Immunoinformatic Identification of Multiple Epitopes of gp120 Protein of HIV-1 to Enhance the Immune Response against HIV-1 Infection
Abstract
:1. Introduction
2. Results
2.1. Linear and Conformational B Cell Epitope Prediction
2.2. Selection of CTL Epitope Prediction
2.3. CTL Immunogenicity Prediction
2.4. Selection of HTL Epitopes Prediction
2.5. Selection of Most Promising Epitopes
2.6. Proteasomal Cleavage/TAP Transport
2.7. IFN-γ Inducing Epitopes
2.8. Population Coverage Analysis
2.9. Antigenicity, Allergenicity, and Solubility Assessment
2.10. Toxicity and Physicochemical Properties Assessment
2.11. Epitopes MHC Restriction and Cluster Assessment
2.12. Multiepitope Subunit Vaccine Modeling
2.13. Antigenicity, Allergenicity, and Physicochemical Composition of Vaccine Construct
2.14. Prediction of the Secondary Structure of the Vaccine Construct
2.15. Modeling of Three-Dimensional (3D) Vaccine Construct, Refinement, and Validation
2.16. Disulfide Bond Engineering of the Designed Vaccine
2.17. Molecular Docking of the Vaccine Construct with TLRs
2.18. Molecular Dynamics Simulation
2.19. Codon Optimization and In Silico Cloning
2.20. Immune Simulations of Vaccine Construct
3. Discussion
4. Methodology
4.1. Protein Sequence and Multiple-Sequence Exploration
4.2. B-Cell Epitope Prediction
4.3. Cytotoxic T-Cell Epitope
4.4. Class I Immunogenicity Assessment
4.5. Helper T Cell Epitope
4.6. Selection of Top Epitopes
4.7. Proteasomal Cleavage/TAP Transport
4.8. IFN-γ Cytokine Inducer Prediction
4.9. Determination of Population Coverage
4.10. Antigenicity, Allergenicity, and Solubility Analysis
4.11. Toxicity and Physicochemical Properties Assessment
4.12. Hydropathy Analysis of Epitopes
4.13. MHC Restricted Alleles through Cluster Analysis
4.14. Multiepitope Subunit Vaccine Design
4.15. Assessment of Physicochemical Properties of the Vaccine Construct
4.16. Secondary and Tertiary Structure Analysis of the Vaccine
4.17. Refinement and Validation of 3D Vaccine Structure
4.18. Evaluation of Vaccine Disulfide Engineering
4.19. Vaccine Construct Docking with TLRs
4.20. Molecular Dynamics Simulation of the Vaccine-Receptor Complex
4.21. Codon Optimization and In Silico Cloning of the Vaccine Construct
4.22. Immune Simulations of Vaccine Construct
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sharp, P.M.; Hahn, B.H. Origins of HIV and the AIDS pandemic. Cold Spring Harbor Perspect. Med. 2011, 1, a006841. [Google Scholar] [CrossRef] [PubMed]
- Nyamweya, S.; Hegedus, A.; Jaye, A.; Rowland-Jones, S.; Flanagan, K.L.; Macallan, D.C. Comparing HIV-1 and HIV-2 infection: Lessons for viral immunopathogenesis. Rev. Med. Virol. 2013, 23, 221–240. [Google Scholar] [CrossRef] [PubMed]
- Getaneh, T.; Negesse, A.; Dessie, G.; Desta, M. The impact of tuberculosis co-infection on virological failure among adults living with HIV in Ethiopia: A systematic review and meta-analysis. J. Clin. Tuberc. Other Mycobact. Dis. 2022, 27, 100310. [Google Scholar] [CrossRef]
- Cohen, M.S.; Chen, Y.Q.; McCauley, M.; Gamble, T.; Hosseinipour, M.C.; Kumarasamy, N.; Hakim, J.G.; Kumwenda, J.; Grinsztejn, B.; Pilotto, J.H.; et al. Prevention of HIV-1 infection with early antiretroviral therapy. N. Engl. J. Med. 2011, 365, 493–505. [Google Scholar] [CrossRef] [PubMed]
- Mascola, J.R.; Montefiori, D.C. The role of antibodies in HIV vaccines. Annu. Rev. Immunol. 2010, 28, 413–444. [Google Scholar] [CrossRef]
- Araujo, L.A.; Almeida, S.E. HIV-1 diversity in the envelope glycoproteins: Implications for viral entry inhibition. Viruses 2013, 5, 595–604. [Google Scholar] [CrossRef]
- McLellan, J.S.; Pancera, M.; Carrico, C.; Gorman, J.; Julien, J.P.; Khayat, R.; Louder, R.; Pejchal, R.; Sastry, M.; Dai, K.; et al. Structure of HIV-1 gp120 V1/V2 domain with broadly neutralizing antibody PG9. Nature 2011, 480, 336–343. [Google Scholar] [CrossRef]
- Wilen, C.B.; Tilton, J.C.; Doms, R.W. HIV: Cell binding and entry. Cold Spring Harbor Perspect. Med. 2012, 2, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Zolla-Pazner, S. Identifying epitopes of HIV-1 that induce protective antibodies. Nat. Rev. Immunol. 2004, 4, 199–210. [Google Scholar] [CrossRef] [PubMed]
- Grabar, S.; Selinger-Leneman, H.; Abgrall, S.; Pialoux, G.; Weiss, L.; Costagliola, D. Prevalence and comparative characteristics of long-term nonprogressors and HIV controller patients in the French Hospital Database on HIV. Aids 2009, 23, 1163–1169. [Google Scholar] [CrossRef]
- Kumar, P. Long term non-progressor (LTNP) HIV infection. Indian J. Med. Res. 2013, 138, 291. [Google Scholar] [PubMed]
- Gorse, G.J.; Baden, L.R.; Wecker, M.; Newman, M.J.; Ferrari, G.; Weinhold, K.J.; Livingston, B.D.; Villafana, T.L.; Li, H.; Noonan, E.; et al. Safety and immunogenicity of cytotoxic T-lymphocyte poly-epitope, DNA plasmid (EP HIV-1090) vaccine in healthy, human immunodeficiency virus type 1 (HIV-1)-uninfected adults. Vaccine 2008, 26, 215–223. [Google Scholar] [CrossRef] [PubMed]
- Fomsgaard, A.; Karlsson, I.; Gram, G.; Schou, C.; Tang, S.; Bang, P.; Kromann, I.; Andersen, P.; Andreasen, L.V. Development and preclinical safety evaluation of a new therapeutic HIV-1 vaccine based on 18 T-cell minimal epitope peptides applying a novel cationic adjuvant CAF01. Vaccine 2011, 29, 7067–7074. [Google Scholar] [CrossRef] [PubMed]
- Karpenko, L.I.; Bazhan, S.I.; Eroshkin, A.M.; Antonets, D.V.; Chikaev, A.N.; Ilyichev, A.A. Artificial Epitope-Based Immunogens in HIV-Vaccine Design. In Advances in HIV and AIDS Control; IntechOpen: London, UK, 2018. [Google Scholar] [CrossRef]
- Cárdenas, C.; Bidon-Chanal, A.; Conejeros, P.; Arenas, G.; Marshall, S.; Luque, F.J. Molecular modeling of of class I and II alleles of major histocompatibility complex in Salmo salar. J. Comput.-Aided Mol. Des. 2010, 24, 1035–1051. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Fonseca, R.A.; Bello, M.; de Los Muñoz-Fernández, M.Á.; Jiménez, J.L.; Rojas-Hernández, S.; Fragoso-Vázquez, M.J.; Gutiérrez-Sánchez, M.; Rodrigues, J.; Cayetano-Castro, N.; Borja-Urby, R.; et al. In silico search, chemical characterization and immunogenic evaluation of amino-terminated G4-PAMAM-HIV peptide complexes using three dimensional models of HIV-1 gp120 protein. Colloids Surf. B 2019, 177, 77–93. [Google Scholar] [CrossRef]
- Chang, K.Y.; Yang, J.-R. Analysis and prediction of highly effective antiviral peptides based on random forests. PLoS ONE 2013, 8, e70166. [Google Scholar] [CrossRef]
- Sanchez-Trincado, J.L.; Gomez-Perosanz, M.; Reche, P.A. FundamentalsandmethodsforT-andB-cellepitopeprediction. J. Immunol. Res. 2017, 2017, 2680160. [Google Scholar] [CrossRef]
- Chaudhri, G.; Quah, B.J.; Wang, Y.; Tan, A.H.Y.; Zhou, J.; Karupiah, G.; Parish, C.R. T cell receptor sharing by cytotoxic T lymphocytes facilitates efficient virus control. Proc. Natl. Acad. Sci. USA 2009, 106, 14984–14989. [Google Scholar] [CrossRef]
- Bacchetta, R.; Gregori, S.; Roncarolo, M.-G. CD41 regulatory T cells: Mechanisms of induction and effector function. Autoimmun Rev. 2005, 4, 491–496. [Google Scholar] [CrossRef]
- Iwasaki, A.; Yang, Y. The potential danger of suboptimal antibody responses in COVID-19. Nat. Rev. Immunol. 2020, 20, 339–341. [Google Scholar] [CrossRef]
- Khan, I.U.; Huang, J.; Liu, R.; Wang, J.; Xie, J.; Zhu, N. Phage Display–Derived Ligand for Mucosal Transcytotic Receptor GP-2 Promotes Antigen Delivery to M Cells and Induces Antigen-Specific Immune Response. SLAS DISCOVERY Adv. Life Sci. R&D 2017, 22, 879–886. [Google Scholar]
- Magnan, C.N.; Randall, A.; Baldi, P. SOLpro: Accurate sequence-based prediction of protein solubility. Bioinformatics 2009, 25, 2200–2207. [Google Scholar] [CrossRef]
- Malonis, R.J.; Lai, J.R.; Vergnolle, O. Peptide-based vaccines: Current progress and future challenges. Chem. Rev. 2020, 120, 3210–3229. [Google Scholar] [CrossRef]
- Burton, D.R. Advancing an HIV vaccine; advancing vaccinology. Nat. Rev. Immunol. 2019, 19, 77–78. [Google Scholar] [CrossRef]
- Pandey, R.K.; Ojha, R.; Aathmanathan, V.S.; Krishnan, M.; Prajapati, V.K. Immuno- informatics approaches to design a novel multi-epitope subunit vaccine against HIV infection. Vaccine 2018, 36, 2262–2272. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Sun, W.; Guo, J.; Zhao, G.; Sun, S.; Yu, H.; Guo, Y.; Li, J.; Jin, X.; Du, L.; et al. In silico design of a DNA- based HIV-1 multi-epitope vaccine for Chinese populations. Hum. Vaccines Immunother. 2015, 11, 795–805. [Google Scholar] [CrossRef] [PubMed]
- Lopez Angel, C.J.; Tomaras, G.D. Bringing the path toward an HIV-1 vaccine into focus. PLoS Pathog. 2020, 16, e1008663. [Google Scholar] [CrossRef] [PubMed]
- Khairkhah, N.; Namvar, A.; Kardani, K.; Bolhassani, A. Prediction of cross-clade HIV-1 T-cell epitopes using immunoinformatics analysis. Proteins 2018, 86, 1284–1293. [Google Scholar] [CrossRef] [PubMed]
- Shey, R.A.; Ghogomu, S.M.; Esoh, K.K.; Nebangwa, N.D.; Shintouo, C.M.; Nongley, N.F.; Asa, B.F.; Ngale, F.N.; Vanhamme, L.; Souopgui, J. In-silico design of a multi-epitope vaccine candidate against onchocerciasis and related filarial diseases. Sci. Rep. 2019, 9, 4409. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, S.; Kamthania, M.; Singh, S.; Saxena, A.K.; Sharma, N. Structural basis of development of multi-epitope vaccine against middle east respiratory syndrome using in silico approach. Infect. Drug Resist. 2018, 11, 2377. [Google Scholar] [CrossRef]
- Saadi, M.; Karkhah, A.; Nouri, H.R. Development of a multi-epitope peptide vaccine inducing robust T cell responses against brucellosis using immu- noinformatics based approaches. Infect. Genet. Evol. 2017, 51, 227–234. [Google Scholar] [CrossRef] [PubMed]
- Lin, X.; Chen, S.; Xue, X.; Lu, L.; Zhu, S.; Li, W.; Chen, X.; Zhong, X.; Jiang, P.; Sename, T.S.; et al. Chimerically fused antigen rich of overlapped epitopes from latent membrane protein 2 (LMP2) of Epstein-Barr virus as a potential vaccine and diagnostic agent. Cell. Mol. Immunol. 2016, 13, 492–501. [Google Scholar] [CrossRef] [PubMed]
- Sher, H.; Sharif, H.; Zaheer, T.; Khan, S.A.; Ali, A.; Javed, H.; Javed, A. Employing computational tools to design a multi-epitope vaccine targeting human immunodeficiency virus-1 (HIV-1). BMC Genom. 2023, 24, 276. [Google Scholar] [CrossRef]
- Kardani, K.; Hashemi, A.; Bolhassani, A. Comparison of HIV-1 Vif and Vpu accessory proteins for delivery of polyepitope constructs harboring Nef, Gp160 and P24 using various cell penetrating peptides. PLoS ONE 2019, 14, e0223844. [Google Scholar] [CrossRef]
- Nagpal, G.; Usmani, S.S.; Dhanda, S.K.; Kaur, H.; Singh, S.; Sharma, M.; Raghava, G.P. Computer-aided designing of immunosuppressive peptides based on IL-10 inducing potential. Sci. Rep. 2017, 7, 42851. [Google Scholar] [CrossRef] [PubMed]
- Cheng, L.; Yu, H.; Li, G.; Li, F.; Ma, J.; Li, J.; Chi, L.; Zhang, L.; Su, L. Type I interferons suppress viral replica- tion but contribute to T cell depletion and dysfunction during chronic HIV-1 infection. JCI Insight 2017, 2, e94366. [Google Scholar] [CrossRef]
- Sanou, M.P.; De Groot, A.S.; Murphey-Corb, M.; Levy, J.A.; Yama-moto, J.K. HIV-1 vaccine trials: Evolving concepts and designs. Open AIDS J. 2012, 6, 274. [Google Scholar] [CrossRef]
- Weissman, D.; Poli, G.; Fauci, A.S. Interleukin 10 blocks HIV replication in macrophages by inhibiting the autocrine loop of tumor necrosis factor a and interleukin 6 induction of virus. AIDS Res. Hum. Retrovir. 1994, 10, 1199–1206. [Google Scholar] [CrossRef]
- Bento, C.A.; Hygino, J.; Andrade, R.M.; Saramago, C.S.; Silva, R.G.; Silva, A.A.; Linhares, U.C.; Brindeiro, R.; Tanuri, A.; Rosenzwajg, M.; et al. IL-10-secreting T cells from HIV-in- fected pregnant women downregulate HIV-1 replication: Effect enhanced by antiretroviral treatment. AIDS 2009, 23, 9–18. [Google Scholar] [CrossRef]
- Akbari, E.; Kardani, K.; Namvar, A.; Ajdary, S.; Ardakani, E.M.; Khalaj, V.; Bolhassani, A. In silico design and in vitro expression of novel multiepitope DNA constructs based on HIV-1 proteins and Hsp70 T-cell epitopes. Biotechnol. Lett. 2021, 43, 1513–1550. [Google Scholar] [CrossRef]
- Martinsen, J.T.; Gunst, J.D.; Højen, J.F.; Tolstrup, M.; Søgaard, O.S. The use of Toll-like receptor agonists in HIV-1 cure strategies. Front. Immunol. 2020, 11, 1112. [Google Scholar] [CrossRef]
- Abdulla, F.; Adhikari, U.K.; Uddin, M.K. Exploring T & B-cell epitopes and designing multi-epitope subunit vac- cine targeting integration step of HIV-1 lifecycle using immunoinformatics approach. Microb. Pathog. 2019, 137, 103791. [Google Scholar] [CrossRef] [PubMed]
- Saxena, M.; Sabado, R.L.; La Mar, M.; Mohri, H.; Salazar, A.M.; Dong, H.; Correa Da Rosa, J.; Markowitz, M.; Bhardwaj, N.; Miller, E. Poly-ICLC, a TLR3 agonist, induces transient innate immune responses in patients with treated HIV-infection: A randomized double-blinded placebo controlled trial. Front. Immunol. 2019, 10, 725. [Google Scholar] [CrossRef] [PubMed]
- Gauzzi, M.C.; Del Cornò, M.; Gessani, S. Dissecting TLR3 signalling in dendritic cells. Immunobiology 2010, 215, 713–723. [Google Scholar] [CrossRef]
- Hoshino, S.; Konishi, M.; Mori, M.; Shimura, M.; Nishitani, C.; Kuroki, Y.; Koyanagi, Y.; Kano, S.; Itabe, H.; Ishizaka, Y. HIV-1 Vpr induces TLR4/MyD88-mediated IL-6 production and reactivates viral production from latency. J. Leukoc. Biol. 2010, 87, 1133–1143. [Google Scholar] [CrossRef] [PubMed]
- Henrick, B.M.; Yao, X.D.; Zahoor, M.A.; Abimiku Al Osawe, S.; Rosenthal, K.L. TLR10 senses HIV-1 proteins and significantly enhances HIV-1 infection. Front. Immunol. 2019, 10, 482. [Google Scholar] [CrossRef]
- Mahmud, S.; Paul, G.K.; Biswas, S.; Afrose, S.; Mita, M.A.; Hasan, M.; Shimu, M.; Sultana, S.; Hossain, A.; Promi, M.M. Prospective role of peptide-based antiviral therapy against the main protease of SARS-CoV-2. Front. Mol. Biosci. 2021, 8, 628585. [Google Scholar] [CrossRef]
- Larsen, J.E.P.; Lund, O.; Nielsen, M. Improved method for predicting linear B-cell epitopes. Immunome Res. 2006, 2, 2. [Google Scholar] [CrossRef]
- Jespersen, M.C.; Mahajan, S.; Peters, B.; Nielsen, M.; Marcatili, P. Antibody specific B-cell epitope predictions:lever aging information from antibody-antigen protein complexes. Front. Immunol. 2019, 10, 298. [Google Scholar] [CrossRef]
- Manavalan, B.; Govindaraj, R.G.; Shin, T.H.; Kim, M.O.; Lee, G. iBCE-EL: A new ensemble learning framework for improved linear B-cell epitope prediction. Front. Immunol. 2018, 9, 1695. [Google Scholar] [CrossRef]
- Nielsen, M.; Lund, O. Nn-align. An artificial neural network-based alignment algorithm for MHC class ii peptide binding prediction. BMC Bioinf. 2009, 1, 296–300. [Google Scholar] [CrossRef]
- Doytchinova, I.A.; Flower, D.R. VaxiJen: A server for prediction of protective antigens, tumour antigens and subunit vaccines. BMC Bioinform. 2007, 8, 4. [Google Scholar] [CrossRef]
- Magnan, C.N.; Zeller, M.; Kayala, M.A.; Vigil, A.; Randall, A.; Felgner, P.L.; Baldi, P. High-throughput prediction of protein antigenicity using protein microarray data. Bioinformatics 2010, 26, 2936–2943. [Google Scholar] [CrossRef] [PubMed]
- Dimitrov, I.; Naneva, L.; Doytchinova, I.; Bangov, I. AllergenFP: Allergenicity prediction by descriptor fingerprints. Bioinformatics 2014, 30, 846–851. [Google Scholar] [CrossRef]
- Hebditch, M.; Carballo-Amador, M.A.; Charonis, S.; Curtis, R.; Warwicker, J. Protein–Sol: A web tool for predicting protein solubility from sequence. Bioinformatics 2017, 33, 3098–3100. [Google Scholar] [CrossRef]
- Gupta, S.; Kapoor, P.; Chaudhary, K.; Gautam, A.; Kumar, R.; Open Source Drug Discovery Consortium; Raghava, G.P. In silico approach for predicting toxicity of peptides and proteins. PLoS ONE 2013, 8, e73597. [Google Scholar] [CrossRef]
- Gasteiger, E.; Hoogland, C.; Gattiker, A.; Duvaud, S.E.; Wilkins, M.R.; Appel, R.D.; Bairoch, A. Protein identification and analysis tools on the ExPASyserver. In The Proteomics Protocols Handbook; Walker, J.M., Ed.; Humana Press: Totow, NJ, USA, 2005. [Google Scholar] [CrossRef]
- Thomsen, M.; Lundegaard, C.; Buus, S.; Lund, O.; Nielsen, M. MHCcluster, a method for functional clustering of MHC molecules. Immunogenetics 2013, 65, 655–665. [Google Scholar] [CrossRef] [PubMed]
- Fishman, J.M.; Wiles, K.; Wood, K.J. The acquired immune system response to biomaterials, including both naturally occurring and synthetic biomaterials. In Host Response to Biomaterials. The Impact of Host Response on Biomaterial Selection; Badylak, S.F., Ed.; Academic Press: Cambridge, MA, USA, 2015; Chapter 8; pp. 151–187. [Google Scholar]
- Buchan, D.W.A.; Jones, D.T. The PSIPRED Protein Analysis Workbench: 20 years on. Nucleic Acids Res. 2019, 47, W402–W407. [Google Scholar] [CrossRef]
- Baek, M.; DiMaio, F.; Anishchenko, I.; Dauparas, J.; Ovchinnikov, S.; Lee, G.R.; Wang, J.; Cong, Q.; Kinch, L.N.; Schaeffer, R.D.; et al. Accurate prediction of protein structures and interactions using a three-track neural network. Science 2021, 373, 871–876. [Google Scholar] [CrossRef] [PubMed]
- Nugent, T.; Cozzetto, D.; Jones, D.T. Evaluation of predictions in the CASP10 model refinement category. Proteins 2014, 82, 98–111. [Google Scholar] [CrossRef]
- Laskowski, R.A.; MacArthur, M.W.; Thornton, J.M. PROCHECK: Validation of protein-structure coordinates. In International Tables for Crystallography; International Union of Crystallography: Chester, UK, 2012; Chapter 21.4; Volume F, pp. 684–687. [Google Scholar] [CrossRef]
- Wiederstein, M.; Sippl, M.J. ProSA-web: Interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Res. 2007, 35, W407–W410. [Google Scholar] [CrossRef]
- Dombkowski, A.A. Disulfide by Design: A computational method for the rational design of disulfide bonds in proteins. Bioinformatics 2003, 19, 1852–1853. [Google Scholar] [CrossRef]
- Kozakov, D.; Hall, D.R.; Xia, B.; Porter, K.A.; Padhorny, D.; Yueh, C.; Beglov, D.; Vajda, S. The ClusPro web server for protein-protein docking. Nat. Protoc. 2017, 12, 255–278. [Google Scholar] [CrossRef]
- Laskowski, R.A.; Jabłońska, J.; Pravda, L.; Vareková, R.S.; Thornton, J.M. PDBsum: Structural summaries of PDB entries. Protein Sci. 2018, 27, 129–134. [Google Scholar] [CrossRef]
- López-Blanco, J.R.; Aliaga, J.I.; Quintana-Ortí, E.S.; Chacón, P. iMODS: Internal coordinates normal mode analysis server. Nucleic Acids Res. 2014, 42, W271–W276. [Google Scholar] [CrossRef] [PubMed]
- Castiglione, F.; Mantile, F.; De Berardinis, P.; Prisco, A. How the interval between prime and boost injection affects the immune response in a computational model of the immune system. Comput. Math. Methods Med. 2012, 2012, 842329. [Google Scholar] [CrossRef] [PubMed]
- Solanki, V.; Tiwari, V. Subtractive proteomics to identify novel drug targets and reverse vaccinology for the development of chimeric vaccine against Acinetobacter baumannii. Sci. Rep. 2018, 8, 9044. [Google Scholar] [CrossRef] [PubMed]
Parameter | Server Name | Server Link |
---|---|---|
Consensus sequence | muscle server | https://www.ebi.ac.uk/Tools/msa/muscle/ (accessed on 11 December 2023) |
B-cell prediction | IEDB | http://tools.iedb.org/bcell/ (accessed on 11 December 2023) |
B-cell prediction | BepiPred-2.0 | http://www.cbs.dtu.dk/services/BepiPred/ (accessed on 11 December 2023) |
B-cell prediction | iBCE-EL | http://thegleelab.org/iBCE-EL/ (accessed on 11 December 2023) |
B-cell prediction | ElliPro | http://tools.iedb.org/ellipro (accessed on 11 December 2023) |
CTL prediction | IEDB | http://tools.iedb.org/mhci/ (accessed on 11 December 2023) |
Immunogenicity | IEDB | http://tools.immuneepitope.org/immunogenicity/ (accessed on 12 December 2023) |
HTL prediction | IEDB | http://tools.iedb.org/mhcii/ (accessed on 11 December 2023) |
TAP and proteasome | NetCTL 1.2 | https://services.healthtech.dtu.dk/services/NetCTL-1.2/ (accessed on 12 December 2023) |
IFN-γ prediction | IFNEpitope | http://crdd.osdd.net/raghava/ifnepitope/index.php (accessed on 12 December 2023) |
Population coverage | IEDB | http://tools.iedb.org/population (accessed on 12 December 2023) |
Antigenicity | VaxiJen 2.0 | http://www.ddg-pharmfac.net/vaxijen/VaxiJen/VaxiJen.html (accessed on 12 December 2023) |
Antigenicity | AntigenPro | http://scratch.proteomics.ics.uci.edu(accessed on 12 December 2023) |
Allergenicity | AllergenFP 1.0 | http://ddg-pharmfac.net/AllergenFP/ (accessed on 12 December 2023) |
Allergenicity | AllerTOP 2.0 | https://www.ddg-pharmfac.net/AllerTOP/ (accessed on 12 December 2023) |
Solubility | SolPro | http://scratch.proteomics.ics.uci.edu (accessed on 12 December 2023) |
Solubility | Protein-Sol | https://protein-sol.manchester.ac.uk (accessed on 12 December 2023) |
Toxicity | ToxinPred | http://crdd.osdd.net/raghava/toxinpred/ (accessed on 12 December 2023) |
Physicochemical properties | ExPASy ProtParam | https://web.expasy.org/protparam/ (accessed on 12 December 2023) |
MHC cluster analysis | MHCcluster v2.0 | https://services.healthtech.dtu.dk/services/MHCcluster-2.0/ (accessed on 13 December 2023) |
Secondary structure | PRISPRED | http://bioinf.cs.ucl.ac.uk/psipred/ (accessed on 13 December 2023) |
Secondary structure | SPOMA | https://prabi.ibcp.fr/htm/site/web/app.php/home (accessed on 13 December 2023) |
Secondary structure | Phyre2 | http://www.sbg.bio.ic.ac.uk/~phyre2/html/page.cgi?id=index (accessed on 13 December 2023) |
3D structure | RoseTTAFold | https://robetta.bakerlab.org/ (accessed on 13 December 2023) |
Structure refinement | GalaxyWEB | http://galaxy.seoklab.org/ (accessed on 14 December 2023) |
Ramachandran plot | PROCHECK | https://saves.mbi.ucla.edu/ (accessed on 14 December 2023) |
Z-score | ProSA-web | https://prosa.services.came.sbg.ac.at/prosa.php (accessed on 14 December 2023) |
Disulfide engineering | Design 2 v12.2 | http://cptweb.cpt.wayne.edu/DbD2/ (accessed on 14 December 2023) |
Protein prediction | Chimera V 1.13.1 | https://www.cgl.ucsf.edu/chimera/olddownload.html (accessed on 14 December 2023) |
Protein docking | HADDOCK | https://wenmr.science.uu.nl (accessed on 14 December 2023) |
Protein docking | ClusPro 2.0 | https://cluspro.bu.edu/login.php (accessed on 14 December 2023) |
Protein–protein interaction | PDBsum | https://www.ebi.ac.uk/thornton-srv/databases/pdbsum/ (accessed on 14 December 2023) |
Protein interaction | LigPlot+ | https://www.ebi.ac.uk/thornton-srv/software/LigPlus/ (accessed on 15 December 2023) |
Molecular dynamic simulation | iMOD | http://imods.chaconlab.org (accessed on 15 December 2023) |
Codon optimization | JCat | http://www.jcat.de/ (accessed on 15 December 2023) |
Immune simulation | C-ImmSim | https://kraken.iac.rm.cnr.it/C-IMMSIM/ (accessed on 15 December 2023) |
Cloning | SnapGene | https://www.snapgene.com/ (accessed on 15 December 2023) |
Length | Peptide | Antigenicity | Allergenicity | Toxicity | GRAVY |
---|---|---|---|---|---|
59–72 | VNVTENFNMWKNDM | −0.1226 | Yes | No | −0.821 |
105–125 | DLKNDTNTNSSSGRMIMEKGE | 0.0921 | No | No | −1.395 |
137–148 | IRGKVQKEYAFF | 0.5359 | No | No | −0.408 |
173–182 | ITQACPKVSF | 0.9975 | Yes | No | 0.53 |
272–282 | NNNTRKRIRIQ | 0.1835 | No | No | −2.1 |
334–343 | KQSSGGDPEI | 0.597 | No | No | −1.39 |
404–410 | KAMYAPP | 0.6789 | No | No | −0.414 |
461–480 | VKIEPLGVAPTKAKRRVVQR | 1.1063 | No | No | −0.39 |
136–148 | SIRGKVQKEYAFF | 0.6778 | No | No | −0.438 |
431–458 | GNSNNESEIFRPGGGDMRDNWRSELYKY | −0.0127 | No | No | −1.607 |
460–480 | VVKIEPLGVAPTKAKRRVVQR | 0.9768 | No | No | −0.171 |
Length | Peptide | Antigenecity | Allergicity | Toxicity | GRAVY | IC50 | PCC | TAP |
---|---|---|---|---|---|---|---|---|
469–478 | APTKAKRRVV | 0.7196 | No | No | −0.71 | 27 | 0.8464 | 0.1160 |
190–199 | CAPAGFAILK | 1.0451 | Yes | No | 1.31 | 20.23 | 0.9696 | 0.9490 |
129–138 | CSFNISTSIR | 0.5758 | No | No | 0.32 | 14.17 | 0.9577 | 0.6440 |
268–276 | CTRPNNNTR | 0.7904 | No | No | −2.222 | 56.31 | 0.8586 | 1.4690 |
384–392 | DTITLPCRI | 0.7402 | No | No | 0.478 | 66.1 | 0.5292 | 0.2640 |
384–393 | DTITLPCRIK | 0.958 | No | No | 0.04 | 72.76 | 0.6108 | 0.2640 |
240–249 | EEVVIRSVNF | 1.1433 | No | No | 0.41 | 91.67 | 0.9347 | 2.3800 |
195–203 | FAILKCNNK | 0.4852 | Yes | No | 0.067 | 56.88 | 0.6267 | 0.4890 |
25–33 | FCASDAKAY | 0.8015 | Yes | No | 0.133 | 13.55 | 0.3359 | 2.8650 |
363–372 | FNSTWFNSTW | 0.4342 | No | No | −0.62 | 51.28 | 0.9706 | 0.8210 |
289–298 | FVTIGKIGNM | 1.7083 | No | No | 0.9 | 17.52 | 0.7651 | 0.3090 |
124–133 | GEIKNCSFNI | 0.4196 | Yes | No | −0.13 | 78.86 | 0.7427 | 1.5630 |
467–475 | GVAPTKAKR | 1.8579 | No | No | −0.8 | 94.58 | 0.8463 | 1.4590 |
173–182 | ITQACPKVSF | 0.9975 | Yes | No | 0.53 | 17.32 | 0.7506 | 2.6150 |
143–151 | KEYAFFYKL | 0.6017 | No | No | −0.3 | 9.57 | 0.9763 | 1.1110 |
93–101 | KLTPLCVSL | 2.8013 | Yes | No | 1.233 | 41.51 | 0.9780 | 1.0430 |
93–102 | KLTPLCVSLK | 2.9246 | Yes | No | 0.72 | 23.49 | 0.9787 | 1.0430 |
89–97 | KPCVKLTPL | 1.5232 | No | No | 0.289 | 52.2 | 0.9698 | 0.7640 |
140–149 | KVQKEYAFFY | 0.6481 | No | No | −0.58 | 37.23 | 0.5240 | 2.7460 |
179–187 | KVSFEPIPI | 2.4609 | No | No | 0.511 | 44.26 | 0.2494 | 0.7740 |
119–127 | MIMEKGEIK | 0.6697 | Yes | No | −0.267 | 67.11 | 0.5022 | 0.7030 |
406–415 | MYAPPISGQI | 0.4699 | No | No | 0.35 | 56.26 | 0.4059 | 0.2210 |
420–428 | NITGLLLTR | 1.0874 | No | No | 0.678 | 42.71 | 0.8257 | 1.7230 |
261–270 | NTSVEINCTR | 1.2735 | Yes | No | −0.6 | 7.84 | 0.8257 | 1.7230 |
142–151 | QKEYAFFYKL | 0.7239 | No | No | −0.62 | 40.32 | 0.9763 | 1.0640 |
307–315 | RAKWNNTLK | 0.4822 | No | No | −1.7 | 7.25 | 0.9319 | 0.7570 |
245–254 | RSVNFTDNAK | 1.794 | No | No | −1.16 | 35.17 | 0.8873 | 0.6940 |
130–138 | SFNISTSIR | 0.9960 | Yes | No | 0.078 | 55.66 | 0.6153 | 1.6090 |
215–233 | STVQCTHGI | 0.5294 | Yes | No | 0.211 | 7.66 | 0.7631 | 0.6420 |
215–234 | STVQCTHGIR | 0.9619 | Yes | No | −0.26 | 97.26 | 0.4286 | 1.6240 |
246–254 | SVNFTDNAK | 1.6628 | No | No | −0.789 | 41.33 | 0.8873 | 0.5600 |
291–299 | TIGKIGNMR | 0.7225 | No | No | −0.278 | 80.17 | 0.5029 | 1.4270 |
23–31 | TLFCASDAK | 1.1092 | Yes | No | 0.422 | 44.92 | 0.7740 | 0.5730 |
387–395 | TLPCRIKQI | 1.1073 | No | No | 0.122 | 72.38 | 0.8880 | 0.5160 |
174–182 | TQACPKVSF | 1.1348 | Yes | No | 0.089 | 25.69 | 0.7506 | 2.6040 |
262–270 | TSVEINCTR | 1.5595 | Yes | No | −0.278 | 6.94 | 0.8257 | 1.5800 |
22–31 | TTLFCASDAK | 0.8339 | Yes | No | 0.31 | 18.26 | 0.7740 | 0.5850 |
216–224 | TVQCTHGIR | 1.2166 | Yes | No | −0.2 | 51.81 | 0.4286 | 1.5680 |
141–149 | VQKEYAFFY | 0.9676 | Yes | No | −0.211 | 42.18 | 0.9273 | 3.0580 |
141–150 | VQKEYAFFYK | 0.7979 | Yes | No | −0.58 | 34.86 | 0.9476 | 3.0580 |
258–266 | VQLNTSVEI | 0.4873 | Yes | No | 0.522 | 17.16 | 0.9193 | 0.6880 |
180–189 | VSFEPIPIHY | 2.2860 | No | No | 0.4 | 74.16 | 0.9781 | 3.0480 |
99–107 | VSLKCTDLK | 2.5373 | Yes | No | 0.167 | 42.41 | 0.3644 | 0.5830 |
290–299 | VTIGKIGNMR | 1.1926 | No | No | 0.17 | 35.39 | 0.5029 | 1.4760 |
8–17 | VTVYYGVPVW | 0.0387 | No | No | 1.06 | 15.77 | 0.9513 | 1.2360 |
399–407 | WQKVGKAMY | 0.6072 | No | No | −0.667 | 93.71 | 0.9513 | 2.9690 |
407–415 | YAPPISGQI | 0.6513 | No | No | 0.178 | 37.45 | 0.9569 | 0.5500 |
407–416 | YAPPISGQIR | 0.9008 | Yes | No | −0.29 | 89.95 | 0.8658 | 1.2570 |
Length | Peptide | Antigenicity | Allergenicity | Toxicity | GRAVY | IC50 | IFNepitope SVMb |
---|---|---|---|---|---|---|---|
146–160 | AFFYKLDIIPIDNDT | 0.7514 | Yes | No | 0.213 | 6.9 | Positive |
288–302 | AFVTIGKIGNMRQAH | 1.1602 | No | No | 0.093 | 28.1 | Positive |
191–205 | APAGFAILKCNNKTF | 0.6107 | No | No | 0.287 | 99.6 | Positive |
177–191 | CPKVSFEPIPIHYCA | 1.3141 | Yes | No | 0.353 | 65 | Positive |
91–105 | CVKLTPLCVSLKCTD | 2.5249 | Yes | No | 0.813 | 23.5 | Positive |
125–139 | EIKNCSFNISTSIRG | 0.491 | No | No | −0.24 | 17.3 | Positive |
265–269 | EINCTRPNNNTRKRI | 0.6071 | No | No | −1.76 | 91 | Positive |
454–468 | ELYKYKVVKIEPLGV | 0.5524 | Yes | No | 0.093 | 13.2 | Positive |
183–197 | EPIPIHYCAPAGFAI | 0.9042 | Yes | No | 0.733 | 63.9 | Positive |
464–478 | EPLGVAPTKAKRRVV | 1.2335 | No | No | −0.307 | 36.2 | Positive |
144–158 | EYAFFYKLDIIPIDN | 1.1009 | No | No | 0.173 | 7 | Positive |
182–196 | FEPIPIHYCAPAGFA | 1.1020 | Yes | No | 0.62 | 81.9 | Positive |
147–161 | FFYKLDIIPIDNDTT | 0.8371 | Yes | No | 0.047 | 11 | Positive |
131–145 | FNISTSIRGKVQKEY | 0.4398 | No | No | −0.72 | 74.2 | Positive |
289–303 | FVTIGKIGNMRQAHC | 1.1301 | No | No | 0.14 | 78.9 | Positive |
148–162 | FYKLDIIPIDNDTTS | 0.8464 | No | No | −0.193 | 25 | Positive |
124–138 | GEIKNCSFNISTSIR | 0.4983 | No | No | −0.24 | 21.4 | Positive |
194–208 | GFAILKCNNKTFNGT | 0.4811 | Yes | No | −0.153 | 84.8 | Positive |
139–153 | GKVQKEYAFFYKLDI | 0.7563 | No | No | −0.353 | 18.1 | Positive |
413–427 | GQIRCSSNITGLLLT | 0.4695 | No | No | 0.507 | 96.1 | Positive |
286–300 | GRAFVTIGKIGNMRQ | 0.6843 | Yes | Yes | −0.14 | 7.4 | Positive |
463–477 | IEPLGVAPTKAKRRV | 1.4711 | No | No | −0.287 | 36.5 | Positive |
187–201 | IHYCAPAGFAILKCN | 0.4285 | No | No | 0.807 | 64.5 | Positive |
256–270 | IIVQLNTSVEINCTR | 0.8427 | Yes | No | 0.5 | 6.9 | Positive |
126–140 | IKNCSFNISTSIRGK | 0.6515 | No | No | −0.267 | 11 | Positive |
120–134 | IMEKGEIKNCSFNIS | 0.5167 | No | No | −0.207 | 93 | Positive |
266–280 | INCTRPNNNTRKRIR | 0.5572 | No | No | −1.827 | 56 | Positive |
185–199 | IPIHYCAPAGFAILK | 0.5882 | No | No | 1.067 | 39.4 | Positive |
24–258 | IRSVNFTDNAKTIIV | 1.1445 | No | No | 0.36 | 32.4 | Positive |
411–425 | ISGQIRCSSNITGLL | 0.4381 | Yes | No | 0.547 | 75.5 | Positive |
257–271 | IVQLNTSVEINCTRP | 0.7967 | Yes | No | 0.093 | 11.5 | Positive |
18–32 | KEATTTLFCASDAKA | 0.61 | Yes | No | −0.093 | 92.4 | Positive |
143–157 | KEYAFFYKLDIIPID | 1.2964 | No | No | 0.147 | 7.4 | Positive |
462–476 | KIEPLGVAPTKAKRR | 1.9736 | No | No | −0.827 | 21.9 | Positive |
93–107 | KLTPLCVSLKCTDLK | 2.4240 | Yes | No | 0.36 | 53.6 | Positive |
127–141 | KNCSFNISTSIRGKV | 0.6432 | No | No | −0.287 | 10.1 | Positive |
89–103 | KPCVKLTPLCVSLKC | 2.0271 | No | No | 0.727 | 11.9 | Positive |
254–268 | KTIIVQLNTSVEINC | 0.5444 | No | No | 0.54 | 5.3 | Positive |
401–415 | KVGKAMYAPPISGQI | 0.5640 | Yes | No | 0.087 | 65.8 | Positive |
140–154 | KVQKEYAFFYKLDII | 0.6655 | No | No | −0.027 | 18.4 | Positive |
179–193 | KVSFEPIPIHYCAPA | 1.1951 | Yes | No | 0.307 | 57.6 | Positive |
459–473 | KVVKIEPLGVAPTKA | 1.5003 | No | No | 0.333 | 9.4 | Positive |
457–471 | KYKVVKIEPLGVAPT | 1.1894 | Yes | No | 0.127 | 13 | Positive |
466–480 | LGVAPTKAKRRVVQR | 0.7323 | No | No | −0.5 | 77.1 | Positive |
88–102 | LKPCVKLTPLCVSLK | 2.0065 | Yes | No | 0.813 | 12.9 | Positive |
455–469 | LYKYKVVKIEPLGVA | 0.8394 | Yes | No | 0.447 | 5.5 | Positive |
Cell Type | Peptide | Antigenicity | Allergenicity | Toxicity | GRAVY |
---|---|---|---|---|---|
B-Cell | |||||
59–72 | VNVTENFNMWKNDM | −0.1226 | No | No | −0.821 |
137–148 | IRGKVQKEYAFF | 0.5359 | No | No | −0.408 |
334–343 | KQSSGGDPEI | 0.597 | No | No | −1.39 |
404–410 | KAMYAPP | 0.6789 | No | No | −0.414 |
461–480 | VKIEPLGVAPTKAKRRVVQR | 1.1063 | No | No | −0.39 |
431–458 | GNSNNESEIFRPGGGDMRDNWRSELYKY | −0.0127 | No | No | −1.607 |
CTL | |||||
8–17 | VTVYYGVPVW | 0.0387 | No | No | −1.06 |
307–315 | RAKWNNTLK | 0.4822 | No | No | −1.7 |
246–254 | SVNFTDNAK | 1.6628 | No | No | −0.789 |
469–478 | APTKAKRRVV | 0.7196 | No | No | −0.71 |
363–372 | FNSTWFNSTW | 0.4342 | No | No | −0.62 |
467–475 | GVAPTKAKR | 1.8579 | No | No | −0.8 |
140–149 | KVQKEYAFFY | 0.6481 | No | No | −0.58 |
142–151 | QKEYAFFYKL | 0.7239 | No | No | −0.62 |
291–299 | TIGKIGNMR | 0.7225 | No | No | −0.278 |
399–407 | WQKVGKAMY | 0.6072 | No | No | −0.667 |
HTL | |||||
125–139 | EIKNCSFNISTSIRG | 0.491 | No | No | −0.24 |
464–478 | EPLGVAPTKAKRRVV | 1.2335 | No | No | −0.307 |
148–162 | FYKLDIIPIDNDTTS | 0.8464 | No | No | −0.193 |
139–153 | GKVQKEYAFFYKLDI | 0.7563 | No | No | −0.353 |
266–280 | INCTRPNNNTRKRIR | 0.5572 | No | No | −1.827 |
194–208 | GFAILKCNNKTFNGT | 0.4811 | No | No | −0.153 |
Features | Values |
---|---|
Sequence length | 315 aa |
Molecular weight | 35,493.37 Da |
Formula | C1587H2443N465O444S11 |
Antigenicity | 0.6789 |
Theoratical pI | 10.13 |
Total negatively charged residues | 21 |
Total positively charged residues | 52 |
Total number of atoms | 4950 |
Extinction of coffiecients | 60,975 |
Instability index | 39.59 |
Aliphatic index | 53.52 |
GRAVY | −0.741 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Habib, A.; Liang, Y.; Xu, X.; Zhu, N.; Xie, J. Immunoinformatic Identification of Multiple Epitopes of gp120 Protein of HIV-1 to Enhance the Immune Response against HIV-1 Infection. Int. J. Mol. Sci. 2024, 25, 2432. https://doi.org/10.3390/ijms25042432
Habib A, Liang Y, Xu X, Zhu N, Xie J. Immunoinformatic Identification of Multiple Epitopes of gp120 Protein of HIV-1 to Enhance the Immune Response against HIV-1 Infection. International Journal of Molecular Sciences. 2024; 25(4):2432. https://doi.org/10.3390/ijms25042432
Chicago/Turabian StyleHabib, Arslan, Yulai Liang, Xinyi Xu, Naishuo Zhu, and Jun Xie. 2024. "Immunoinformatic Identification of Multiple Epitopes of gp120 Protein of HIV-1 to Enhance the Immune Response against HIV-1 Infection" International Journal of Molecular Sciences 25, no. 4: 2432. https://doi.org/10.3390/ijms25042432
APA StyleHabib, A., Liang, Y., Xu, X., Zhu, N., & Xie, J. (2024). Immunoinformatic Identification of Multiple Epitopes of gp120 Protein of HIV-1 to Enhance the Immune Response against HIV-1 Infection. International Journal of Molecular Sciences, 25(4), 2432. https://doi.org/10.3390/ijms25042432