Adipose-Derived Stem Cells: Angiogenetic Potential and Utility in Tissue Engineering
Abstract
:1. Introduction
2. Adipose Tissue and Its Components
3. ADSCs Isolation, Proliferation and Differentiation Properties
3.1. Impact on Angiogenesis
3.2. Endothelial Cells Differentiation
3.3. Regenerative Features and Utility in Tissue Engineering
4. Challenges and Future Perspectives
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
AT | Adipose tissue |
ADSCs | Adipose-derived stem cells |
WAT | White adipose tissue |
BAT | Brown adipose tissue |
MSCs | Mesenchymal stem cells |
SVF | Stromal vascular fraction |
ECs | Endothelial cells |
miRNAs | MicroRNAs |
HUVECs | Human umbilical vein endothelial cells |
BM-MSCs | Bone marrow-derived mesenchymal stem cells |
HAMVECs | Human adipose tissue-derived microvascular endothelial cells |
EPCs | Endothelial progenitor cells |
TE | Tissue-Engineering |
cbHSPCs | Cord blood hematopoietic precursors |
SG | salivary gland |
BMP4 | Bone morphogenetic protein 4 |
BMP7 | Bone morphogenetic protein 7 |
TGF-β | Transforming growth factor-beta |
miR-1 | Muscle-specific MicroRNAs |
MVs | microvesicles |
FGF | Fibroblast Growth Factor |
HGF | Hepatocyte Growth Factor |
PDGF | Platelet-Derived Growth Factor |
VEGF | Vascular Endothelial Growth Factor |
Ac-LDL | Acetylated Low-Density Lipoprotein |
vWF | von Willebrand Factor |
ERK | Extracellular Signal-Regulated Kinase |
MMPs | matrix metalloproteinases |
References
- Berthiaume, F.; Maguire, T.J.; Yarmush, M.L. Tissue engineering and regenerative medicine: History, progress, and challenges. Annu. Rev. Chem. Biomol. Eng. 2011, 2, 403–430. [Google Scholar] [CrossRef]
- Zhu, J.; Wang, Y.; Zhong, L.; Pan, F.; Wang, J. Advances in tissue engineering of vasculature through three-dimensional bioprinting. Dev. Dyn. 2021, 250, 1717–1738. [Google Scholar] [CrossRef]
- Ding, T.; Kang, W.; Li, J.; Yu, L.; Ge, S. An in situ tissue engineering scaffold with growth factors combining angiogenesis and osteoimmunomodulatory functions for advanced periodontal bone regeneration. J. Nanobiotechnol. 2021, 19, 247. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, T.; Ohmori, K.; Kanemaru, S.-I. Tissue-engineered airway and “in situ tissue engineering”. Gen. Thorac. Cardiovasc. Surg. 2011, 59, 91–97. [Google Scholar] [CrossRef]
- Simunovic, F.; Finkenzeller, G. Vascularization Strategies in Bone Tissue Engineering. Cells 2021, 10, 1749. [Google Scholar] [CrossRef]
- Antonyshyn, J.A.; McFadden, M.J.; Gramolini, A.O.; Hofer, S.O.; Santerre, J.P. Vascular tissue engineering from human adipose tissue: Fundamental phenotype of its resident microvascular endothelial cells and stromal/stem cells. Biomater. Biosyst. 2022, 6, 100049. [Google Scholar] [CrossRef]
- Perez-Lopez, S.; Perez-Basterrechea, M.; Garcia-Gala, J.M.; Martinez-Revuelta, E.; Fernandez-Rodriguez, A.; Alvarez-Viejo, M. Stem cell and tissue engineering approaches in pressure ulcer treatment. J. Spinal Cord Med. 2021, 46, 194–203. [Google Scholar] [CrossRef]
- Topoliova, K.; Harsanyi, S.; Danisovic, L.; Ziaran, S. Tissue Engineering and Stem Cell Therapy in Neurogenic Bladder Dysfunction: Current and Future Perspectives. Medicina 2023, 59, 1416. [Google Scholar] [CrossRef] [PubMed]
- Sharma, R. Stem Cells and Tissue Engineering in Medical Practice: Ethical and Regulatory Policies. Curr. Drug Targets 2019, 20, 388–398. [Google Scholar] [CrossRef]
- Shakesheff, K.M.; Rose, F.R.A.J. Tissue engineering in the development of replacement technologies. Adv. Exp. Med. Biol. 2012, 745, 47–57. [Google Scholar] [CrossRef]
- Gärditz, K.F. Work with embryonic stem cells–legal considerations. J. Perinat. Med. 2023, 51, 763–768. [Google Scholar] [CrossRef]
- Kimura, J.O.; Bolaños, D.M.; Ricci, L.; Srivastava, M. Embryonic origins of adult pluripotent stem cells. Cell 2022, 185, 4756–4769.e13. [Google Scholar] [CrossRef]
- Choi, Y.; Lee, H.K.; Choi, K.-C. Engineered adult stem cells: A promising tool for anti-cancer therapy. BMB Rep. 2023, 56, 71–77. [Google Scholar] [CrossRef] [PubMed]
- Mahmood, N.; Suh, T.C.; Ali, K.M.; Sefat, E.; Jahan, U.M.; Huang, Y.; Gilger, B.C.; Gluck, J.M. Induced Pluripotent Stem Cell-Derived Corneal Cells: Current Status and Application. Stem Cell Rev. Rep. 2022, 18, 2817–2832. [Google Scholar] [CrossRef]
- Liuyang, S.; Wang, G.; Wang, Y.; He, H.; Lyu, Y.; Cheng, L.; Yang, Z.; Guan, J.; Fu, Y.; Zhu, J.; et al. Highly efficient and rapid generation of human pluripotent stem cells by chemical reprogramming. Cell Stem Cell 2023, 30, 450–459.e9. [Google Scholar] [CrossRef] [PubMed]
- Li, C.-H.; Zhao, J.; Zhang, H.-Y.; Wang, B. Banking of perinatal mesenchymal stem/stromal cells for stem cell-based personalized medicine over lifetime: Matters arising. World J. Stem Cells 2023, 15, 105–119. [Google Scholar] [CrossRef] [PubMed]
- Russo, E.; Alberti, G.; Corrao, S.; Borlongan, C.V.; Miceli, V.; Conaldi, P.G.; Di Gaudio, F.; La Rocca, G. The Truth Is Out There: Biological Features and Clinical Indications of Extracellular Vesicles from Human Perinatal Stem Cells. Cells 2023, 12, 2347. [Google Scholar] [CrossRef] [PubMed]
- Muallah, D.; Matschke, J.; Kappler, M.; Kroschwald, L.M.; Lauer, G.; Eckert, A.W. Dental Pulp Stem Cells for Salivary Gland Regeneration—Where Are We Today? Int. J. Mol. Sci. 2023, 24, 8664. [Google Scholar] [CrossRef]
- Bai, X.; Cao, R.; Wu, D.; Zhang, H.; Yang, F.; Wang, L. Dental Pulp Stem Cells for Bone Tissue Engineering: A Literature Review. Stem Cells Int. 2023, 2023, 7357179. [Google Scholar] [CrossRef] [PubMed]
- Volarevic, V.; Markovic, B.S.; Gazdic, M.; Volarevic, A.; Jovicic, N.; Arsenijevic, N.; Armstrong, L.; Djonov, V.; Lako, M.; Stojkovic, M. Ethical and Safety Issues of Stem Cell-Based Therapy. Int. J. Med. Sci. 2018, 15, 36–45. [Google Scholar] [CrossRef]
- Zuk, P.A.; Zhu, M.I.; Mizuno, H.; Huang, J.; Futrell, J.W.; Katz, A.J.; Benhaim, P.; Lorenz, H.P.; Hedrick, M.H. Multilineage cells from human adipose tissue: Implications for cell-based therapies. Tissue Eng. 2001, 7, 211–228. [Google Scholar] [CrossRef]
- Madonna, R.; Geng, Y.-J.; De Caterina, R. Adipose tissue-derived stem cells: Characterization and potential for cardiovascular repair. Arter. Thromb. Vasc. Biol. 2009, 29, 1723–1729. [Google Scholar] [CrossRef]
- Ciervo, Y.; Gatto, N.; Allen, C.; Grierson, A.; Ferraiuolo, L.; Mead, R.J.; Shaw, P.J. Adipose-derived stem cells protect motor neurons and reduce glial activation in both in vitro and in vivo models of ALS. Mol. Ther.-Methods Clin. Dev. 2021, 21, 413–433. [Google Scholar] [CrossRef] [PubMed]
- Habib, S.J.; Acebrón, S.P. Wnt signalling in cell division: From mechanisms to tissue engineering. Trends Cell Biol. 2022, 32, 1035–1048. [Google Scholar] [CrossRef] [PubMed]
- Bakhshandeh, B.; Sorboni, S.G.; Ranjbar, N.; Deyhimfar, R.; Abtahi, M.S.; Izady, M.; Kazemi, N.; Noori, A.; Pennisi, C.P. Mechanotransduction in tissue engineering: Insights into the interaction of stem cells with biomechanical cues. Exp. Cell Res. 2023, 431, 113766. [Google Scholar] [CrossRef]
- Guo, X.; Schaudinn, C.; Blume-Peytavi, U.; Vogt, A.; Rancan, F. Effects of Adipose-Derived Stem Cells and Their Conditioned Medium in a Human Ex Vivo Wound Model. Cells 2022, 11, 1198. [Google Scholar] [CrossRef]
- Gimble, J.M.; Nuttall, M.E. Adipose-derived stromal/stem cells (ASC) in regenerative medicine: Pharmaceutical applications. Curr. Pharm. Des. 2011, 17, 332–339. [Google Scholar] [CrossRef]
- Arif, F.; Rahman, M.F.; Khan, C.F. Adipose derived stem cells for the peripheral nerve regeneration: Review of techniques and clinical implications. J. Pak. Med. Assoc. 2023, 73, S148–S154. [Google Scholar] [CrossRef]
- Debski, T.; Siennicka, K.; Idaszek, J.; Roszkowski, B.; Swieszkowski, W.; Pojda, Z. Effect of adipose-derived stem cells seeding and surgical prefabrication on composite scaffold vascularization. J. Biomater. Appl. 2023, 38, 548–561. [Google Scholar] [CrossRef]
- Panina, Y.A.; Yakimov, A.S.; Komleva, Y.K.; Morgun, A.V.; Lopatina, O.L.; Malinovskaya, N.A.; Shuvaev, A.N.; Salmin, V.V.; Taranushenko, T.E.; Salmina, A.B. Plasticity of Adipose Tissue-Derived Stem Cells and Regulation of Angiogenesis. Front. Physiol. 2018, 9, 1656. [Google Scholar] [CrossRef]
- Hutchings, G.; Janowicz, K.; Moncrieff, L.; Dompe, C.; Strauss, E.; Kocherova, I.; Nawrocki, M.J.; Kruszyna, Ł.; Wąsiatycz, G.; Antosik, P.; et al. The Proliferation and Differentiation of Adipose-Derived Stem Cells in Neovascularization and Angiogenesis. Int. J. Mol. Sci. 2020, 21, 3790. [Google Scholar] [CrossRef]
- Wald, D.; Teucher, B.; Dinkel, J.; Kaaks, R.; Delorme, S.; Boeing, H.; Seidensaal, K.; Meinzer, H.; Heimann, T. Automatic quantification of subcutaneous and visceral adipose tissue from whole-body magnetic resonance images suitable for large cohort studies. J. Magn. Reson. Imaging 2012, 36, 1421–1434. [Google Scholar] [CrossRef]
- Casteilla, L.; Dani, C. Adipose tissue-derived cells: From physiology to regenerative medicine. Diabetes Metab. 2006, 32 Pt 1, 393–401. [Google Scholar] [CrossRef] [PubMed]
- Matsumoto, T.; Kano, K.; Kondo, D.; Fukuda, N.; Iribe, Y.; Tanaka, N.; Matsubara, Y.; Sakuma, T.; Satomi, A.; Otaki, M.; et al. Mature adipocyte-derived dedifferentiated fat cells exhibit multilineage potential. J. Cell. Physiol. 2007, 215, 210–222. [Google Scholar] [CrossRef]
- Sarantopoulos, C.N.; Banyard, D.A.; Ziegler, M.E.; Sun, B.; Shaterian, A.; Widgerow, A.D. Elucidating the Preadipocyte and Its Role in Adipocyte Formation: A Comprehensive Review. Stem Cell Rev. Rep. 2017, 14, 27–42. [Google Scholar] [CrossRef] [PubMed]
- Casteilla, L.; Planat-Benard, V.; Laharrague, P.; Cousin, B. Adipose-derived stromal cells: Their identity and uses in clinical trials, an update. World J. Stem Cells 2011, 3, 25–33. [Google Scholar] [CrossRef] [PubMed]
- Dubey, N.K.; Mishra, V.K.; Dubey, R.; Deng, Y.-H.; Tsai, F.-C.; Deng, W.-P. Revisiting the Advances in Isolation, Characterization and Secretome of Adipose-Derived Stromal/Stem Cells. Int. J. Mol. Sci. 2018, 19, 2200. [Google Scholar] [CrossRef]
- Schoettl, T.; Fischer, I.P.; Ussar, S. Heterogeneity of adipose tissue in development and metabolic function. J. Exp. Biol. 2018, 221 (Suppl. S1), jeb162958. [Google Scholar] [CrossRef]
- Chouchani, E.T.; Kajimura, S. Metabolic adaptation and maladaptation in adipose tissue. Nat. Metab. 2019, 1, 189–200. [Google Scholar] [CrossRef] [PubMed]
- Saito, M.; Matsushita, M.; Yoneshiro, T.; Okamatsu-Ogura, Y. Brown Adipose Tissue, Diet-Induced Thermogenesis, and Thermogenic Food Ingredients: From Mice to Men. Front. Endocrinol. 2020, 11, 222. [Google Scholar] [CrossRef]
- Morigny, P.; Boucher, J.; Arner, P.; Langin, D. Lipid and glucose metabolism in white adipocytes: Pathways, dysfunction and therapeutics. Nat. Rev. Endocrinol. 2021, 17, 276–295. [Google Scholar] [CrossRef] [PubMed]
- Dragoo, J.L.; Shapiro, S.A.; Bradsell, H.; Frank, R.M. The essential roles of human adipose tissue: Metabolic, thermoregulatory, cellular, and paracrine effects. J. Cartil. Jt. Preserv. 2021, 1, 100023. [Google Scholar] [CrossRef]
- Rosen, E.D.; Spiegelman, B.M. What we talk about when we talk about fat. Cell 2014, 156, 20–44. [Google Scholar] [CrossRef] [PubMed]
- Scheja, L.; Heeren, J. The endocrine function of adipose tissues in health and cardiometabolic disease. Nat. Rev. Endocrinol. 2019, 15, 507–524. [Google Scholar] [CrossRef]
- Kershaw, E.E.; Flier, J.S. Adipose tissue as an endocrine organ. J. Clin. Endocrinol. Metab. 2004, 89, 2548–2556. [Google Scholar] [CrossRef] [PubMed]
- Parmar, R.M.; Can, A.S. Physiology, Appetite and Weight Regulation; StatPearls Publishing: Treasure Island, FL, USA, 2023. Available online: https://www.ncbi.nlm.nih.gov/books/NBK574539/ (accessed on 28 December 2023).
- Ibrahim, M.M. Subcutaneous and visceral adipose tissue: Structural and functional differences. Obes. Rev. 2009, 11, 11–18. [Google Scholar] [CrossRef]
- Zavan, B.; Vindigni, V.; Gardin, C.; D’Avella, D.; Della Puppa, A.; Abatangelo, G.; Cortivo, R. Neural potential of adipose stem cells. Discov. Med. 2010, 10, 37–43. [Google Scholar]
- Nagata, H.; Ii, M.; Kohbayashi, E.; Hoshiga, M.; Hanafusa, T.; Asahi, M. Cardiac Adipose-Derived Stem Cells Exhibit High Differentiation Potential to Cardiovascular Cells in C57BL/6 Mice. Stem Cells Transl. Med. 2015, 5, 141–151. [Google Scholar] [CrossRef]
- Sun, A.J.; Qiao, L.; Huang, C.; Zhang, X.; Li, Y.Q.; Yang, X.Q. Comparison of mouse brown and white adipose-derived stem cell differentiation into pacemaker-like cells induced by TBX18 transduction. Mol. Med. Rep. 2018, 17, 7055–7064. [Google Scholar] [CrossRef]
- Ogura, F.; Wakao, S.; Kuroda, Y.; Tsuchiyama, K.; Bagheri, M.; Heneidi, S.; Chazenbalk, G.; Aiba, S.; Dezawa, M. Human adipose tissue possesses a unique population of pluripotent stem cells with nontumorigenic and low telomerase activities: Potential implications in regenerative medicine. Stem Cells Dev. 2014, 23, 717–728. [Google Scholar] [CrossRef]
- Heneidi, S.; Simerman, A.A.; Keller, E.; Singh, P.; Li, X.; Dumesic, D.A.; Chazenbalk, G. Awakened by cellular stress: Isolation and characterization of a novel population of pluripotent stem cells derived from human adipose tissue. PLoS ONE 2013, 8, e64752. [Google Scholar] [CrossRef]
- Zhu, Y.; Liu, T.; Song, K.; Fan, X.; Ma, X.; Cui, Z. Adipose-derived stem cell: A better stem cell than BMSC. Cell Biochem. Funct. 2008, 26, 664–675. [Google Scholar] [CrossRef]
- De Ugarte, D.A.; Morizono, K.; Elbarbary, A.; Alfonso, Z.; Zuk, P.A.; Zhu, M.; Dragoo, J.L.; Ashjian, P.; Thomas, B.; Benhaim, P.; et al. Comparison of multi-lineage cells from human adipose tissue and bone marrow. Cells Tissues Organs 2003, 174, 101–109. [Google Scholar] [CrossRef]
- Iyyanki, T.; Hubenak, J.; Liu, J.; Chang, E.I.; Beahm, E.K.; Zhang, Q. Harvesting technique affects adipose-derived stem cell yield. Aesthetic Surg. J. 2015, 35, 467–476. [Google Scholar] [CrossRef]
- Kornicka, K.; Marycz, K.; Tomaszewski, K.A.; Marędziak, M.; Śmieszek, A. The Effect of Age on Osteogenic and Adipogenic Differentiation Potential of Human Adipose Derived Stromal Stem Cells (hASCs) and the Impact of Stress Factors in the Course of the Differentiation Process. Oxidative Med. Cell. Longev. 2015, 2015, 309169. [Google Scholar] [CrossRef] [PubMed]
- Dai, R.; Wang, Z.; Samanipour, R.; Koo, K.-I.; Kim, K. Adipose-Derived Stem Cells for Tissue Engineering and Regenerative Medicine Applications. Stem Cells Int. 2016, 2016, 6737345. [Google Scholar] [CrossRef] [PubMed]
- Kocan, B.; Maziarz, A.; Tabarkiewicz, J.; Ochiya, T.; Banaś-Ząbczyk, A. Trophic Activity and Phenotype of Adipose Tissue-Derived Mesenchymal Stem Cells as a Background of Their Regenerative Potential. Stem Cells Int. 2017, 2017, 1653254. [Google Scholar] [CrossRef] [PubMed]
- Di Taranto, G.; Cicione, C.; Visconti, G.; Isgrò, M.A.; Barba, M.; Di Stasio, E.; Stigliano, E.; Bernardini, C.; Michetti, F.; Salgarello, M.; et al. Qualitative and quantitative differences of adipose-derived stromal cells from superficial and deep subcutaneous lipoaspirates: A matter of fat. Cytotherapy 2015, 17, 1076–1089. [Google Scholar] [CrossRef] [PubMed]
- Tsekouras, A.; Mantas, D.; Tsilimigras, D.I.; Moris, D.; Kontos, M.; Zografos, G.C. Comparison of the Viability and Yield of Adipose-Derived Stem Cells (ASCs) from Different Donor Areas. In Vivo 2017, 31, 1229–1234. [Google Scholar] [CrossRef] [PubMed]
- Vermette, M.; Trottier, V.; Ménard, V.; Saintpierre, L.; Roy, A.; Fradette, J. Production of a new tissue-engineered adipose substitute from human adipose-derived stromal cells. Biomaterials 2007, 28, 2850–2860. [Google Scholar] [CrossRef] [PubMed]
- Oedayrajsingh-Varma, M.J.; van Ham, S.M.; Knippenberg, M.; Helder, M.N.; Klein-Nulend, J.; Schouten, T.E.; Ritt, M.; van Milligen, F. Adipose tissue-derived mesenchymal stem cell yield and growth characteristics are affected by the tissue-harvesting procedure. Cytotherapy 2006, 8, 166–177. [Google Scholar] [CrossRef] [PubMed]
- Hong, S.; Huang, W.; Zhu, X.; Tang, H.; Krier, J.D.; Xing, L.; Lu, B.; Gandhi, D.; Jordan, K.L.; Saadiq, I.M.; et al. Obesity blunts amelioration of cardiac hypertrophy and fibrosis by human mesenchymal stem/stromal cell-derived extracellular vesicles. Am. J. Physiol. Circ. Physiol. 2023, 325, H163–H171. [Google Scholar] [CrossRef] [PubMed]
- Buschmann, J.; Gao, S.; Härter, L.; Hemmi, S.; Welti, M.; Werner, C.M.; Calcagni, M.; Cinelli, P.; Wanner, G.A. Yield and proliferation rate of adipose-derived stromal cells as a function of age, body mass index and harvest site—Increasing the yield by use of adherent and supernatant fractions? Cytotherapy 2013, 15, 1098–1105. [Google Scholar] [CrossRef] [PubMed]
- Beane, O.S.; Fonseca, V.C.; Cooper, L.L.; Koren, G.; Darling, E.M. Impact of aging on the regenerative properties of bone marrow-, muscle-, and adipose-derived mesenchymal stem/stromal cells. PLoS ONE 2014, 9, e115963. [Google Scholar] [CrossRef]
- Varghese, J.; Griffin, M.; Mosahebi, A.; Butler, P. Systematic review of patient factors affecting adipose stem cell viability and function: Implications for regenerative therapy. Stem Cell Res. Ther. 2017, 8, 45. [Google Scholar] [CrossRef]
- Taeb, S.; Mosleh-Shiraz, M.A.; Ghaderi, A.; Mortazavi, S.M.J.; Razmkhah, M. Adipose-Derived Mesenchymal Stem Cells Responses to Different Doses of Gamma Radiation. J. Biomed. Phys. Eng. 2022, 12, 35–42. [Google Scholar] [CrossRef]
- Vyas, K.S.; Bole, M.; Vasconez, H.C.; Banuelos, J.M.; Martinez-Jorge, J.; Tran, N.; Lemaine, V.; Mardini, S.; Bakri, K. Profile of Adipose-Derived Stem Cells in Obese and Lean Environments. Aesthetic Plast. Surg. 2019, 43, 1635–1645. [Google Scholar] [CrossRef]
- Skubis-Sikora, A.; Sikora, B.; Witkowska, A.; Mazurek, U.; Gola, J. Osteogenesis of adipose-derived stem cells from patients with glucose metabolism disorders. Mol. Med. 2020, 26, 67. [Google Scholar] [CrossRef]
- Sharma, D.; Ross, D.; Wang, G.; Jia, W.; Kirkpatrick, S.J.; Zhao, F. Upgrading prevascularization in tissue engineering: A review of strategies for promoting highly organized microvascular network formation. Acta Biomater. 2019, 95, 112–130. [Google Scholar] [CrossRef]
- Masson-Meyers, D.S.; Tayebi, L. Vascularization strategies in tissue engineering approaches for soft tissue repair. J. Tissue Eng. Regen. Med. 2021, 15, 747–762. [Google Scholar] [CrossRef]
- Shah Mohammadi, M.; Buchen, J.T.; Pasquina, P.F.; Niklason, L.E.; Alvarez, L.M.; Jariwala, S.H. Critical Considerations for Regeneration of Vascularized Composite Tissues. Tissue Eng. Part B Rev. 2021, 27, 366–381. [Google Scholar] [CrossRef]
- Johnson, E.O.; Troupis, T.; Soucacos, P.N. Tissue-engineered vascularized bone grafts: Basic science and clinical relevance to trauma and reconstructive microsurgery. Microsurgery 2011, 31, 176–182. [Google Scholar] [CrossRef]
- Manavski, Y.; Lucas, T.; Glaser, S.F.; Dorsheimer, L.; Günther, S.; Braun, T.; Rieger, M.A.; Zeiher, A.M.; Boon, R.A.; Dimmeler, S. Clonal Expansion of Endothelial Cells Contributes to Ischemia-Induced Neovascularization. Circ. Res. 2018, 122, 670–677. [Google Scholar] [CrossRef]
- Murphy, A.R.; Allenby, M.C. In vitro microvascular engineering approaches and strategies for interstitial tissue integration. Acta Biomater. 2023, 171, 114–130. [Google Scholar] [CrossRef] [PubMed]
- Shore, A.C. Capillaroscopy and the measurement of capillary pressure. Br. J. Clin. Pharmacol. 2000, 50, 501–513. [Google Scholar] [CrossRef] [PubMed]
- Ding, M.H.; Lozoya, E.G.; Rico, R.N.; Chew, S.A. The Role of Angiogenesis-Inducing microRNAs in Vascular Tissue Engineering. Tissue Eng. Part A 2020, 26, 1283–1302. [Google Scholar] [CrossRef] [PubMed]
- Naito, H.; Iba, T.; Takakura, N. Mechanisms of new blood-vessel formation and proliferative heterogeneity of endothelial cells. Int. Immunol. 2020, 32, 295–305. [Google Scholar] [CrossRef] [PubMed]
- Azari, Z.; Nazarnezhad, S.; Webster, T.J.; Hoseini, S.J.; Milan, P.B.; Baino, F.; Kargozar, S. Stem cell-mediated angiogenesis in skin tissue engineering and wound healing. Wound Repair Regen. 2022, 30, 421–435. [Google Scholar] [CrossRef]
- Eelen, G.; Treps, L.; Li, X.; Carmeliet, P. Basic and Therapeutic Aspects of Angiogenesis Updated. Circ. Res. 2020, 127, 310–329. [Google Scholar] [CrossRef]
- Liu, Y.; Li, J.; Zhou, J.; Liu, X.; Li, H.; Lu, Y.; Lin, B.; Li, X.; Liu, T. Angiogenesis and Functional Vessel Formation Induced by Interstitial Flow and Vascular Endothelial Growth Factor Using a Microfluidic Chip. Micromachines 2022, 13, 225. [Google Scholar] [CrossRef] [PubMed]
- Gerhardt, H.; Golding, M.; Fruttiger, M.; Ruhrberg, C.; Lundkvist, A.; Abramsson, A.; Jeltsch, M.; Mitchell, C.; Alitalo, K.; Shima, D.; et al. VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia. J. Cell Biol. 2003, 161, 1163–1177. [Google Scholar] [CrossRef]
- Basagiannis, D.; Zografou, S.; Murphy, C.; Fotsis, T.; Morbidelli, L.; Ziche, M.; Bleck, C.; Mercer, J.; Christoforidis, S. VEGF induces signalling and angiogenesis by directing VEGFR2 internalisation via macropinocytosis. J. Cell Sci. 2016, 129, 4091–4104. [Google Scholar] [CrossRef]
- Gerszten, R.E.; Garcia-Zepeda, E.A.; Lim, Y.-C.; Yoshida, M.; Ding, H.A.; Gimbrone, M.A., Jr.; Luster, A.D.; Luscinskas, F.W.; Rosenzweig, A. MCP-1 and IL-8 trigger firm adhesion of monocytes to vascular endothelium under flow conditions. Nature 1999, 398, 718–723. [Google Scholar] [CrossRef] [PubMed]
- Lu, F.; Mizuno, H.; Uysal, C.A.; Cai, X.; Ogawa, R.; Hyakusoku, H. Improved viability of random pattern skin flaps through the use of adipose-derived stem cells. Plast. Reconstr. Surg. 2008, 121, 50–58. [Google Scholar] [CrossRef] [PubMed]
- Ylä-Herttuala, S.; Rissanen, T.T.; Vajanto, I.; Hartikainen, J. Vascular endothelial growth factors: Biology and current status of clinical applications in cardiovascular medicine. J. Am. Coll. Cardiol. 2007, 49, 1015–1026. [Google Scholar] [CrossRef] [PubMed]
- Presta, M.; Dell’era, P.; Mitola, S.; Moroni, E.; Ronca, R.; Rusnati, M. Fibroblast growth factor/fibroblast growth factor receptor system in angiogenesis. Cytokine Growth Factor Rev. 2005, 16, 159–178. [Google Scholar] [CrossRef] [PubMed]
- Beitz, J.G.; Kim, I.S.; Calabresi, P.; Frackelton, A.R. Human microvascular endothelial cells express receptors for platelet-derived growth factor. Proc. Natl. Acad. Sci. USA 1991, 88, 2021–2025. [Google Scholar] [CrossRef] [PubMed]
- Goumans, M.-J.; Lebrin, F.; Valdimarsdottir, G. Controlling the angiogenic switch: A balance between two distinct TGF-b receptor signaling pathways. Trends Cardiovasc. Med. 2003, 13, 301–307. [Google Scholar] [CrossRef]
- Bussolino, F.; Di Renzo, M.F.; Ziche, M.; Bocchietto, E.; Olivero, M.; Naldini, L.; Gaudino, G.; Tamagnone, L.; Coffer, A.; Comoglio, P. Hepatocyte growth factor is a potent angiogenic factor which stimulates endothelial cell motility and growth. J. Cell Biol. 1992, 119, 629–641. [Google Scholar] [CrossRef]
- Rautiainen, S.; Laaksonen, T.; Koivuniemi, R. Angiogenic Effects and Crosstalk of Adipose-Derived Mesenchymal Stem/Stromal Cells and Their Extracellular Vesicles with Endothelial Cells. Int. J. Mol. Sci. 2021, 22, 10890. [Google Scholar] [CrossRef]
- Park, I.S.; Kim, S.H.; Jung, Y.; Rhie, J.W.; Kim, S.H. Endothelial differentiation and vasculogenesis induced by three-dimensional adipose-derived stem cells. Anat. Rec. Adv. Integr. Anat. Evol. Biol. 2013, 296, 168–177. [Google Scholar] [CrossRef]
- Khan, S.; Villalobos, M.A.; Choron, R.L.; Chang, S.; Brown, S.A.; Carpenter, J.P.; Tulenko, T.N.; Zhang, P. Fibroblast growth factor and vascular endothelial growth factor play a critical role in endotheliogenesis from human adipose-derived stem cells. J. Vasc. Surg. 2017, 65, 1483–1492. [Google Scholar] [CrossRef]
- Arderiu, G.; Peña, E.; Aledo, R.; Juan-Babot, O.; Crespo, J.; Vilahur, G.; Oñate, B.; Moscatiello, F.; Badimon, L. MicroRNA-145 Regulates the Differentiation of Adipose Stem Cells Toward Microvascular Endothelial Cells and Promotes Angiogenesis. Circ. Res. 2019, 125, 74–89. [Google Scholar] [CrossRef] [PubMed]
- Bekhite, M.M.; Finkensieper, A.; Rebhan, J.; Huse, S.; Schultze-Mosgau, S.; Figulla, H.-R.; Sauer, H.; Wartenberg, M. Hypoxia, leptin, and vascular endothelial growth factor stimulate vascular endothelial cell differentiation of human adipose tissue-derived stem cells. Stem Cells Dev. 2014, 23, 333–351. [Google Scholar] [CrossRef] [PubMed]
- Hamdi, H.; Planat-Benard, V.; Bel, A.; Neamatalla, H.; Saccenti, L.; Calderon, D.; Bellamy, V.; Bon, M.; Perrier, M.-C.; Mandet, C.; et al. Long-term functional benefits of epicardial patches as cell carriers. Cell Transplant. 2014, 23, 87–96. [Google Scholar] [CrossRef]
- Wang, J.; Xiang, B.; Deng, J.; Lin, H.-Y.; Zheng, D.; Freed, D.H.; Arora, R.C.; Tian, G. Externally Applied Static Magnetic Field Enhances Cardiac Retention and Functional Benefit of Magnetically Iron-Labeled Adipose-Derived Stem Cells in Infarcted Hearts. Stem Cells Transl. Med. 2016, 5, 1380–1393. [Google Scholar] [CrossRef]
- Yang, H.N.; Choi, J.H.; Park, J.S.; Jeon, S.Y.; Park, K.D.; Park, K.H. Differentiation of endothelial progenitor cells into endothelial cells by heparin-modified supramolecular pluronic nanogels encapsulating bFGF and complexed with VEGF165 genes. Biomaterials 2014, 35, 4716–4728. [Google Scholar] [CrossRef] [PubMed]
- Anand, S.; A Cheresh, D. MicroRNA-mediated regulation of the angiogenic switch. Curr. Opin. Hematol. 2011, 18, 171–176. [Google Scholar] [CrossRef] [PubMed]
- Banai, S.; Jaklitsch, M.T.; Shou, M.; Lazarous, D.F.; Scheinowitz, M.; Biro, S.; Epstein, S.E.; Unger, E.F. Angiogenic-induced enhancement of collateral blood flow to ischemic myocardium by vascular endothelial growth factor in dogs. Circulation 1994, 89, 2183–2189. [Google Scholar] [CrossRef]
- Kang, T.; Jones, T.M.; Naddell, C.; Bacanamwo, M.; Calvert, J.W.; Thompson, W.E.; Bond, V.C.; Chen, Y.E.; Liu, D. Adipose-Derived Stem Cells Induce Angiogenesis via Microvesicle Transport of miRNA-31. Stem Cells Transl. Med. 2016, 5, 440–450. [Google Scholar] [CrossRef]
- Togliatto, G.; Dentelli, P.; Gili, M.; Gallo, S.; Deregibus, C.; Biglieri, E.; Iavello, A.; Santini, E.; Rossi, C.; Solini, A.; et al. Obesity reduces the pro-angiogenic potential of adipose tissue stem cell-derived extracellular vesicles (EVs) by impairing miR-126 content: Impact on clinical applications. Int. J. Obes. 2016, 40, 102–111. [Google Scholar] [CrossRef]
- Zhang, Z.; Li, S.; Cui, M.; Gao, X.; Sun, D.; Qin, X.; Narsinh, K.; Li, C.; Jia, H.; Li, C.; et al. Rosuvastatin enhances the therapeutic efficacy of adipose-derived mesenchymal stem cells for myocardial infarction via PI3K/Akt and MEK/ERK pathways. Basic Res. Cardiol. 2013, 108, 333. [Google Scholar] [CrossRef]
- Han, D.; Huang, W.; Ma, S.; Chen, J.; Gao, L.; Liu, T.; Zhang, R.; Li, X.; Li, C.; Fan, M.; et al. Ghrelin improves functional survival of engrafted adipose-derived mesenchymal stem cells in ischemic heart through pi3k/akt signaling pathway. BioMed Res. Int. 2015, 2015, 858349. [Google Scholar] [CrossRef]
- Luo, X.; Cao, W.; Xu, H.; Wang, L.; Zhang, Z.; Lu, Y.; Jin, X.; Ren, X.; He, J.; Fu, M.; et al. Coimplanted endothelial cells improve adipose tissue grafts’ survival by increasing vascularization. J. Craniofacial Surg. 2015, 26, 358–364. [Google Scholar] [CrossRef]
- Eto, H.M.; Suga, H.M.; Matsumoto, D.M.; Inoue, K.M.; Aoi, N.M.; Kato, H.M.; Araki, J.M.; Yoshimura, K.M. Characterization of structure and cellular components of aspirated and excised adipose tissue. Plast. Reconstr. Surg. 2009, 124, 1087–1097. [Google Scholar] [CrossRef]
- Monsuur, H.N.; Weijers, E.M.; Niessen, F.B.; Gefen, A.; Koolwijk, P.; Gibbs, S.; Broek, L.J.v.D. Extensive Characterization and Comparison of Endothelial Cells Derived from Dermis and Adipose Tissue: Potential Use in Tissue Engineering. PLoS ONE 2016, 11, e0167056. [Google Scholar] [CrossRef] [PubMed]
- Planat-Benard, V.; Silvestre, J.-S.; Cousin, B.; André, M.; Nibbelink, M.; Tamarat, R.; Clergue, M.; Manneville, C.; Saillan-Barreau, C.; Duriez, M.; et al. Plasticity of human adipose lineage cells toward endothelial cells: Physiological and therapeutic perspectives. Circulation 2004, 109, 656–663. [Google Scholar] [CrossRef] [PubMed]
- Konno, M.; Hamabe, A.; Hasegawa, S.; Ogawa, H.; Fukusumi, T.; Nishikawa, S.; Ohta, K.; Kano, Y.; Ozaki, M.; Noguchi, Y.; et al. Adipose-derived mesenchymal stem cells and regenerative medicine. Dev. Growth Differ. 2013, 55, 309–318. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; Sun, Z.; Liao, L.; Meng, Y.; Han, Q.; Zhao, R.C. Human adipose tissue-derived stem cells differentiate into endothelial cells in vitro and improve postnatal neovascularization in vivo. Biochem. Biophys. Res. Commun. 2005, 332, 370–379. [Google Scholar] [CrossRef] [PubMed]
- Fan, L.-J.; Xiao, Q.-R.; Lin, K.-S.; Wang, S.-Y.; Li, Z.-F.; Li, C.-Z.; Zhang, T.; Han, Y.-J.; Shen, J. Comparison of endothelial differentiation capacity of adipose-derived stem cells and bone marrow mesenchymal stem cells from rats. Nan Fang Yi Ke Da Xue Xue Bao 2016, 36, 1247–1254. [Google Scholar] [PubMed]
- Almalki, S.G.; Agrawal, D.K. ERK signaling is required for VEGF-A/VEGFR2-induced differentiation of porcine adipose-derived mesenchymal stem cells into endothelial cells. Stem Cell Res. Ther. 2017, 8, 113. [Google Scholar] [CrossRef]
- Chong, M.S.K.; Ng, W.K.; Chan, J.K.Y. Concise Review: Endothelial Progenitor Cells in Regenerative Medicine: Applications and Challenges. Stem Cells Transl. Med. 2016, 5, 530–538. [Google Scholar] [CrossRef]
- Flex, A.; Biscetti, F.; Iachininoto, M.G.; Nuzzolo, E.R.; Orlando, N.; Capodimonti, S.; Angelini, F.; Valentini, C.G.; Bianchi, M.; Larocca, L.M.; et al. Human cord blood endothelial progenitors promote post-ischemic angiogenesis in immunocompetent mouse model. Thromb. Res. 2016, 141, 106–111. [Google Scholar] [CrossRef]
- Bai, Y.-Y.; Wang, L.; Peng, X.-G.; Wang, Y.-C.; Chang, D.; Zheng, S.; Ding, J.; Li, C.; Ju, S. Non-invasive monitoring of transplanted endothelial progenitor cells in diabetic ischemic stroke models. Biomaterials 2015, 40, 43–50. [Google Scholar] [CrossRef] [PubMed]
- Tam, J.C.W.; Ko, C.H.; Lau, K.M.; To, M.H.; Kwok, H.F.; Siu, W.S.; Lau, C.P.; Chan, W.Y.; Leung, P.C.; Fung, K.P.; et al. Enumeration and functional investigation of endothelial progenitor cells in neovascularization of diabetic foot ulcer rats with a Chinese 2-herb formula. J. Diabetes 2014, 7, 718–728. [Google Scholar] [CrossRef] [PubMed]
- Sheng, Z.L.; Yao, Y.Y.; Li, Y.F.; Fu, C.; Ma, G.S. Transplantation of bradykinin-preconditioned human endothelial progenitor cells improves cardiac function via enhanced Akt/eNOS phosphorylation and angiogenesis. Am. J. Transl. Res. 2015, 7, 1214–1226. [Google Scholar]
- Van Pham, P.; Vu, N.B.; Nguyen, H.T.; Phan, N.K. Isolation of endothelial progenitor cells from human adipose tissue. Biomed. Res. Ther. 2016, 3, 19. [Google Scholar] [CrossRef]
- Zhou, L.; Xia, J.; Qiu, X.; Wang, P.; Jia, R.; Chen, Y.; Yang, B.; Dai, Y. In vitro evaluation of endothelial progenitor cells from adipose tissue as potential angiogenic cell sources for bladder angiogenesis. PLoS ONE 2015, 10, e0117644. [Google Scholar] [CrossRef] [PubMed]
- Czerwiec, K.; Zawrzykraj, M.; Deptuła, M.; Skoniecka, A.; Tymińska, A.; Zieliński, J.; Kosiński, A.; Pikuła, M. Adipose-Derived Mesenchymal Stromal Cells in Basic Research and Clinical Applications. Int. J. Mol. Sci. 2023, 24, 3888. [Google Scholar] [CrossRef]
- Liu, Q.; Li, J.; Chang, J.; Guo, Y.; Wen, D. The characteristics and medical applications of antler stem cells. Stem Cell Res. Ther. 2023, 14, 225. [Google Scholar] [CrossRef]
- Milián, L.; Molina, P.; Oliver-Ferrándiz, M.; Fernández-Sellers, C.; Monzó, A.; Sánchez-Sánchez, R.; Braza-Boils, A.; Mata, M.; Zorio, E. Cadaveric Adipose-Derived Stem Cells for Regenerative Medicine and Research. Int. J. Mol. Sci. 2023, 24, 15696. [Google Scholar] [CrossRef]
- Qin, Y.; Ge, G.; Yang, P.; Wang, L.; Qiao, Y.; Pan, G.; Yang, H.; Bai, J.; Cui, W.; Geng, D. An Update on Adipose-Derived Stem Cells for Regenerative Medicine: Where Challenge Meets Opportunity. Adv. Sci. 2023, 10, e2207334. [Google Scholar] [CrossRef]
- Matsumoto, D.; Sato, K.; Gonda, K.; Takaki, Y.; Shigeura, T.; Sato, T.; Aiba-Kojima, E.; Iizuka, F.; Inoue, K.; Suga, H.; et al. Cell-assisted lipotransfer: Supportive use of human adipose-derived cells for soft tissue augmentation with lipoinjection. Tissue Eng. 2006, 12, 3375–3382. [Google Scholar] [CrossRef]
- Sterodimas, A.; de Faria, J.; Nicaretta, B.; Papadopoulos, O.; Papalambros, E.; Illouz, Y.G. Cell-assisted lipotransfer. Aesthetic Surg. J. 2010, 30, 78–81. [Google Scholar] [CrossRef]
- Debuc, B.; Gendron, N.; Cras, A.; Rancic, J.; Philippe, A.; Cetrulo, C.L.; Lellouch, A.G.; Smadja, D.M. Improving Autologous Fat Grafting in Regenerative Surgery through Stem Cell-Assisted Lipotransfer. Stem Cell Rev. Rep. 2023, 19, 1726–1754. [Google Scholar] [CrossRef] [PubMed]
- Fu, H.; Dong, S.; Li, K. Study on promoting the regeneration of grafted fat by cell-assisted lipotransfer. Regen. Ther. 2022, 22, 7–18. [Google Scholar] [CrossRef]
- Dong, X.; Premaratne, I.; Gadjiko, M.; Berri, N.; Spector, J.A. Improving Fat Transplantation Survival and Vascularization with Adenovirus E4+ Endothelial Cell-Assisted Lipotransfer. Cells Tissues Organs 2022, 212, 341–351. [Google Scholar] [CrossRef] [PubMed]
- Mamsen, F.P.W.; Fischer-Nielsen, A.; Svalgaard, J.D.; Jensen, J.D.; Jønsson, B.; Duscher, D.; Christensen, J.; Van Leeuwen, M.; Kiilerich, C.H.; Roider, L.; et al. Cosmetic Breast Augmentation with Autologous Ex Vivo-Expanded Adipose-Derived Mesenchymal Stem/Stromal Cell (Stemform®)-Enriched Fat Grafts: A Study of the First Twenty-Two Real-World Patients. Aesthetic Plast. Surg. 2023, 1–18. [Google Scholar] [CrossRef]
- Wu, Q.; Chen, S.; Peng, W.; Chen, D. Current perspectives on cell-assisted lipotransfer for breast cancer patients after radiotherapy. World J. Surg. Oncol. 2023, 21, 133. [Google Scholar] [CrossRef]
- Alamán-Díez, P.; García-Gareta, E.; Arruebo, M.; Pérez, M. A bone-on-a-chip collagen hydrogel-based model using pre-differentiated adipose-derived stem cells for personalized bone tissue engineering. J. Biomed. Mater. Res. Part A 2022, 111, 88–105. [Google Scholar] [CrossRef] [PubMed]
- Hemati, S.; Hatamian-Zarmi, A.; Halabian, R.; Ghiasi, M.; Salimi, A. Schizophyllan promotes osteogenic differentiation of human adipose tissue-derived mesenchymal stem cells in vitro. Mol. Biol. Rep. 2023, 50, 10037–10045. [Google Scholar] [CrossRef]
- Zhang, D.; Xiao, W.; Liu, C.; Wang, Z.; Liu, Y.; Yu, Y.; Jian, C.; Yu, A. Exosomes Derived from Adipose Stem Cells Enhance Bone Fracture Healing via the Activation of the Wnt3a/β-Catenin Signaling Pathway in Rats with Type 2 Diabetes Mellitus. Int. J. Mol. Sci. 2023, 24, 4852. [Google Scholar] [CrossRef]
- Gomes, S.P.; Deliberador, T.M.; Gonzaga, C.C.; Klug, L.G.; Oliveira, L.d.C.; Urban, C.d.A.; Zielak, J.C.; Giovanini, A.F. Bone healing in critical-size defects treated with immediate transplant of fragmented autogenous white adipose tissue. J. Craniofacial Surg. 2012, 23, 1239–1244. [Google Scholar] [CrossRef]
- Sawada, H.; Kazama, T.; Nagaoka, Y.; Arai, Y.; Kano, K.; Uei, H.; Tokuhashi, Y.; Nakanishi, K.; Matsumoto, T. Bone marrow-derived dedifferentiated fat cells exhibit similar phenotype as bone marrow mesenchymal stem cells with high osteogenic differentiation and bone regeneration ability. J. Orthop. Surg. Res. 2023, 18, 191. [Google Scholar] [CrossRef]
- Pappa, E.I.; Barbagianni, M.S.; Georgiou, S.G.; Athanasiou, L.V.; Psalla, D.; Vekios, D.; Katsarou, E.I.; Vasileiou, N.G.C.; Gouletsou, P.G.; Galatos, A.D.; et al. The Use of Stromal Vascular Fraction in Long Bone Defect Healing in Sheep. Animals 2023, 13, 2871. [Google Scholar] [CrossRef] [PubMed]
- Pennasilico, L.; Di Bella, C.; Sassaroli, S.; Salvaggio, A.; Roggiolani, F.; Piccionello, A.P. Effects of Autologous Microfragmented Adipose Tissue on Healing of Tibial Plateau Levelling Osteotomies in Dogs: A Prospective Clinical Trial. Animals 2023, 13, 2084. [Google Scholar] [CrossRef]
- Yun, H.H.; Kim, S.G.; Park, S.I.; Jo, W.; Kang, K.K.; Lee, E.J.; Kim, D.K.; Jung, H.S.; Son, J.Y.; Park, J.M.; et al. Early Osteogenic-Induced Adipose-Derived Stem Cells and Canine Bone Regeneration Potential Analyzed Using Biodegradable Scaffolds. Bioengineering 2023, 10, 1311. [Google Scholar] [CrossRef] [PubMed]
- Nellinger, S.; Kluger, P.J. How Mechanical and Physicochemical Material Characteristics Influence Adipose-Derived Stem Cell Fate. Int. J. Mol. Sci. 2023, 24, 3551. [Google Scholar] [CrossRef]
- Li, C.; Li, W.; Pu, G.; Wu, J.; Qin, F. Exosomes derived from miR-338-3p-modified adipose stem cells inhibited inflammation injury of chondrocytes via targeting RUNX2 in osteoarthritis. J. Orthop. Surg. Res. 2022, 17, 567. [Google Scholar] [CrossRef]
- Issa, M.R.; Naja, A.S.; Bouji, N.Z.; Sagherian, B.H. The role of adipose-derived mesenchymal stem cells in knee osteoarthritis: A meta-analysis of randomized controlled trials. Ther. Adv. Musculoskelet. Dis. 2022, 14, 1759720X221146005. [Google Scholar] [CrossRef] [PubMed]
- Muthu, S.; Patil, S.C.; Jeyaraman, N.; Jeyaraman, M.; Gangadaran, P.; Rajendran, R.L.; Oh, E.J.; Khanna, M.; Chung, H.Y.; Ahn, B.-C. Comparative effectiveness of adipose-derived mesenchymal stromal cells in the management of knee osteoarthritis: A meta-analysis. World J. Orthop. 2023, 14, 23–41. [Google Scholar] [CrossRef]
- Kuca-Warnawin, E.; Kurowska, W.; Plebańczyk, M.; Wajda, A.; Kornatka, A.; Burakowski, T.; Janicka, I.; Syrówka, P.; Skalska, U. Basic Properties of Adipose-Derived Mesenchymal Stem Cells of Rheumatoid Arthritis and Osteoarthritis Patients. Pharmaceutics 2023, 15, 1003. [Google Scholar] [CrossRef]
- Rybalko, V.; Hsieh, P.-L.; Ricles, L.M.; Chung, E.; Farrar, R.P.; Suggs, L.J.; Gonzalez-Garza, M.T.; Cruz-Vega, D.E.; Wanjare, M.; Huang, N.F.; et al. Therapeutic potential of adipose-derived stem cells and macrophages for ischemic skeletal muscle repair. Regen. Med. 2017, 12, 153–167. [Google Scholar] [CrossRef] [PubMed]
- Goudenege, S.; Pisani, D.F.; Wdziekonski, B.; Di Santo, J.P.; Bagnis, C.; Dani, C.; Dechesne, C.A. Enhancement of myogenic and muscle repair capacities of human adipose–derived stem cells with forced expression of MyoD. Mol. Ther. 2009, 17, 1064–1072. [Google Scholar] [CrossRef] [PubMed]
- Giuliani, G.; Rosina, M.; Reggio, A. Signaling pathways regulating the fate of fibro/adipogenic progenitors (FAPs) in skeletal muscle regeneration and disease. FEBS J. 2021, 289, 6484–6517. [Google Scholar] [CrossRef] [PubMed]
- Kesireddy, V. Evaluation of adipose-derived stem cells for tissue-engineered muscle repair construct-mediated repair of a murine model of volumetric muscle loss injury. Int. J. Nanomed. 2016, 11, 1461–1473. [Google Scholar] [CrossRef] [PubMed]
- Alheib, O.; da Silva, L.P.; Mesquita, K.A.; Morais, A.d.S.; Pirraco, R.P.; Reis, R.L.; Correlo, V.M. Human adipose-derived mesenchymal stem cells laden in gellan gum spongy-like hydrogels for volumetric muscle loss treatment. Biomed. Mater. 2023, 18, 065005. [Google Scholar] [CrossRef]
- Yu, F.; Gong, D.; Yan, D.; Wang, H.; Witman, N.; Lu, Y.; Fu, W.; Fu, Y. Enhanced adipose-derived stem cells with IGF-1-modified mRNA promote wound healing following corneal injury. Mol. Ther. 2023, 31, 2454–2471. [Google Scholar] [CrossRef]
- Ramin, S.; Ahadi, M.; Rad, L.M.; Kobarfad, F. Assessment of the effects of intrastromal injection of adipose-derived stem cells in keratoconus patients. Int. J. Ophthalmol. 2023, 16, 863–870. [Google Scholar] [CrossRef]
- Wang, G.; Zeng, L.; Gong, C.; Gong, X.; Zhu, T.; Zhu, Y. Extracellular vesicles derived from mouse adipose-derived mesenchymal stem cells promote diabetic corneal epithelial wound healing through NGF/TrkA pathway activation involving dendritic cells. Exp. Eye Res. 2023, 231, 109484. [Google Scholar] [CrossRef]
- Ryu, Y.; Hwang, J.S.; Noh, K.B.; Park, S.H.; Seo, J.H.; Shin, Y.J. Adipose Mesenchymal Stem Cell-Derived Exosomes Promote the Regeneration of Corneal Endothelium Through Ameliorating Senescence. Investig. Opthalmol. Vis. Sci. 2023, 64, 29. [Google Scholar] [CrossRef]
- Dar, E.R.; Gugjoo, M.B.; Farooq, F.; Nazir, T.; Shah, S.A.; Ahmad, S.M.; Shah, R.A.; Ahmad, R.A.; Dar, S.H.; Makhdoomi, D.M. Mesenchymal stem cells derived from bone marrow and adipose tissue for repairing acute sciatic nerve injury in a rabbit model. Tissue Cell 2023, 84, 102162. [Google Scholar] [CrossRef] [PubMed]
- Pelegri, N.G.; Stanczak, A.M.; Bottomley, A.L.; Milthorpe, B.K.; Gorrie, C.A.; Padula, M.P.; Santos, J. Adipose-Derived Stem Cells Spontaneously Express Neural Markers When Grown in a PEG-Based 3D Matrix. Int. J. Mol. Sci. 2023, 24, 12139. [Google Scholar] [CrossRef] [PubMed]
- Jin, Y.; Shi, R.; Qi, T.; Li, Q.; Chen, C.; Gao, S.; Gao, F.; Yang, D.; Sun, G.; Xu, J.; et al. Adipose-derived stem cells show hepatic differentiation potential and therapeutic effect in rats with acute liver failure. Acta Biochim. Biophys. Sin. 2023, 55, 601–612. [Google Scholar] [CrossRef]
- Suzushino, S.; Sato, N.; Ishigame, T.; Okada, R.; Kofunato, Y.; Watanabe, J.; Muto, M.; Tsukida, S.; Nishimagi, A.; Kimura, T.; et al. Tissue-Engineered Hepatocyte Sheets Supplemented with Adipose-Derived Stem Cells. Tissue Eng. Part A 2023, 29, 384–396. [Google Scholar] [CrossRef]
- Zhang, Z.; Shang, J.; Yang, Q.; Dai, Z.; Liang, Y.; Lai, C.; Feng, T.; Zhong, D.; Zou, H.; Sun, L.; et al. Exosomes derived from human adipose mesenchymal stem cells ameliorate hepatic fibrosis by inhibiting PI3K/Akt/mTOR pathway and remodeling choline metabolism. J. Nanobiotechnol. 2023, 21, 29. [Google Scholar] [CrossRef]
- Gan, L.; Zheng, L.; Yao, L.; Lei, L.; Huang, Y.; Zeng, Z.; Fang, N. Exosomes from adipose-derived mesenchymal stem cells improve liver fibrosis by regulating the miR-20a-5p/TGFBR2 axis to affect the p38 MAPK/NF-κB pathway. Cytokine 2023, 172, 156386. [Google Scholar] [CrossRef]
- Watanabe, H.; Tsuchiya, T.; Shimoyama, K.; Shimizu, A.; Akita, S.; Yukawa, H.; Baba, Y.; Nagayasu, T. Adipose-derived mesenchymal stem cells attenuate rejection in a rat lung transplantation model. J. Surg. Res. 2018, 227, 17–27. [Google Scholar] [CrossRef]
- Sun, C.K.; Yen, C.H.; Lin, Y.C.; Tsai, T.H.; Chang, L.T.; Kao, Y.H.; Chua, S.; Fu, M.; Ko, S.F.; Leu, S.; et al. Autologous transplantation of adipose-derived mesenchymal stem cells markedly reduced acute ischemia-reperfusion lung injury in a rodent model. J. Transl. Med. 2011, 9, 118. [Google Scholar] [CrossRef]
- Yi, Z.; Wu, Y.; Zhang, Q.; Xiao, H.; Yang, C.; Hou, K.; Zeng, N.; Qin, G.; Wu, M. E2F1-Deficient Adipose-Derived Stem Cells Improve Wound Closure in Mice by Up-Regulating Expression of VEGF and TGF-β1. Plast. Reconstr. Surg. 2023, 152, 98–107. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, Y.; Li, T.; Shen, K.; Wang, K.J.; Tian, C.; Hu, D. Adipose Mesenchymal Stem Cell Derived Exosomes Promote Keratinocytes and Fibroblasts Embedded in Collagen/Platelet-Rich Plasma Scaffold and Accelerate Wound Healing. Adv. Mater. 2023, 35, e2303642. [Google Scholar] [CrossRef] [PubMed]
- Zhou, C.; Zhang, B.; Yang, Y.; Jiang, Q.; Li, T.; Gong, J.; Tang, H.; Zhang, Q. Stem cell-derived exosomes: Emerging therapeutic opportunities for wound healing. Stem Cell Res. Ther. 2023, 14, 107. [Google Scholar] [CrossRef] [PubMed]
- Schneider, I.; Calcagni, M.; Buschmann, J. Adipose-derived stem cells applied in skin diseases, wound healing and skin defects: A review. Cytotherapy 2022, 25, 105–119. [Google Scholar] [CrossRef] [PubMed]
- Mirshekar, M.; Afkhami, H.; Razavi, S.; Jazi, F.M.; Darban-Sarokhalil, D.; Ohadi, E.; Nezhad, M.M.; Karimi, R. Potential antibacterial activity and healing effect of topical administration of bone marrow and adipose mesenchymal stem cells encapsulated in collagen-fibrin hydrogel scaffold on full-thickness burn wound infection caused by Pseudomonas aeruginosa. Burns 2023, 49, 1944–1957. [Google Scholar] [CrossRef]
- Wang, B.; Wang, M.; Li, Y.; Shao, M.; Zhan, D.; Yan, S.; Ma, X.; Ma, Y. Functional enhancement of acute infracted heart by coinjection of autologous adipose-derived stem cells with matrigel. Turk. J. Biol. 2023, 47, 170–185. [Google Scholar] [CrossRef]
- Guo, W.; Xu, Y.; Liu, X.; Dou, J.; Guo, Z. Therapeutic effect of adipose-derived stem cells injected into pericardial cavity in rat heart failure. ESC Heart Fail. 2023, 11, 492–502. [Google Scholar] [CrossRef]
- Cheng, N.; Ren, C.; Yang, M.; Wu, Y.; Zhang, H.; Wei, S.; Wang, R. Injectable Cryogels Associate with Adipose-Derived Stem Cells for Cardiac Healing After Acute Myocardial Infarctions. J. Biomed. Nanotechnol. 2021, 17, 981–988. [Google Scholar] [CrossRef]
- Thankam, F.G.; Sedighim, S.; Kuan, R.; Agrawal, D.K. Ischemia challenged epicardial adipose tissue stem cells-derived extracellular vesicles alter the gene expression of cardiac fibroblasts to cardiomyocyte like phenotype. Transl. Res. 2022, 254, 54–67. [Google Scholar] [CrossRef]
- Jankowski, M.; Dompe, C.; Sibiak, R.; Wąsiatycz, G.; Mozdziak, P.; Jaśkowski, J.M.; Antosik, P.; Kempisty, B.; Dyszkiewicz-Konwińska, M. In Vitro Cultures of Adipose-Derived Stem Cells: An Overview of Methods, Molecular Analyses, and Clinical Applications. Cells 2020, 9, 1783. [Google Scholar] [CrossRef]
- Kakkar, A.; Nandy, S.B.; Gupta, S.; Bharagava, B.; Airan, B.; Mohanty, S. Adipose tissue derived mesenchymal stem cells are better respondents to TGFβ1 for in vitro generation of cardiomyocyte-like cells. Mol. Cell. Biochem. 2019, 460, 53–66. [Google Scholar] [CrossRef]
- Ibarra-Ibarra, B.R.; Franco, M.; Paez, A.; López, E.V.; Massó, F. Improved Efficiency of Cardiomyocyte-Like Cell Differentiation from Rat Adipose Tissue-Derived Mesenchymal Stem Cells with a Directed Differentiation Protocol. Stem Cells Int. 2019, 2019, 8940365. [Google Scholar] [CrossRef] [PubMed]
- Si, Z.; Wang, X.; Sun, C.; Kang, Y.; Xu, J.; Wang, X.; Hui, Y. Adipose-derived stem cells: Sources, potency, and implications for regenerative therapies. Biomed. Pharmacother. 2019, 114, 108765. [Google Scholar] [CrossRef] [PubMed]
- Manikowski, D.; Andrée, B.; Samper, E.; Saint-Marc, C.; Olmer, R.; Vogt, P.; Strauß, S.; Haverich, A.; Hilfiker, A. Human adipose tissue-derived stromal cells in combination with exogenous stimuli facilitate three-dimensional network formation of human endothelial cells derived from various sources. Vasc. Pharmacol. 2018, 106, 28–36. [Google Scholar] [CrossRef] [PubMed]
- Banas, A.; Teratani, T.; Yamamoto, Y.; Tokuhara, M.; Takeshita, F.; Quinn, G.; Okochi, H.; Ochiya, T. Adipose tissue-derived mesenchymal stem cells as a source of human hepatocytes. Hepatology 2007, 46, 219–228. [Google Scholar] [CrossRef]
- Moriyama, H.; Moriyama, M.; Ozawa, T.; Tsuruta, D.; Hayakawa, T. Differentiation of Human Adipose-Derived Mesenchymal Stromal/Stem Cells into Insulin-Producing Cells with A Single Tet-Off Lentiviral Vector System. Cell J. 2022, 24, 705–714. [Google Scholar] [CrossRef]
- Reckhenrich, A.K.; Kirsch, B.M.; Wahl, E.A.; Schenck, T.L.; Rezaeian, F.; Harder, Y.; Foehr, P.; Machens, H.-G.; Egaña, J.T. Surgical sutures filled with adipose-derived stem cells promote wound healing. PLoS ONE 2014, 9, e91169. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, S.; Gu, C.; Xiong, Y.; Shen, H.; Liu, F.; Yang, J. Ex-vivo treatment of allografts using adipose-derived stem cells induced prolonged rejection-free survival in an allogenic hind-limb transplantation model. Ann. Transl. Med. 2020, 8, 867. [Google Scholar] [CrossRef]
- Vakhshori, V.; Bougioukli, S.; Sugiyama, O.; Kang, H.P.; Tang, A.H.; Park, S.H.; Lieberman, J.R. Ex vivo regional gene therapy with human adipose-derived stem cells for bone repair. Bone 2020, 138, 115524. [Google Scholar] [CrossRef]
- Andreeva, E.; Andrianova, I.; Bobyleva, P.; Gornostaeva, A.; Ezdakova, M.; Golikova, E.; Buravkova, L. Adipose tissue-derived stromal cells retain immunosuppressive and angiogenic activity after coculture with cord blood hematopoietic precursors. Eur. J. Cell Biol. 2020, 99, 151069. [Google Scholar] [CrossRef]
- Vakhshori, V.; Bougioukli, S.; Sugiyama, O.; Tang, A.; Yoho, R.; Lieberman, J.R. Cryopreservation of Human Adipose-Derived Stem Cells for Use in Ex Vivo Regional Gene Therapy for Bone Repair. Hum. Gene Ther. Methods 2018, 29, 269–277. [Google Scholar] [CrossRef]
- Wang, X.; Ma, Y.; Gao, Z.; Yang, J. Human adipose-derived stem cells inhibit bioactivity of keloid fibroblasts. Stem Cell Res. Ther. 2018, 9, 40. [Google Scholar] [CrossRef]
- Ben Dov, M.; Krief, B.; Benhamou, M.; Klein, A.; Schwartz, S.; Loewenstein, A.; Barak, A.; Barzelay, A. Regenerative Effect of Adipose Derived Mesenchymal Stem Cells on Ganglion Cells in the Hypoxic Organotypic Retina Culture. Int. J. Stem Cells 2022, 16, 244–249. [Google Scholar] [CrossRef]
- Alharbi, Z.; Qari, S.; Bader, M.; Khamis, S.; Almarzouqi, F.; Vogt, M.; Opländer, C. The LipoDerm Method for Regeneration and Reconstruction in Plastic Surgery: A Technical Experimental Ex Vivo Note. Med. Sci. 2023, 11, 16. [Google Scholar] [CrossRef]
- Yu, F.; Witman, N.; Yan, D.; Zhang, S.; Zhou, M.; Yan, Y.; Yao, Q.; Ding, F.; Yan, B.; Wang, H.; et al. Human adipose-derived stem cells enriched with VEGF-modified mRNA promote angiogenesis and long-term graft survival in a fat graft transplantation model. Stem Cell Res. Ther. 2020, 11, 490. [Google Scholar] [CrossRef]
- Kang, S.; Yasuhara, R.; Tokumasu, R.; Funatsu, T.; Mishima, K. Adipose-derived mesenchymal stem cells promote salivary duct regeneration via a paracrine effect. J. Oral Biosci. 2023, 65, 104–110. [Google Scholar] [CrossRef]
- Ai, G.; Meng, M.; Guo, J.; Li, C.; Zhu, J.; Liu, L.; Liu, B.; Yang, W.; Shao, X.; Cheng, Z.; et al. Adipose-derived stem cells promote the repair of chemotherapy-induced premature ovarian failure by inhibiting granulosa cells apoptosis and senescence. Stem Cell Res. Ther. 2023, 14, 75. [Google Scholar] [CrossRef]
- Chandrababu, K.; Sreelatha, H.V.; Sudhadevi, T.; Anil, A.; Arumugam, S.; Krishnan, L.K. In vivo neural tissue engineering using adipose-derived mesenchymal stem cells and fibrin matrix. J. Spinal Cord Med. 2021, 46, 262–276. [Google Scholar] [CrossRef]
- Ribeiro, M.; Macedo, M.R.; de Souza, G.A.; Neto, F.I.d.A.; Santos, K.C.; Araujo, G.H.M.; Moraes, J.d.M.; Vulcani, V.A.S. Use of stem cells adipose tissue derived accelerates the healing process in third-degree burns. Burn. 2023, 50, 132–145. [Google Scholar] [CrossRef] [PubMed]
- Vialle, E.N.; Fracaro, L.; Barchiki, F.; Dominguez, A.C.; Arruda, A.d.O.; Olandoski, M.; Brofman, P.R.S.; Rebelatto, C.L.K. Human Adipose-Derived Stem Cells Reduce Cellular Damage after Experimental Spinal Cord Injury in Rats. Biomedicines 2023, 11, 1394. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Zhang, M.; Sun, Y.; Li, M.; Chang, C.; Liu, W.; Zhu, X.; Wei, L.; Wen, F.; Liu, Y. Effects of adipose derived stem cells pretreated with resveratrol on sciatic nerve regeneration in rats. Sci. Rep. 2023, 13, 5812. [Google Scholar] [CrossRef] [PubMed]
- Park, E.J.; Kang, J.; Baik, S.H. Treatment of faecal incontinence using allogeneic-adipose-derived mesenchymal stem cells: A study protocol for a pilot randomised controlled trial. BMJ Open 2016, 6, e010450. [Google Scholar] [CrossRef] [PubMed]
- Diri, D.; Alasaad, H.; Muhammed, H.; Ibrahim, J. Case report: Adipose–derived mesenchymal stem cells combined with core decompression in the treatment of early-stage avascular necrosis of the femoral head. Int. J. Surg. Case Rep. 2022, 102, 107861. [Google Scholar] [CrossRef]
- Lee, W.-S.; Kim, H.J.; Kim, K.-I.; Kim, G.B.; Jin, W. Intra-Articular Injection of Autologous Adipose Tissue-Derived Mesenchymal Stem Cells for the Treatment of Knee Osteoarthritis: A Phase IIb, Randomized, Placebo-Controlled Clinical Trial. Stem Cells Transl. Med. 2019, 8, 504–511. [Google Scholar] [CrossRef] [PubMed]
- Coelho, H.R.S.; das Neves, S.C.; Menezes, J.N.d.S.; Antoniolli-Silva, A.C.M.B.; Oliveira, R.J. Autologous adipose-derived mesenchymal stem cell therapy reverses detrusor underactivity: Open clinical trial. Stem Cell Res. Ther. 2023, 14, 64. [Google Scholar] [CrossRef]
- Qayyum, A.A.; van Klarenbosch, B.; Frljak, S.; Cerar, A.; Poglajen, G.; Traxler-Weidenauer, D.; Nadrowski, P.; Paitazoglou, C.; Vrtovec, B.; Bergmann, M.W.; et al. Effect of allogeneic adipose tissue-derived mesenchymal stromal cell treatment in chronic ischaemic heart failure with reduced ejection fraction—The SCIENCE trial. Eur. J. Heart Fail. 2023, 25, 576–587. [Google Scholar] [CrossRef]
- Tobita, M.; Masubuchi, Y.; Ogata, Y.; Mitani, A.; Kikuchi, T.; Toriumi, T.; Raudales, J.L.M.; Mizuno, H.; Suzuki, Y.; Wakana, K.; et al. Study protocol for periodontal tissue regeneration with a mixture of autologous adipose-derived stem cells and platelet rich plasma: A multicenter, randomized, open-label clinical trial. Regen. Ther. 2022, 21, 436–441. [Google Scholar] [CrossRef]
- Setiawan, A.M.; Kamarudin, T.A.; Ghafar, N.A. The role of BMP4 in adipose-derived stem cell differentiation: A minireview. Front. Cell Dev. Biol. 2022, 10, 1045103. [Google Scholar] [CrossRef]
- Chen, C.; Yan, Q.; Yan, Y.; Ma, M.; He, Y.; Shui, X.; Yang, Z.; Lan, X.; Tang, Y.; Lei, W. MicroRNA-1 Regulates the Differentiation of Adipose-Derived Stem Cells into Cardiomyocyte-Like Cells. Stem Cells Int. 2018, 2018, 7494530. [Google Scholar] [CrossRef]
- Erickson, G.R.; Gimble, J.M.; Franklin, D.M.; Rice, H.E.; Awad, H.; Guilak, F. Chondrogenic potential of adipose tissue-derived stromal cells in vitro and in vivo. Biochem. Biophys. Res. Commun. 2002, 290, 763–769. [Google Scholar] [CrossRef]
- Awad, H.A.; Halvorsen, Y.-D.C.; Gimble, J.M.; Guilak, F. Effects of transforming growth factor beta1 and dexamethasone on the growth and chondrogenic differentiation of adipose-derived stromal cells. Tissue Eng. 2003, 9, 1301–1312. [Google Scholar] [CrossRef]
- Venugopal, B.; Shenoy, S.J.; Mohan, S.; Kumar, P.R.A.; Kumary, T.V. Bioengineered corneal epithelial cell sheet from mesenchymal stem cells—A functional alternative to limbal stem cells for ocular surface reconstruction. J. Biomed. Mater. Res. Part B Appl. Biomater. 2019, 108, 1033–1045. [Google Scholar] [CrossRef]
- Tomita, K.; Madura, T.; Sakai, Y.; Yano, K.; Terenghi, G.; Hosokawa, K. Glial differentiation of human adipose-derived stem cells: Implications for cell-based transplantation therapy. Neuroscience 2013, 236, 55–65. [Google Scholar] [CrossRef]
- Câmara, D.A.D.; Shibli, J.A.; Müller, E.A.; De-Sá-Junior, P.L.; Porcacchia, A.S.; Blay, A.; Lizier, N.F. Adipose Tissue-Derived Stem Cells: The Biologic Basis and Future Directions for Tissue Engineering. Materials 2020, 13, 3210. [Google Scholar] [CrossRef] [PubMed]
- Ceccarelli, S.; Pontecorvi, P.; Anastasiadou, E.; Napoli, C.; Marchese, C. Immunomodulatory Effect of Adipose-Derived Stem Cells: The Cutting Edge of Clinical Application. Front. Cell Dev. Biol. 2020, 8, 236. [Google Scholar] [CrossRef] [PubMed]
- Kilroy, G.E.; Foster, S.J.; Wu, X.; Ruiz, J.; Sherwood, S.; Heifetz, A.; Ludlow, J.W.; Stricker, D.M.; Potiny, S.; Green, P.; et al. Cytokine profile of human adipose-derived stem cells: Expression of angiogenic, hematopoietic, and pro-inflammatory factors. J. Cell. Physiol. 2007, 212, 702–709. [Google Scholar] [CrossRef] [PubMed]
- Bi, X.; Li, Y.; Dong, Z.; Zhao, J.; Wu, W.; Zou, J.; Guo, L.; Lu, F.; Gao, J. Recent Developments in Extracellular Matrix Remodeling for Fat Grafting. Front. Cell Dev. Biol. 2021, 9, 767362. [Google Scholar] [CrossRef]
Function | Description/References |
---|---|
Energy storage and metabolic regulation | AT is a central metabolic organ that plays a central role in systemic energy homeostasis. WAT is specialized for the storage of energy (in the form of triacylglycerols) and energy mobilization (as fatty acids), and BAT is a thermogenic tissue. Dysregulation of the regulatory circuits (storage and oxidation in WAT and thermogenesis in BAT) is closely associated with metabolic disorders and AT malfunction, including obesity, insulin resistance, chronic inflammation, mitochondrial dysfunction, and fibrosis [38,39,40,41]. |
Mechanical protection and body temperature regulation | AT has important mechanical properties, serving to protect organs and cushion body parts exposed to high levels of mechanical stress. Dermal AT is primarily responsible for insulation. This is particularly important in cold environments to prevent heat loss and to help regulate body temperature [42,43]. |
Endocrine function and hormone storage | The identification and characterization of leptin in 1994 established AT as an endocrine organ. AT was identified as a major site for the metabolism of sex steroids and the production of adipsin. AT secretes a variety of bioactive peptides (adipokines), lipids (lipokines), and exosomal microRNAs, which act at both the local (autocrine/paracrine) and systemic (endocrine) levels. In addition, AT expresses numerous receptors that allow it to respond to afferent signals from traditional hormone systems as well as the central nervous system [44,45]. |
Appetite regulation | Leptin represents the satiety hormone. The leptin hormone is produced mainly by the gastric mucosa, enterocytes, and adipocytes. This hormone is a marker of energy stores, as triglyceride levels in the fat cells determine the level of leptin secretion [46]. |
Study Type | ASCs Sources | Area of Interest | Outcomes | Reference |
---|---|---|---|---|
In vitro | Human AT | Hepatic differentiation potential of ADSCs | ASCs can be easily isolated, selected, and induced into mature, transplantable hepatocytes | [175] |
In vitro | Human AT | ADSCs differentiation into insulin-producing cells | Entiviral vector system could allow the differentiation of ADSCs into insulin-producing cells | [176] |
In vitro | Human AT | Promote wound healing and improve scaring | Using ADSC-filled sutures can improve wound healing by releasing key molecules involved in angiogenesis, immunomodulation, and tissue remodeling | [177] |
Ex vivo | Human abdominal fat tissue | Mechanism of ADSCs in wound healing | Topical applications of ADSCs improve wound healing by promoting re-epithelialization and vascularization | [26] |
Ex vivo | Rat inguinal AT | Mechanisms of ADSCs in preventing allografts immune rejection | Ex vivo infusion of ADSCs prolongs the survival of allografts after surgery | [178] |
Ex vivo | Human AT from abdomen, buttock, or thigh | Using transduced human ADSCs overexpressing bone morphogenetic protein-2 | Human ADSCs overexpressing bone morphogenetic protein-2 can heal critical-sized femoral defects | [179] |
Ex vivo | Human AT | Immunosuppressive and angiogenic activities of ADSCs after coculture with cord blood hematopoietic precursors (cbHSPCs) | ADSCs retain immunosuppressive and proangiogenic capacities with the support of ex vivo expansion of cbHSPCs | [180] |
Ex vivo | Human AT from the abdomen, buttock, or thigh | Osteogenic potential of cryopreserved ADSCs that are transduced with a BMP-2-containing lentiviral vector | ADSCs can be frozen in liquid nitrogen for 3 weeks without any adverse effects to cell viability, protein production, osteogenic potential, or immunophenotype | [181] |
Ex vivo | Human AT | Potential of ADSCs in fibrosis treatment | Human ADSCs significantly inhibited keloid fibroblast-related bioactivities | [182] |
Ex vivo | Human AT | Anti-apoptotic and pro-proliferative cytokines secretion of ADSCs’ | Direct or indirect contact of ADSCs with ischemic retinal ganglion cells resulted in salvage from cell death | [183] |
Ex vivo | Human AT | ADSCs’ behavior combined with dermal scaffolds | ADSCs showed a high yield of proliferation and differentiation onto the collagen–elastin matrix of ADSCs | [184] |
In vivo (on rats) | Human adipose tissue | Therapeutic potential of combining ADSCs with modRNA | Significantly improved the retention of fat grafts through proangiogenic and pro-proliferative responses | [185] |
In vivo (on mice) | Inguinal AT from female mice | Role of ADSCs in salivary gland (SG) regeneration | ADSCs-released factors scavenge reactive oxygen species and maintain SG repair and regeneration via paracrine effects | [186] |
In vivo (on rats) | Human AT | Effect of ADSCs in premature ovarian failure | ADSCs transplantation reduced the apoptosis of ovarian granulosa cells and secretion of follicle-stimulating hormone | [187] |
In vivo (on rats) | Rat AT | Differentiation of ADSCs into neural progenitor cells | Study demonstrated the differentiation potential of ADSCs (on fibrin matrix) into transplantable neural progenitors | [188] |
In vivo (on rats) | Rat AT | Action of ADSCs (combined with low-level laser photobiomodulation therapy—LLLT) in the repair process of burned skin | ADSCs+ can improve healing process through significant re-epithelialization, inflammation reduction, and angiogenesis stimulation | [189] |
In vivo (on rats) | Human AT from bariatric surgery | Effect of human ADSCs infusion through the cauda equina in rats with traumatic spinal cord injury | This research suggests that immunomodulatory factors secreted by the ADSCs reduced inflammation, inhibited apoptosis, and protected neurons | [190] |
In vivo (on rats) | Rat AT from abdomen | Ability of ADSCs + Resveratrol to promote sciatic nerve regeneration | Application of ADSCs+ could significantly improve the quality of nerve repair compared with untreated ADSCs | [191] |
In vivo (in human, trial study) | ALLO-ADSCs, approved for clinical studies by the Korean Food and Drug Administration | Safety and efficacy of using allogeneic-ADSCs in the treatment of the anal sphincter of patients with fecal incontinence | Allogeneic-ADSCs have theoretical potential for regeneration of the anal sphincter | [192] |
In vivo (in human, case report) | Human abdomen fat | Effect of ADSCs injection + core decompression in early-stage of avascular necrosis of the femoral head | 3 months post op. MRI showed healed femoral head with a recession of the lesion | [193] |
In vivo (in human, trial study) | Autologous ADSCs obtained by lipoaspiration from abdominal subcutaneous fat | Efficacy and safety of a single intra-articular injection of ADSCs for patients with knee osteoarthritis | No changes in MRI of cartilage defect at 6 months vs defect increase in the control group. ADSCs helps to functional improvement and pain relief for patients with knee osteoarthritis, without causing adverse events at 6 months follow-up | [194] |
In vivo (in human, trial study) | Autologous MSCs obtained by liposuction from the inner face of the thighs | To evaluate the effects of cell therapy with ADSCs on the treatment of detrusor underactivity in men | ADSCs therapy led to improvements in voiding function | [195] |
In vivo (in human, trial study) | Allogeneic ADSCs from healthy donors obtained by liposuction from abdominal subcutaneous AT | To investigate if a single treatment with direct intramyocardial injections of ADSCs was safe and improved cardiac function in patients with chronic ischemic heart failure with reduced ejection fraction. | Direct injection with allogeneic ADSCs into the myocardium was safe during a 3-year follow-up period. However, in comparison to placebo, there was no significant improvement of left ventricular volumes or function, or clinical symptoms 6 months after treatment | [196] |
In vivo (in human, trial study) | Autologous ADSCs obtained by liposuction from subcutaneous AT | Evaluation of the periodontal defects regeneration using a mixture of ADSCs and PRP (platelet-rich plasma) | Cell therapy using ADSCs can represent a useful medical technology for regeneration of periodontal defects | [197] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Biniazan, F.; Stoian, A.; Haykal, S. Adipose-Derived Stem Cells: Angiogenetic Potential and Utility in Tissue Engineering. Int. J. Mol. Sci. 2024, 25, 2356. https://doi.org/10.3390/ijms25042356
Biniazan F, Stoian A, Haykal S. Adipose-Derived Stem Cells: Angiogenetic Potential and Utility in Tissue Engineering. International Journal of Molecular Sciences. 2024; 25(4):2356. https://doi.org/10.3390/ijms25042356
Chicago/Turabian StyleBiniazan, Felor, Alina Stoian, and Siba Haykal. 2024. "Adipose-Derived Stem Cells: Angiogenetic Potential and Utility in Tissue Engineering" International Journal of Molecular Sciences 25, no. 4: 2356. https://doi.org/10.3390/ijms25042356
APA StyleBiniazan, F., Stoian, A., & Haykal, S. (2024). Adipose-Derived Stem Cells: Angiogenetic Potential and Utility in Tissue Engineering. International Journal of Molecular Sciences, 25(4), 2356. https://doi.org/10.3390/ijms25042356