossRef] [PubMed]
- Hanslik, K.L.; Ulland, T.K. The Role of Microglia and the Nlrp3 Inflammasome in Alzheimer’s Disease. Front. Neurol. 2020, 11, 570711. [Google Scholar] [CrossRef]
- Kheirandish-Gozal, L.; Gozal, D. Obstructive Sleep Apnea and Inflammation: Proof of Concept Based on Two Illustrative Cytokines. Int. J. Mol. Sci. 2019, 20, 459. [Google Scholar] [CrossRef]
- Liu, X.; Ma, Y.; Ouyang, R.; Zeng, Z.; Zhan, Z.; Lu, H.; Cui, Y.; Dai, Z.; Luo, L.; He, C.; et al. The relationship between inflammation and neurocognitive dysfunction in obstructive sleep apnea syndrome. J. Neuroinflammation 2020, 17, 229. [Google Scholar] [CrossRef]
- Gomez-Nicola, D.; Boche, D. Post-mortem analysis of neuroinflammatory changes in human Alzheimer’s disease. Alzheimer’s Res. Ther. 2015, 7, 42. [Google Scholar] [CrossRef]
- Hamelin, L.; Lagarde, J.; Dorothée, G.; Leroy, C.; Labit, M.; Comley, R.A.; de Souza, L.C.; Corne, H.; Dauphinot, L.; Bertoux, M.; et al. Early and protective microglial activation in Alzheimer’s disease: A prospective study using18F-DPA-714 PET imaging. Brain 2016, 139, 1252–1264. [Google Scholar] [CrossRef]
- Knezevic, D.; Mizrahi, R. Molecular imaging of neuroinflammation in Alzheimer’s disease and mild cognitive impairment. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2018, 80, 123–131. [Google Scholar] [CrossRef] [PubMed]
- Bradburn, S.; Murgatroyd, C.; Ray, N. Neuroinflammation in mild cognitive impairment and Alzheimer’s disease: A meta-analysis. Ageing Res. Rev. 2019, 50, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Kinney, J.W.; Bemiller, S.M.; Murtishaw, A.S.; Leisgang, A.M.; Salazar, A.M.; Lamb, B.T. Inflammation as a central mechanism in Alzheimer’s disease. Alzheimer’s Dement. Transl. Res. Clin. Interv. 2018, 4, 575–590. [Google Scholar] [CrossRef]
- Novoa, C.; Salazar, P.; Cisternas, P.; Gherardelli, C.; Vera-Salazar, R.; Zolezzi, J.M.; Inestrosa, N.C. Inflammation context in Alzheimer’s disease, a relationship intricate to define. Biol. Res. 2022, 55, 39. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.; Yang, C.; Wang, X.; Chen, X.; Wang, Y.; Le, W. Oxygen metabolism abnormality and Alzheimer’s disease: An update. Redox Biol. 2023, 68, 102955. [Google Scholar] [CrossRef] [PubMed]
- Zabel, M.; Nackenoff, A.; Kirsch, W.M.; Harrison, F.E.; Perry, G.; Schrag, M. Markers of oxidative damage to lipids, nucleic acids and proteins and antioxidant enzymes activities in Alzheimer’s disease brain: A meta-analysis in human pathological specimens. Free Radic. Biol. Med. 2017, 115, 351–360. [Google Scholar] [CrossRef] [PubMed]
- Cassidy, L.; Fernandez, F.; Johnson, J.B.; Naiker, M.; Owoola, A.G.; Broszczak, D.A. Oxidative stress in alzheimer’s disease: A review on emergent natural polyphenolic therapeutics. Complement. Ther. Med. 2019, 49, 102294. [Google Scholar] [CrossRef] [PubMed]
- Kowalczyk, P.; Sulejczak, D.; Kleczkowska, P.; Bukowska-Ośko, I.; Kucia, M.; Popiel, M.; Wietrak, E.; Kramkowski, K.; Wrzosek, K.; Kaczyńska, K. Mitochondrial Oxidative Stress—A Causative Factor and Therapeutic Target in Many Diseases. Int. J. Mol. Sci. 2021, 22, 13384. [Google Scholar] [CrossRef]
- Song, T.; Song, X.; Zhu, C.; Patrick, R.; Skurla, M.; Santangelo, I.; Green, M.; Harper, D.; Ren, B.; Forester, B.P.; et al. Mitochondrial dysfunction, oxidative stress, neuroinflammation, and metabolic alterations in the progression of Alzheimer’s disease: A meta-analysis of in vivo magnetic resonance spectroscopy studies. Ageing Res. Rev. 2021, 72, 101503. [Google Scholar] [CrossRef]
- Huang, W.J.; Zhang, X.; Chen, W.W. Role of oxidative stress in Alzheimer’s disease. Biomed. Rep. 2016, 4, 519–522. [Google Scholar] [CrossRef]
- Owen, J.E.; Benediktsdottir, B.; Cook, E.; Olafsson, I.; Gislason, T.; Robinson, S.R. Alzheimer’s Disease Neuropathology in the Hippocampus and Brainstem of People with Obstructive Sleep Apnea. Sleep 2021, 44, zsaa195. [Google Scholar] [CrossRef]
- Zhang, C.-E.; Yang, X.; Li, L.; Sui, X.; Tian, Q.; Wei, W.; Wang, J.; Liu, G. Hypoxia-Induced Tau Phosphorylation and Memory Deficit in Rats. Neurodegener. Dis. 2014, 14, 107–116. [Google Scholar] [CrossRef]
- Yagishita, S.; Suzuki, S.; Yoshikawa, K.; Iida, K.; Hirata, A.; Suzuki, M.; Takashima, A.; Maruyama, K.; Hirasawa, A.; Awaji, T. Treatment of intermittent hypoxia increases phosphorylated tau in the hippocampus via biological processes common to aging. Mol. Brain 2017, 10, 2. [Google Scholar] [CrossRef]
- Kazim, S.F.; Sharma, A.; Saroja, S.R.; Seo, J.H.; Larson, C.S.; Ramakrishnan, A.; Wang, M.; Blitzer, R.D.; Shen, L.; Peña, C.J.; et al. Chronic Intermittent Hypoxia Enhances Pathological Tau Seeding, Propagation, and Accumulation and Exacerbates Alzheimer-like Memory and Synaptic Plasticity Deficits and Molecular Signatures. Biol. Psychiatry 2021, 91, 346–358. [Google Scholar] [CrossRef]
- Lei, L.; Feng, J.; Wu, G.; Wei, Z.; Wang, J.Z.; Zhang, B.; Liu, R.; Liu, F.; Wang, X.; Li, H.L. HIF-1α Causes LCMT1/PP2A Deficiency and Mediates Tau Hyperphosphorylation and Cognitive Dysfunction during Chronic Hypoxia. Int. J. Mol. Sci. 2022, 23, 16140. [Google Scholar] [CrossRef]
- Gozal, D.; Row, B.W.; Kheirandish, L.; Liu, R.; Guo, S.Z.; Qiang, F.; Brittian, K.R. Increased susceptibility to intermittent hypoxia in aging rats: Changes in proteasomal activity, neuronal apoptosis and spatial function. J. Neurochem. 2003, 86, 1545–1552. [Google Scholar] [CrossRef]
- Xu, W.; Chi, L.; Row, B.W.; Xu, R.; Ke, Y.; Xu, B.; Luo, C.; Kheirandish, L.; Gozal, D.; Liu, R. Increased oxidative stress is associated with chronic intermittent hypoxia-mediated brain cortical neuronal cell apoptosis in a mouse model of sleep apnea. Neuroscience 2004, 126, 313–323. [Google Scholar] [CrossRef]
- Reitz, C.; Mayeux, R. Alzheimer disease: Epidemiology, diagnostic criteria, risk factors and biomarkers. Biochem. Pharmacol. 2014, 88, 640–651. [Google Scholar] [CrossRef] [PubMed]
- Planche, V.; Manjon, J.V.; Mansencal, B.; Lanuza, E.; Tourdias, T.; Catheline, G.; Coupé, P. Structural progression of Alzheimer’s disease over decades: The MRI staging scheme. Brain Commun. 2022, 4, fcac109. [Google Scholar] [CrossRef] [PubMed]
- Morrell, M.J.; Jackson, M.L.; Twigg, G.L.; Ghiassi, R.; McRobbie, D.W.; Quest, R.A.; Pardoe, H.; Pell, G.S.; Abbott, D.F.; Rochford, P.D.; et al. Changes in brain morphology in patients with obstructive sleep apnoea. Thorax 2010, 65, 908–914. [Google Scholar] [CrossRef] [PubMed]
- Canessa, N.; Castronovo, V.; Cappa, S.F.; Aloia, M.S.; Marelli, S.; Falini, A.; Alemanno, F.; Ferini-Strambi, L. Obstructive Sleep Apnea: Brain Structural Changes and Neurocognitive Function before and after Treatment. Am. J. Respir. Crit. Care Med. 2011, 183, 1419–1426. [Google Scholar] [CrossRef] [PubMed]
- Joo, E.Y.; Jeon, S.; Kim, S.T.; Lee, J.-M.; Hong, S.B. Localized Cortical Thinning in Patients with Obstructive Sleep Apnea Syndrome. Sleep 2013, 36, 1153–1162. [Google Scholar] [CrossRef] [PubMed]
- Kim, R.E.Y.; Abbott, R.D.; Kim, S.; Thomas, R.J.; Yun, C.-H.; Kim, H.; Johnson, H.; Shin, C. Sleep Duration, Sleep Apnea, and Gray Matter Volume. J. Geriatr. Psychiatry Neurol. 2021, 35, 47–56. [Google Scholar] [CrossRef] [PubMed]
- Owen, J.E.; Benediktsdóttir, B.; Gislason, T.; Robinson, S.R. Neuropathological investigation of cell layer thickness and myelination in the hippocampus of people with obstructive sleep apnea. Sleep 2019, 42, zsy199. [Google Scholar] [CrossRef] [PubMed]
- Chokesuwattanaskul, A.; Chirakalwasan, N.; Jaimchariyatam, N.; Pitakvej, N.; Sarutikriangkri, Y.; Chunharas, C.; Phanthumchinda, K.; Likitjaroen, Y. Associations between hypoxia parameters in obstructive sleep apnea and cognition, cortical thickness, and white matter integrity in middle-aged and older adults. Sleep Breath. 2020, 25, 1559–1570. [Google Scholar] [CrossRef]
- Díaz-Román, M.; Pulopulos, M.M.; Baquero, M.; Salvador, A.; Cuevas, A.; Ferrer, I.; Ciopat, O.; Gómez, E. Obstructive sleep apnea and Alzheimer’s disease-related cerebrospinal fluid biomarkers in mild cognitive impairment. Sleep 2020, 44, zsaa133. [Google Scholar] [CrossRef]
- Przybylska-Kuć, S.; Zakrzewski, M.; Dybała, A.; Kiciński, P.; Dzida, G.; Myśliński, W.; Prystupa, A.; Mosiewicz-Madejska, B.; Mosiewicz, J. Obstructive sleep apnea may increase the risk of Alzheimer’s disease. PLoS ONE 2019, 14, e0221255. [Google Scholar] [CrossRef]
- Kong, W.; Zheng, Y.; Xu, W.; Gu, H.; Wu, J. Biomarkers of Alzheimer’s disease in severe obstructive sleep apnea–hypopnea syndrome in the Chinese population. Eur. Arch. Oto-Rhino-Laryngol. 2020, 278, 865–872. [Google Scholar] [CrossRef]
- Kang, J.; Tian, Z.; Wei, J.; Mu, Z.; Liang, J.; Li, M. Association between obstructive sleep apnea and Alzheimer’s disease-related blood and cerebrospinal fluid biomarkers: A meta-analysis. J. Clin. Neurosci. 2022, 102, 87–94. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.; Zeng, H.; Huang, Y.; Wang, T.; Huang, W.; Huang, Y.; Lin, L.; Li, H. The relationship between obstructive sleep apnea and circulating tau levels: A meta-analysis. Brain Behav. 2023, 13, e2972. [Google Scholar] [CrossRef] [PubMed]
- Ju, Y.-E.S.; Finn, M.B.; Sutphen, C.L.; Herries, E.M.; Jerome, G.M.; Ladenson, J.H.; Crimmins, D.L.; Fagan, A.M.; Holtzman, D.M. Obstructive sleep apnea decreases central nervous system-derived proteins in the cerebrospinal fluid. Ann. Neurol. 2016, 80, 154–159. [Google Scholar] [CrossRef] [PubMed]
- Harrison, I.F.; Ismail, O.; Machhada, A.; Colgan, N.; Ohene, Y.; Nahavandi, P.; Ahmed, Z.; Fisher, A.; Meftah, S.; Murray, T.K.; et al. Impaired glymphatic function and clearance of tau in an Alzheimer’s disease model. Brain 2020, 143, 2576–2593. [Google Scholar] [CrossRef] [PubMed]
- Silva, I.; Silva, J.; Ferreira, R.; Trigo, D. Glymphatic System, AQP4, and Their Implications in Alzheimer’s Disease. Neurol. Res. Pract. 2021, 3, 5. [Google Scholar] [CrossRef]
- Roy, B.; Nunez, A.; Aysola, R.S.; Kang, D.W.; Vacas, S.; Kumar, R. Impaired Glymphatic System Actions in Obstructive Sleep Apnea Adults. Front. Neurosci. 2022, 16, 884234. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Tian, Y.; Qin, C.; Meng, L.; Feng, R.; Xu, S.; Zhai, Y.; Liang, D.; Zhang, R.; Tian, H.; et al. Impaired glymphatic drainage underlying obstructive sleep apnea is associated with cognitive dysfunction. J. Neurol. 2023, 270, 2204–2216. [Google Scholar] [CrossRef] [PubMed]
- Dakterzada, F.; Benítez, I.D.; Targa, A.; Carnes, A.; Pujol, M.; Jové, M.; Mínguez, O.; Vaca, R.; Sánchez-De-La-Torre, M.; Barbé, F.; et al. Cerebrospinal fluid lipidomic fingerprint of obstructive sleep apnoea in Alzheimer’s disease. Alzheimer’s Res. Ther. 2023, 15, 134. [Google Scholar] [CrossRef] [PubMed]
- Chew, H.; Solomon, V.A.; Fonteh, A.N. Involvement of Lipids in Alzheimer’s Disease Pathology and Potential Therapies. Front. Physiol. 2020, 11, 598. [Google Scholar] [CrossRef]
- Gharbi-Meliani, A.; Dugravot, A.; Sabia, S.; Regy, M.; Fayosse, A.; Schnitzler, A.; Kivimäki, M.; Singh-Manoux, A.; Dumurgier, J. The association of APOE ε4 with cognitive function over the adult life course and incidence of dementia: 20 years follow-up of the Whitehall II study. Alzheimer’s Res. Ther. 2021, 13, 5. [Google Scholar] [CrossRef]
- Sienski, G.; Narayan, P.; Bonner, J.M.; Kory, N.; Boland, S.; Arczewska, A.A.; Ralvenius, W.T.; Akay, L.; Lockshin, E.; He, L.; et al. APOE4 Disrupts Intracellular Lipid Homeostasis in Human IPSC-Derived Glia. Sci. Transl. Med. 2021, 13, eaaz4564. [Google Scholar] [CrossRef]
- Raulin, A.-C.; Doss, S.V.; Trottier, Z.A.; Ikezu, T.C.; Bu, G.; Liu, C.-C. ApoE in Alzheimer’s disease: Pathophysiology and therapeutic strategies. Mol. Neurodegener. 2022, 17, 72. [Google Scholar] [CrossRef]
- Costa-Laparra, I.; Juárez-Escoto, E.; Vicario, C.; Moratalla, R.; García-Sanz, P. APOE Ε4 Allele, along with G206D-PSEN1 Mutation, Alters Mitochondrial Networks and Their Degradation in Alzheimer’s Disease. Front. Aging Neurosci. 2023, 15, 1087072. [Google Scholar] [CrossRef] [PubMed]
- Blackman, J.; Love, S.; Sinclair, L.; Cain, R.; Coulthard, E. APOE Ε4, Alzheimer’s Disease Neuropathology and Sleep Disturbance, in Individuals with and without Dementia. Alzheimer’s Res. Ther. 2022, 14, 47. [Google Scholar] [CrossRef] [PubMed]
- Wei, W.; Wang, K.; Shi, J.; Li, Z. The Relationship Between Sleep Disturbance and Apolipoprotein E ε4 in Adults With Mild Cognitive Impairment and Alzheimer’s Disease Dementia: An Integrative Review. Biol. Res. Nurs. 2022, 24, 327–337. [Google Scholar] [CrossRef] [PubMed]
- Gottlieb, D.J.; DeStefano, A.L.; Foley, D.J.; Mignot, E.; Redline, S.; Givelber, R.J.; Young, T. APOE ε4 is associated with obstructive sleep apnea/hypopnea. Neurology 2004, 63, 664–668. [Google Scholar] [CrossRef] [PubMed]
- Uyrum, E.; Balbay, O.; Annakkaya, A.N.; Balbay, E.G.; Silan, F.; Arbak, P. The Relationship between Obstructive Sleep Apnea Syndrome and Apolipoprotein E Genetic Variants. Respiration 2015, 89, 195–200. [Google Scholar] [CrossRef] [PubMed]
- Thakre, T.P.; Mamtani, M.R.; Kulkarni, H. Lack of Association of the APOE ε4 Allele with the Risk of Obstructive Sleep Apnea: Meta-Analysis and Meta-Regression. Sleep 2009, 32, 1507–1511. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Qian, Y.; Guan, J.; Yi, H.; Yin, S. No association between the ApoE ε2 and ε4 alleles and the risk of obstructive sleep apnea: A systematic review and meta-analysis. Biomed. Rep. 2015, 3, 313–318. [Google Scholar] [CrossRef]
- Research Models|ALZFORUM. Available online: https://www.alzforum.org/research-models (accessed on 8 February 2024).
- Drummond, E.; Wisniewski, T. Alzheimer’s disease: Experimental models and reality. Acta Neuropathol. 2016, 133, 155–175. [Google Scholar] [CrossRef]
- Götz, J.; Bodea, L.-G.; Goedert, M. Rodent models for Alzheimer disease. Nat. Rev. Neurosci. 2018, 19, 583–598. [Google Scholar] [CrossRef]
- Ebel, D.L.; Torkilsen, C.G.; Ostrowski, T.D. Blunted Respiratory Responses in the Streptozotocin-Induced Alzheimer’s Disease Rat Model. J. Alzheimer’s Dis. 2017, 56, 1197–1211. [Google Scholar] [CrossRef]
- Vicente, M.C.; Humphrey, C.M.; Gargaglioni, L.H.; Ostrowski, T.D. Decreased excitability of locus coeruleus neurons during hypercapnia is exaggerated in the streptozotocin-model of Alzheimer’s disease. Exp. Neurol. 2020, 328, 113250. [Google Scholar] [CrossRef] [PubMed]
- Brown, A.G.; Thapa, M.; Hooker, J.W.; Ostrowski, T.D. Impaired chemoreflex correlates with decreased c-Fos in respiratory brainstem centers of the streptozotocin-induced Alzheimer’s disease rat model. Exp. Neurol. 2018, 311, 285–292. [Google Scholar] [CrossRef] [PubMed]
- Humphrey, C.M.; Hooker, J.W.; Thapa, M.; Wilcox, M.J.; Ostrowski, D.; Ostrowski, T.D. Synaptic loss and gliosis in the nucleus tractus solitarii with streptozotocin-induced Alzheimer’s disease. Brain Res. 2023, 1801, 148202. [Google Scholar] [CrossRef] [PubMed]
- Kamat, P.K. Streptozotocin induced Alzheimer’s disease like changes and the underlying neural degeneration and regeneration mechanism. Neural Regen. Res. 2015, 10, 1050–1052. [Google Scholar] [CrossRef]
- Grieb, P. Intracerebroventricular Streptozotocin Injections as a Model of Alzheimer’s Disease: In Search of a Relevant Mechanism. Mol. Neurobiol. 2015, 53, 1741–1752. [Google Scholar] [CrossRef]
- Salkovic-Petrisic, M.; Hoyer, S. Central Insulin Resistance as a Trigger for Sporadic Alzheimer-like Pathology: An Experimental Approach. J. Neural. Transm. Suppl. 2007, 217–233. [Google Scholar] [CrossRef]
- Rai, S.; Kamat, P.K.; Nath, C.; Shukla, R. Glial activation and post-synaptic neurotoxicity: The key events in Streptozotocin (ICV) induced memory impairment in rats. Pharmacol. Biochem. Behav. 2014, 117, 104–117. [Google Scholar] [CrossRef]
- Ravelli, K.G.; Rosário, B.d.A.; Camarini, R.; Hernandes, M.S.; Britto, L.R. Intracerebroventricular Streptozotocin as a Model of Alzheimer’s Disease: Neurochemical and Behavioral Characterization in Mice. Neurotox. Res. 2016, 31, 327–333. [Google Scholar] [CrossRef]
- Kraska, A.; Santin, M.D.; Dorieux, O.; Joseph-Mathurin, N.; Bourrin, E.; Petit, F.; Jan, C.; Chaigneau, M.; Hantraye, P.; Lestage, P.; et al. In Vivo Cross-sectional Characterization of Cerebral Alterations Induced by Intracerebroventricular Administration of Streptozotocin. PLoS ONE 2012, 7, e46196. [Google Scholar] [CrossRef] [PubMed]
- Vicente, M.C.; Almeida, M.C.; Bícego, K.C.; Carrettiero, D.C.; Gargaglioni, L.H. Hypercapnic and Hypoxic Respiratory Response During Wakefulness and Sleep in a Streptozotocin Model of Alzheimer’s Disease in Rats. J. Alzheimer’s Dis. 2018, 65, 1159–1174. [Google Scholar] [CrossRef] [PubMed]
- Vicente, M.C.; Paneghini, J.L.; Stabile, A.M.; Amorim, M.; Silva, C.E.A.; Patrone, L.G.A.; Cunha, T.M.; Bícego, K.C.; Almeida, M.C.; Carrettiero, D.C.; et al. Inhibition of Pro-Inflammatory Microglia with Minocycline Improves Cognitive and Sleep-Wake Dysfunction Under Respiratory Stress in a Sporadic Model for Alzheimer’s Disease. J. Alzheimer’s Dis. 2023, 95, 317–337. [Google Scholar] [CrossRef]
- Biancardi, V.; Bícego, K.C.; Almeida, M.C.; Gargaglioni, L.H. Locus coeruleus noradrenergic neurons and CO2 drive to breathing. Pflügers Arch. Eur. J. Physiol. 2007, 455, 1119–1128. [Google Scholar] [CrossRef]
- Benarroch, E.E. The locus ceruleus norepinephrine system. Neurology 2009, 73, 1699–1704. [Google Scholar] [CrossRef]
- Magalhães, K.S.; Spiller, P.F.; da Silva, M.P.; Kuntze, L.B.; Paton, J.F.R.; Machado, B.H.; Moraes, D.J.A. Locus Coeruleus as a vigilance centre for active inspiration and expiration in rats. Sci. Rep. 2018, 8, 15654. [Google Scholar] [CrossRef]
- Jordan, D. Central Integration of Chemoreceptor Afferent Activity. Adv. Exp. Med. Biol. 1994, 360, 87–98. [Google Scholar] [CrossRef]
- Sapru, H.N. Carotid chemoreflex. Neural Pathw. Transm. 1996, 410, 357–364. [Google Scholar]
- Zoccal, D.B.; Furuya, W.I.; Bassi, M.; Colombari, D.S.A.; Colombari, E. The nucleus of the solitary tract and the coordination of respiratory and sympathetic activities. Front. Physiol. 2014, 5, 238. [Google Scholar] [CrossRef] [PubMed]
- Shonesy, B.C.; Thiruchelvam, K.; Parameshwaran, K.; Rahman, E.A.; Karuppagounder, S.S.; Huggins, K.W.; Pinkert, C.A.; Amin, R.; Dhanasekaran, M.; Suppiramaniam, V. Central insulin resistance and synaptic dysfunction in intracerebroventricular-streptozotocin injected rodents. Neurobiol. Aging 2011, 33, 430.e5–430.e8. [Google Scholar] [CrossRef] [PubMed]
- Bazilio, D.S.; Rodrigues, K.L.; Moraes, D.J.; Machado, B.H. Distinct cardiovascular and respiratory responses to short-term sustained hypoxia in juvenile Sprague Dawley and Wistar Hannover rats. Auton. Neurosci. 2020, 230, 102746. [Google Scholar] [CrossRef] [PubMed]
- Putnam, R.W.; Filosa, J.A.; Ritucci, N.A. Cellular mechanisms involved in CO2 and acid signaling in chemosensitive neurons. Am. J. Physiol. Physiol. 2004, 287, C1493–C1526. [Google Scholar] [CrossRef] [PubMed]
- Nestor, S.M.; Rupsingh, R.; Borrie, M.; Smith, M.; Accomazzi, V.; Wells, J.L.; Fogarty, J.; Bartha, R.; Initiative, T.A.D.N. Ventricular enlargement as a possible measure of Alzheimer’s disease progression validated using the Alzheimer’s disease neuroimaging initiative database. Brain 2008, 131, 2443–2454. [Google Scholar] [CrossRef]
- Apostolova, L.G.M.; Green, A.E.B.; Babakchanian, S.B.; Hwang, K.S.B.; Chou, Y.-Y.; Toga, A.W.; Thompson, P.M. Hippocampal Atrophy and Ventricular Enlargement in Normal Aging, Mild Cognitive Impairment (MCI), and Alzheimer Disease. Alzheimer Dis. Assoc. Disord. 2012, 26, 17–27. [Google Scholar] [CrossRef] [PubMed]
- Gannon, M.; Che, P.; Chen, Y.; Jiao, K.; Roberson, E.D.; Wang, Q. Noradrenergic dysfunction in Alzheimer’s disease. Front. Neurosci. 2015, 9, 220. [Google Scholar] [CrossRef] [PubMed]
- Peterson, A.C.; Li, C.-S.R. Noradrenergic Dysfunction in Alzheimer’s and Parkinson’s Diseases—An Overview of Imaging Studies. Front. Aging Neurosci. 2018, 10, 127. [Google Scholar] [CrossRef] [PubMed]
- Eser, R.A.; Ehrenberg, A.J.; Petersen, C.; Dunlop, S.; Mejia, M.B.; Suemoto, C.K.; Walsh, C.M.; Rajana, H.; Oh, J.; Theofilas, P.; et al. Selective Vulnerability of Brainstem Nuclei in Distinct Tauopathies: A Postmortem Study. J. Neuropathol. Exp. Neurol. 2018, 77, 149–161. [Google Scholar] [CrossRef] [PubMed]
- Simic, G.; Stanic, G.; Mladinov, M.; Jovanov-Milosevic, N.; Kostovic, I.; Hof, P.R. Does Alzheimer’s disease begin in the brainstem? Neuropathol. Appl. Neurobiol. 2009, 35, 532–554. [Google Scholar] [CrossRef] [PubMed]
- Daulatzai, M.A. Dysfunctional Nucleus Tractus Solitarius: Its Crucial Role in Promoting Neuropathogentic Cascade of Alzheimer’s Dementia—A Novel Hypothesis. Neurochem. Res. 2012, 37, 846–868. [Google Scholar] [CrossRef] [PubMed]
- Brzecka, A.; Leszek, J.; Ashraf, G.M.; Ejma, M.; Ávila-Rodriguez, M.F.; Yarla, N.S.; Tarasov, V.V.; Chubarev, V.N.; Samsonova, A.N.; Barreto, G.E.; et al. Sleep Disorders Associated With Alzheimer’s Disease: A Perspective. Front. Neurosci. 2018, 12, 330. [Google Scholar] [CrossRef] [PubMed]
- Cohen, R.M.; Rezai-Zadeh, K.; Weitz, T.M.; Rentsendorj, A.; Gate, D.; Spivak, I.; Bholat, Y.; Vasilevko, V.; Glabe, C.G.; Breunig, J.J.; et al. A Transgenic Alzheimer Rat with Plaques, Tau Pathology, Behavioral Impairment, Oligomeric Aβ, and Frank Neuronal Loss. J. Neurosci. 2013, 33, 6245–6256. [Google Scholar] [CrossRef]
- Lucking, E.F.; Murphy, K.H.; Burns, D.P.; Jaisimha, A.V.; Barry-Murphy, K.J.; Dhaliwal, P.; Boland, B.; Rae, M.G.; O’halloran, K.D. No evidence in support of a prodromal respiratory control signature in the TgF344-AD rat model of Alzheimer’s disease. Respir. Physiol. Neurobiol. 2019, 265, 55–67. [Google Scholar] [CrossRef]
- Terwel, D.; Lasrado, R.; Snauwaert, J.; Vandeweert, E.; Van Haesendonck, C.; Borghgraef, P.; Van Leuven, F. Changed Conformation of Mutant Tau-P301L Underlies the Moribund Tauopathy, Absent in Progressive, Nonlethal Axonopathy of Tau-4R/2N Transgenic Mice. J. Biol. Chem. 2005, 280, 3963–3973. [Google Scholar] [CrossRef]
- Dutschmann, M.; Menuet, C.; Stettner, G.M.; Gestreau, C.; Borghgraef, P.; Devijver, H.; Gielis, L.; Hilaire, G.; Van Leuven, F. Upper Airway Dysfunction of Tau-P301L Mice Correlates with Tauopathy in Midbrain and Ponto-Medullary Brainstem Nuclei. J. Neurosci. 2010, 30, 1810–1821. [Google Scholar] [CrossRef]
- Menuet, C.; Borghgraef, P.; Matarazzo, V.; Gielis, L.; Lajard, A.-M.; Voituron, N.; Gestreau, C.; Dutschmann, M.; Van Leuven, F.; Hilaire, G. Raphé tauopathy alters serotonin metabolism and breathing activity in terminal Tau.P301L mice: Possible implications for tauopathies and Alzheimer’s disease. Respir. Physiol. Neurobiol. 2011, 178, 290–303. [Google Scholar] [CrossRef]
- Jęśko, H.; Wencel, P.L.; Lukiw, W.J.; Strosznajder, R.P. Modulatory Effects of Fingolimod (FTY720) on the Expression of Sphingolipid Metabolism-Related Genes in an Animal Model of Alzheimer’s Disease. Mol. Neurobiol. 2018, 56, 174–185. [Google Scholar] [CrossRef]
- Moechars, D.; Dewachter, I.; Lorent, K.; Reversé, D.; Baekelandt, V.; Naidu, A.; Tesseur, I.; Spittaels, K.; Haute, C.V.D.; Checler, F.; et al. Early Phenotypic Changes in Transgenic Mice That Overexpress Different Mutants of Amyloid Precursor Protein in Brain. J. Biol. Chem. 1999, 274, 6483–6492. [Google Scholar] [CrossRef]
- Howlett, D.R.; Richardson, J.C. The pathology of APP transgenic mice: A model of Alzheimer’s disease or simply overexpression of APP? Histol. Histopathol. 2009, 24, 83–100. [Google Scholar] [CrossRef]
- Bronfman, F.C.; Moechars, D.; Van Leuven, F. Acetylcholinesterase-Positive Fiber Deafferentation and Cell Shrinkage in the Septohippocampal Pathway of Aged Amyloid Precursor Protein London Mutant Transgenic Mice. Neurobiol. Dis. 2000, 7, 152–168. [Google Scholar] [CrossRef] [PubMed]
- Andrzejewski, K.; Jampolska, M.; Mojzych, I.; Conde, S.V.; Kaczyńska, K. Hypoxic and Hypercapnic Responses in Transgenic Murine Model of Alzheimer’s Disease Overexpressing Human AβPP: The Effects of Pretreatment with Memantine and Rivastigmine. Int. J. Mol. Sci. 2022, 23, 6004. [Google Scholar] [CrossRef] [PubMed]
- Bukke, V.N.; Archana, M.; Villani, R.; Romano, A.D.; Wawrzyniak, A.; Balawender, K.; Orkisz, S.; Beggiato, S.; Serviddio, G.; Cassano, T. The Dual Role of Glutamatergic Neurotransmission in Alzheimer’s Disease: From Pathophysiology to Pharmacotherapy. Int. J. Mol. Sci. 2020, 21, 7452. [Google Scholar] [CrossRef] [PubMed]
Rat Strain | STZ Dose/Time of the Test after STZ | Stimulus/Time of Exposure | Respiratory Effects | Anatomical Change | Memory and Cognitive Changes | Reference |
---|---|---|---|---|---|---|
Wistar | 2 mg/kg/ 30 days | 10% O2/60 min 7% CO2/60 min | ↑ Response to hypercapnia | ↑ Aβ expression in LC | Memory deficits and impairment in learning and retention of spatial memory (Barnes maze) | [153,154] |
Sprague Dawley | 2 mg/kg/~2 weeks | 10% CO2 LC neurons tested for responses to CO2 (patch clamp technique) | Impairment in learning and retention of spatial memory (Moris water maze) | [144] | ||
Sprague Dawley | 3 mg/kg/ 2 weeks | 8, 10, 12, and 14% O2/10 min 5% CO2/10 min | ↑ Basal ventilation, ↓ response to hypoxia, and ↑ sigh volume during hypoxia | Astrogliosis in NTS and hippocampus | Memory decline (passive avoidance memory test) | [143] |
Sprague Dawley | 3 mg/kg/ 3 weeks | 10% O2/2 h | ↓ Response to hypoxia | ↓ c-Fos in NTS, rostral VRG, Bötzinger complex, and hippocampus | Not tested | [145] |
Sprague Dawley | 2, 3 mg/kg/ 2–3 weeks | 10% O2 /30 min | ↓ Response to hypoxia | ↑ Ventricle space, atrophy of the hippocampus and in the caudal NTS accompanied by reduction in synaptic density, and astroglial and microglial activation in the caudal and intermediate NTS | Not tested | [146] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wrzesień, A.; Andrzejewski, K.; Jampolska, M.; Kaczyńska, K. Respiratory Dysfunction in Alzheimer’s Disease—Consequence or Underlying Cause? Applying Animal Models to the Study of Respiratory Malfunctions. Int. J. Mol. Sci. 2024, 25, 2327. https://doi.org/10.3390/ijms25042327
Wrzesień A, Andrzejewski K, Jampolska M, Kaczyńska K. Respiratory Dysfunction in Alzheimer’s Disease—Consequence or Underlying Cause? Applying Animal Models to the Study of Respiratory Malfunctions. International Journal of Molecular Sciences. 2024; 25(4):2327. https://doi.org/10.3390/ijms25042327
Chicago/Turabian StyleWrzesień, Agnieszka, Kryspin Andrzejewski, Monika Jampolska, and Katarzyna Kaczyńska. 2024. "Respiratory Dysfunction in Alzheimer’s Disease—Consequence or Underlying Cause? Applying Animal Models to the Study of Respiratory Malfunctions" International Journal of Molecular Sciences 25, no. 4: 2327. https://doi.org/10.3390/ijms25042327
APA StyleWrzesień, A., Andrzejewski, K., Jampolska, M., & Kaczyńska, K. (2024). Respiratory Dysfunction in Alzheimer’s Disease—Consequence or Underlying Cause? Applying Animal Models to the Study of Respiratory Malfunctions. International Journal of Molecular Sciences, 25(4), 2327. https://doi.org/10.3390/ijms25042327