Non-Targeted Metabolomics Investigation of a Sub-Chronic Variable Stress Model Unveils Sex-Dependent Metabolic Differences Induced by Stress
Abstract
:1. Introduction
2. Results
2.1. SCVS Induced Changes in Behavioral Phenotype in Female and Male Mice
2.2. Metabolic Profiles of the Plasma and Brain Were Different Depending on Sex and Stress
2.3. The SCVS Model Revealed Sex- and Stress-Differential Metabolites and Metabolic Pathways
2.4. Biomarker Panels Distinguished the Metabolic Status Only between Stressed and Unstressed Female Mice
2.5. Only Females Displayed Disturbances in Glucose Metabolism and the Hypothalamic-Pituitary-Adrenal Axis after Stress
3. Discussion
4. Materials and Methods
4.1. SCVS Model
4.2. Behavior Tests and Sample Collection
4.3. Sample Preparation for the Non-Targeted Metabolic Profiling
4.4. Data Pre-Processing, Chemometric Analysis, and Data Interpretation
4.5. Biochemical Assays to Quantify the Concentrations of Key Biomolecules
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Williams, E.S.; Mazei-Robison, M.; Robison, A.J. Sex Differences in Major Depressive Disorder (MDD) and Preclinical Animal Models for the Study of Depression. Cold Spring Harbor Perspect. Biol. 2022, 14, a039198. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization, Depression. Available online: https://www.who.int/news-room/fact-sheets/detail/depression (accessed on 10 May 2023).
- Nemeroff, C.B.; Goldschmidt-Clermont, P.J. Heartache and heartbreak-the link between depression and cardiovascular disease. Nat. Rev. Cardiol. 2012, 9, 526–539. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Zhou, X.; Zhang, Y.; Liu, Y.; Yang, L.; Pu, J.; Zhu, D.; Zhou, C.; Xie, P. The identification of metabolic disturbances in the prefrontal cortex of the chronic restraint stress rat model of depression. Behav. Brain Res. 2016, 305, 148–156. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Fu, Y.; Rao, C.; Li, W.; Liang, Z.; Zhou, C.; Shen, P.; Cheng, P.; Zeng, L.; Zhu, D. Metabolomic analysis reveals metabolic disturbances in the prefrontal cortex of the lipopolysaccharide-induced mouse model of depression. Behav. Brain Res. 2016, 308, 115–127. [Google Scholar] [CrossRef]
- Teng, T.; Shively, C.A.; Li, X.; Jiang, X.; Neigh, G.N.; Yin, B.; Zhang, Y.; Fan, L.; Xiang, Y.; Wang, M. Chronic unpredictable mild stress produces depressive-like behavior, hypercortisolemia, and metabolic dysfunction in adolescent cynomolgus monkeys. Transl. Psychiatry 2021, 11, 1–9. [Google Scholar]
- Liu, C.-C.; Wu, Y.-F.; Feng, G.-M.; Gao, X.-X.; Zhou, Y.-Z.; Hou, W.-J.; Qin, X.-M.; Du, G.-H.; Tian, J.-S. Plasma-metabolite-biomarkers for the therapeutic response in depressed patients by the traditional Chinese medicine formula Xiaoyaosan: A 1H NMR-based metabolomics approach. J. Affect. Disord. 2015, 185, 156–163. [Google Scholar] [CrossRef] [PubMed]
- Lopez, J.; Bagot, R.C. Defining valid chronic stress models for depression with female rodents. Biol. Psychiatry 2021, 90, 226–235. [Google Scholar] [CrossRef] [PubMed]
- Lima, S.; Sousa, N.; Patricio, P.; Pinto, L. The underestimated sex: A review on female animal models of depression. Neurosci. Biobehav. Rev. 2022, 133, 104498. [Google Scholar] [CrossRef]
- Hodes, G.E.; Pfau, M.L.; Purushothaman, I.; Ahn, H.F.; Golden, S.A.; Christoffel, D.J.; Magida, J.; Brancato, A.; Takahashi, A.; Flanigan, M.E. Sex differences in nucleus accumbens transcriptome profiles associated with susceptibility versus resilience to subchronic variable stress. J. Neurosci. 2015, 35, 16362–16376. [Google Scholar] [CrossRef]
- Williams, E.S.; Manning, C.E.; Eagle, A.L.; Swift-Gallant, A.; Duque-Wilckens, N.; Chinnusamy, S.; Moeser, A.; Jordan, C.; Leinninger, G.; Robison, A.J. Androgen-dependent excitability of mouse ventral hippocampal afferents to nucleus accumbens underlies sex-specific susceptibility to stress. Biol. Psychiatry 2020, 87, 492–501. [Google Scholar] [CrossRef]
- Baugher, B.J.; Buckhaults, K.; Case, J.; Sullivan, A.; Huq, S.N.; Sachs, B.D. Sub-chronic stress induces similar behavioral effects in male and female mice despite sex-specific molecular adaptations in the nucleus accumbens. Behav. Brain Res. 2022, 425, 113811. [Google Scholar] [CrossRef] [PubMed]
- Johnson, C.H.; Ivanisevic, J.; Siuzdak, G. Metabolomics: Beyond biomarkers and towards mechanisms. Nat. Rev. Mol. Cell Biol. 2016, 17, 451–459. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Jung, Y.H.; Jin, Y.; Kang, S.; Jang, C.G.; Lee, J. A comprehensive metabolomics investigation of hippocampus, serum, and feces affected by chronic fluoxetine treatment using the chronic unpredictable mild stress mouse model of depression. Sci. Rep. 2019, 9, 7566. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Jung, Y.H.; Jang, C.G.; Chun, K.H.; Kwon, S.W.; Lee, J. Metabolomic identification of biochemical changes induced by fluoxetine and imipramine in a chronic mild stress mouse model of depression. Sci. Rep. 2015, 5, 8890. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Q.; Xu, H.; Yan, J.; Xu, Q.; Zheng, Y.; Li, C.; Zhao, L.; Gao, H.; Zheng, H. Sex-specific metabolic alterations in the type 1 diabetic brain of mice revealed by an integrated method of metabolomics and mixed-model. Comput. Struct. Biotechnol. J. 2020, 18, 2063–2074. [Google Scholar] [CrossRef] [PubMed]
- Agostini, A.; Yuchun, D.; Li, B.; Kendall, D.A.; Pardon, M.-C. Sex-specific hippocampal metabolic signatures at the onset of systemic inflammation with lipopolysaccharide in the APPswe/PS1dE9 mouse model of Alzheimer’s disease. Brain Behav. Immun. 2020, 83, 87–111. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.L.; Qin, M.C.; Teng, T.; Li, X.M.; Yu, Y.; Wang, J.; Wu, H.Y.; He, Y.Q.; Zhou, X.Y.; Xie, P. Identification of sex-specific plasma biomarkers using metabolomics for major depressive disorder in children and adolescents. Front. Psychiatry 2022, 13. [Google Scholar] [CrossRef]
- Zheng, P.; Chen, J.; Zhou, C.; Zeng, L.; Li, K.; Sun, L.; Liu, M.; Zhu, D.; Liang, Z.; Xie, P. Identification of sex-specific urinary biomarkers for major depressive disorder by combined application of NMR-and GC–MS-based metabonomics. Transl. Psychiatry 2016, 6, e955. [Google Scholar] [CrossRef]
- Leskanicova, A.; Babincak, M.; Mochnacky, F.; Kokosova, N.P.; Kukelova, D.; Urbanska, N.; Kolesarova, M.; Macekova, D.; Kostolny, J.; Kiskova, T. Sex-dependent differences in stress- induced depression in wistar rats are accompanied predominantly by changes in phosphatidylcholines and sphingomyelins. J. Physiol. Pharmacol. 2021, 72, 623–635. [Google Scholar] [CrossRef]
- Chabrun, F.; Dieu, X.; Rousseau, G.; Chupin, S.; Letournel, F.; Procaccio, V.; Bonneau, D.; Lenaers, G.; Simard, G.; Mirebeau-Prunier, D.; et al. Metabolomics reveals highly regional specificity of cerebral sexual dimorphism in mice. Prog. Neurobiol. 2020, 184, 101698. [Google Scholar] [CrossRef]
- Kim, M.; Kim, W.; Chung, C. The neural basis underlying female vulnerability to depressive disorders. Anim. Cells Syst. 2023, 27, 297–308. [Google Scholar] [CrossRef] [PubMed]
- Cryan, J.F.; Mombereau, C.; Vassout, A. The tail suspension test as a model for assessing antidepressant activity: Review of pharmacological and genetic studies in mice. Neurosci. Biobehav. Rev. 2005, 29, 571–625. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Ma, R.; Shen, J.; Su, H.; Xing, D.; Du, L. A mouse model of depression induced by repeated corticosterone injections. Eur. J. Pharmacol. 2008, 581, 113–120. [Google Scholar] [CrossRef] [PubMed]
- Reis-Silva, T.M.; Cohn, D.W.H.; Sandini, T.M.; Udo, M.S.B.; Teodorov, E.; Bernardi, M.M. Prenatal lipopolysaccharide exposure affects sexual dimorphism in different germlines of mice with a depressive phenotype. Life Sci. 2016, 149, 129–137. [Google Scholar] [CrossRef]
- Johnson, A.; Rainville, J.R.; Rivero-Ballon, G.N.; Dhimitri, K.; Hodes, G.E. Testing the limits of sex differences using variable stress. Neuroscience 2021, 454, 72–84. [Google Scholar] [CrossRef] [PubMed]
- Costanzo, M.; Caterino, M.; Sotgiu, G.; Ruoppolo, M.; Franconi, F.; Campesi, I. Sex differences in the human metabolome. Biol. Sex. Differ. 2022, 13, 30. [Google Scholar] [CrossRef] [PubMed]
- Maes, M.; Debacker, G.; Suy, E.; Minner, B. Increased plasma serine concentrations in depression. Neuropsychobiology 1995, 31, 10–15. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.-J.; Huang, H.; Zhao, L.-B.; Zhou, D.-Z.; Yang, Y.-T.; Zheng, P.; Yang, D.-Y.; He, P.; Zhou, J.-J.; Fang, L. Sex-specific urinary biomarkers for diagnosing bipolar disorder. PLoS ONE 2014, 9, e115221. [Google Scholar] [CrossRef]
- Liu, X.; Zheng, X.; Du, G.; Li, Z.; Qin, X. Brain metabonomics study of the antidepressant-like effect of Xiaoyaosan on the CUMS-depression rats by 1H NMR analysis. J. Ethnopharmacol. 2019, 235, 141–154. [Google Scholar] [CrossRef]
- Akimoto, H.; Oshima, S.; Sugiyama, T.; Negishi, A.; Nemoto, T.; Kobayashi, D. Changes in brain metabolites related to stress resilience: Metabolomic analysis of the hippocampus in a rat model of depression. Behav. Brain Res. 2019, 359, 342–352. [Google Scholar] [CrossRef]
- Sarawagi, A.; Soni, N.D.; Patel, A.B. Glutamate and GABA homeostasis and neurometabolism in major depressive disorder. Front. Psychiatry 2021, 12, 419. [Google Scholar] [CrossRef]
- Jow, G.-M.; Yang, T.-T.; Chen, C.-L. Leptin and cholesterol levels are low in major depressive disorder, but high in schizophrenia. J. Affect. Disord. 2006, 90, 21–27. [Google Scholar] [CrossRef]
- Mierziak, J.; Burgberger, M.; Wojtasik, W. 3-Hydroxybutyrate as a metabolite and a signal molecule regulating processes of living organisms. Biomolecules 2021, 11, 402. [Google Scholar] [CrossRef] [PubMed]
- Setoyama, D.; Kato, T.A.; Hashimoto, R.; Kunugi, H.; Hattori, K.; Hayakawa, K.; Sato-Kasai, M.; Shimokawa, N.; Kaneko, S.; Yoshida, S. Plasma metabolites predict severity of depression and suicidal ideation in psychiatric patients-a multicenter pilot analysis. PLoS ONE 2016, 11, e0165267. [Google Scholar] [CrossRef] [PubMed]
- Krivosova, M.; Gondas, E.; Murin, R.; Dohal, M.; Ondrejka, I.; Tonhajzerova, I.; Hutka, P.; Ferencova, N.; Visnovcova, Z.; Hrtanek, I.; et al. The plasma levels of 3-hydroxybutyrate, dityrosine, and other markers of oxidative stress and energy metabolism in major depressive disorder. Diagnostics 2022, 12, 813. [Google Scholar] [CrossRef] [PubMed]
- Nishiguchi, T.; Iwata, M.; Kajitani, N.; Miura, A.; Matsuo, R.; Murakami, S.; Nakada, Y.; Pu, S.H.; Shimizu, Y.; Tsubakino, T.; et al. Stress increases blood beta-hydroxybutyrate levels and prefrontal cortex NLRP3 activity jointly in a rodent model. Neuropsychopharmacol. Rep. 2021, 41, 159–167. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, H.D.; Shelton, R.C.; Duman, R.S. Functional biomarkers of depression: Diagnosis, treatment, and pathophysiology. Neuropsychopharmacology 2011, 36, 2375–2394. [Google Scholar] [CrossRef] [PubMed]
- Erabi, H.; Okada, G.; Shibasaki, C.; Setoyama, D.; Kang, D.; Takamura, M.; Yoshino, A.; Fuchikami, M.; Kurata, A.; Kato, T.A.; et al. Kynurenic acid is a potential overlapped biomarker between diagnosis and treatment response for depression from metabolome analysis. Sci. Rep. 2020, 10, 16822. [Google Scholar] [CrossRef] [PubMed]
- Zacharias, H.U.; Hertel, J.; Johar, H.; Pietzner, M.; Lukaschek, K.; Atasoy, S.; Kunze, S.; Volzke, H.; Nauck, M.; Friedrich, N.; et al. A metabolome-wide association study in the general population reveals decreased levels of serum laurylcarnitine in people with depression. Mol. Psychiatry 2021, 26, 7372–7383. [Google Scholar] [CrossRef]
- Liu, X.Y.; Zheng, P.; Zhao, X.J.; Zhang, Y.Q.; Hu, C.X.; Li, J.; Zhao, J.Y.; Zhou, J.J.; Xie, P.; Xu, G.W. Discovery and validation of plasma biomarkers for major depressive disorder classification based on liquid chromatography-mass spectrometry. J. Proteome Res. 2015, 14, 2322–2330. [Google Scholar] [CrossRef]
- Yang, B.; Yin, H.Q.; Wang, J.W.; Gan, J.L.; Li, J.F.; Han, R.; Pei, M.; Song, L.L.; Yang, H.T. A metabolic biomarker panel of restless legs syndrome in peritoneal dialysis patients. Metabolomics 2022, 18, 79. [Google Scholar] [CrossRef] [PubMed]
- Brivio, P.; Audano, M.; Gallo, M.T.; Miceli, E.; Gruca, P.; Lason, M.; Litwa, E.; Fumagalli, F.; Papp, M.; Mitro, N.; et al. Venlafaxine’s effect on resilience to stress is associated with a shift in the balance between glucose and fatty acid utilization. Neuropsychopharmacol. 2023, 48, 1475–1483. [Google Scholar] [CrossRef] [PubMed]
- Brivio, P.; Audano, M.; Gallo, M.T.; Gruca, P.; Lason, M.; Litwa, E.; Fumagalli, F.; Papp, M.; Mitro, N.; Calabrese, F. Metabolomic signature and mitochondrial dynamics outline the difference between vulnerability and resilience to chronic stress. Translational Psychiatry 2022, 12, 87. [Google Scholar] [CrossRef] [PubMed]
- Saito, N.; Itoga, M.; Minakawa, S.; Kayaba, H. Serum 3-hydroxybutyrate in patients with psychogenic somatoform symptoms may me a predictor of the effectiveness of sertraline and venlafaxine. Int. J. Gen. Med. 2021, 14, 1785–1795. [Google Scholar] [CrossRef] [PubMed]
- Kudielka, B.M.; Kirschbaum, C. Sex differences in HPA axis responses to stress: A review. Biol. Psychol. 2005, 69, 113–132. [Google Scholar] [CrossRef] [PubMed]
- Van Donkelaar, E.L.; Vaessen, K.R.D.; Pawluski, J.L.; Sierksma, A.S.; Blokland, A.; Canete, R.; Steinbusch, H.W.M. Long-term corticosterone exposure decreases insulin sensitivity and induces depressive-like behaviour in the C57BL/6NCrl mouse. PLoS ONE 2014, 9, e106960. [Google Scholar] [CrossRef] [PubMed]
- Zuloaga, D.G.; Heck, A.L.; De Guzman, R.M.; Handa, R.J. Roles for androgens in mediating the sex differences of neuroendocrine and behavioral stress responses. Biol. Sex. Differ. 2020, 11, 44. [Google Scholar] [CrossRef]
- Sze, Y.; Brunton, P.J. Sex, stress and steroids. Eur. J. Neurosci. 2020, 52, 2487–2515. [Google Scholar] [CrossRef]
- Kokras, N.; Krokida, S.; Varoudaki, T.Z.; Dalla, C. Do corticosterone levels predict female depressive-like behavior in rodents? J. Neurosci. Res. 2021, 99, 324–331. [Google Scholar] [CrossRef]
- Xu, Q.Y.; Jiang, M.C.; Gu, S.M.; Zhang, X.L.; Feng, G.K.; Ma, X.J.; Xu, S.J.; Wu, E.X.; Huang, J.S.; Wang, F.S. Metabolomics changes in brain-gut axis after unpredictable chronic mild stress. Psychopharmacology 2022, 239, 729–743. [Google Scholar] [CrossRef]
- Bartolomucci, A.; Leopardi, R. Stress and depression: Preclinical research and clinical implications. PLoS ONE 2009, 4, e4265. [Google Scholar] [CrossRef]
- Can, A.; Dao, D.T.; Terrillion, C.E.; Piantadosi, S.C.; Bhat, S.; Gould, T.D. The tail suspension test. J. Vis. Exp. 2012, 59, e3769. [Google Scholar] [CrossRef]
- Jung, D.; Jung, J.B.; Kang, S.; Li, K.; Hwang, I.; Jeong, J.H.; Kim, H.S.; Lee, J. Toxico-metabolomics study of a deep eutectic solvent comprising choline chloride and urea suggests in vivo toxicity involving oxidative stress and ammonia stress. Green Chem. 2021, 23, 1300–1311. [Google Scholar] [CrossRef]
- Barri, T.; Dragsted, L.O. UPLC-ESI-QTOF/MS and multivariate data analysis for blood plasma and serum metabolomics: Effect of experimental artefacts and anticoagulant. Anal. Chim. Acta 2013, 768, 118–128. [Google Scholar] [CrossRef] [PubMed]
- T’Kindt, R.; Morreel, K.; Deforce, D.; Boerjan, W.; Van Bocxlaer, J. Joint GC–MS and LC–MS platforms for comprehensive plant metabolomics: Repeatability and sample pre-treatment. J. Chromatogr. B 2009, 877, 3572–3580. [Google Scholar] [CrossRef] [PubMed]
- Abooshahab, R.; Hooshmand, K.; Razavi, S.A.; Gholami, M.; Sanoie, M.; Hedayati, M. Plasma metabolic profiling of human thyroid nodules by gas chromatography-mass spectrometry (GC-MS)-based untargeted metabolomics. Front. Cell Dev. Biol. 2020, 8, 385. [Google Scholar] [CrossRef] [PubMed]
- Hsueh, P.-C.; Wu, K.-A.; Yang, C.-Y.; Hsu, C.-W.; Wang, C.-L.; Hung, C.-M.; Chen, Y.-T.; Yu, J.-S.; Wu, C.-C. Metabolomic profiling of parapneumonic effusion reveals a regulatory role of dipeptides in interleukin-8 production in neutrophil-like cells. Anal. Chim. Acta 2020, 1128, 238–250. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Yang, L.; Guan, S.; Lin, M.; Lai, H.; Liu, K.; Liu, Z.; Zhang, X. UPLC-MS-based serum metabolic profiling reveals potential biomarkers for predicting propofol responsiveness in females. J. Proteome Res. 2021, 20, 4578–4588. [Google Scholar] [CrossRef]
- Troisi, J.; Raffone, A.; Travaglino, A.; Belli, G.; Belli, C.; Anand, S.; Giugliano, L.; Cavallo, P.; Scala, G.; Symes, S. Development and validation of a serum metabolomic signature for endometrial cancer screening in postmenopausal women. JAMA Netw. Open 2020, 3, e2018327-e2018327. [Google Scholar] [CrossRef]
Sample Type | Plasma | Whole Brain | ||||||
---|---|---|---|---|---|---|---|---|
Analytical Platform | GC-MS | GC-MS | LC-MS (−Mode) | |||||
Differential Model | FC vs. MC | FS vs. FC | FS vs. MS | FS vs. Others | FS vs. FC vs. MC + MS | FS vs. FC | FS vs. FC | |
R2X | 0.912 | 0.915 | 0.921 | 0.887 | 0.921 | 0.828 | 0.944 | |
R2Y | 0.996 | 0.998 | 0.999 | 0.973 | 0.987 | 0.684 | 0.995 | |
Q2 | 0.398 | 0.643 | 0.572 | 0.596 | 0.534 | 0.462 | 0.315 | |
No. of features | VIP > 1.0 | 1643 | 1723 | 1690 | 1873 | 1009 | 171 | |
p < 0.05 | 298 | 490 | 532 | 610 | 187 | 35 | ||
No. of metabolites (AUC ≥ 0.7) | Total | 25 | 27 | 45 | 35 | 17 | 6 | |
Identified | 22 | 21 | 39 | 29 | 13 | 4 | ||
Unknown | 3 | 6 | 6 | 6 | 4 | 2 |
No. | Metabolite | FS vs. FC | FS vs. MS | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
VIP | p | FDR | FS/FC d | AUC | VIP | p | FDR | FS/MS d | AUC | ||
1 | Pyruvic acid a | - c | - | - | - | - | 2.74 | 0.00 | 0.04 | 0.65 | 0.89 |
2 | L-Lactic acid a | 3.37 | 0.00 | 0.00 | 0.24 | 1.00 | 7.34 | 0.00 | 0.01 | 0.22 | 0.97 |
3 | Glycolic acid a | - | - | - | - | - | 1.52 | 0.00 | 0.01 | 7.20 | 0.92 |
4 | L-Valine a | 1.78 | 0.00 | 0.04 | 2.88 | 0.91 | 4.95 | 0.04 | 0.14 | 2.38 | 0.76 |
5 | L-Alanine | 1.22 | 0.03 | 0.14 | 2.01 | 0.81 | 2.11 | 0.03 | 0.11 | 2.02 | 0.70 |
6 | 3-Hydroxybutyric acid (BHB) a | 1.06 | 0.03 | 0.13 | 13.42 | 0.91 | 2.88 | 0.04 | 0.14 | 7.70 | 0.87 |
7 | 2-Hydroxy-3-methylbutyric acid a | - | - | - | - | - | 1.95 | 0.00 | 0.00 | 0.32 | 1.00 |
8 | L-Isoleucine a | 1.70 | 0.03 | 0.12 | 1.41 | 0.78 | 1.10 | 0.02 | 0.11 | 2.90 | 0.79 |
9 | Urea a | 3.17 | 0.02 | 0.11 | 0.21 | 0.83 | 3.17 | 0.00 | 0.01 | 0.21 | 0.95 |
10 | L-Serine a | 3.28 | 0.04 | 0.15 | 2.33 | 0.78 | 1.11 | 0.01 | 0.07 | 3.62 | 0.83 |
11 | L-Leucine a | 2.05 | 0.03 | 0.12 | 4.11 | 0.78 | - | - | - | - | - |
- | - | - | - | - | 3.24 | 0.04 | 0.15 | 1.19 | 0.78 | ||
12 | Glycerol a | 0.01 | 0.03 | 0.12 | 4.11 | 0.78 | 1.21 | 0.00 | 0.01 | 53.08 | 0.86 |
13 | L-Threonine a | - | - | - | - | - | 1.80 | 0.04 | 0.14 | 1.73 | 0.81 |
14 | Glycine a | - | - | - | - | - | 1.23 | 0.03 | 0.13 | 1.96 | 0.73 |
15 | Succinic acid a | 1.82 | 0.02 | 0.11 | 0.42 | 0.78 | - | - | - | - | - |
16 | Fumaric acid a | - | - | - | - | - | 1.05 | 0.04 | 0.14 | 10.32 | 0.72 |
17 | Aminomalonic acid b | - | - | - | - | - | 1.13 | 0.04 | 0.14 | 0.73 | 0.81 |
18 | Pyroglutamic acid a | - | - | - | - | - | 3.11 | 0.04 | 0.13 | 0.71 | 0.78 |
19 | L-Cysteine a | 1.33 | 0.01 | 0.05 | 1.66 | 0.88 | 1.88 | 0.00 | 0.01 | 2.35 | 1.00 |
20 | L-Threonic acid b | - | - | - | - | - | 1.54 | 0.00 | 0.00 | 1.60 | 0.98 |
21 | Oxoglutaric acid a | - | - | - | - | - | 2.29 | 0.00 | 0.01 | 10.76 | 0.90 |
22 | Phenylalanine a | 1.27 | 0.01 | 0.08 | 6.11 | 0.81 | 2.70 | 0.00 | 0.02 | 1.33 | 0.89 |
23 | L-Asparagine a | - | - | - | - | - | 3.99 | 0.01 | 0.05 | 2.61 | 0.86 |
24 | L-Glutamine a | - | - | - | - | - | 5.82 | 0.00 | 0.01 | 1.35 | 0.91 |
25 | Citric acid a | - | - | - | - | - | 4.35 | 0.01 | 0.07 | 3.07 | 0.86 |
26 | Myristic acid a | - | - | - | - | - | 1.43 | 0.01 | 0.05 | 91.83 | 0.79 |
27 | D-Pinitol a | - | - | - | - | - | 1.63 | 0.00 | 0.01 | 5.08 | 0.91 |
28 | 1,5-Anhydrosorbitol a | 1.09 | 0.04 | 0.15 | 1.67 | 0.75 | 1.45 | 0.04 | 0.15 | 1.63 | 0.72 |
29 | Arabinose a | - | - | - | - | - | 1.28 | 0.02 | 0.09 | 26.91 | 0.79 |
30 | Mannose a | - | - | - | - | - | 1.57 | 0.02 | 0.11 | 0.41 | 0.83 |
31 | L-Tyrosine a | - | - | - | - | - | 1.51 | 0.04 | 0.14 | 1.34 | 0.78 |
32 | D-Glucose a | 1.56 | 0.00 | 0.00 | 3.19 | 0.97 | 1.22 | 0.00 | 0.01 | 2.59 | 0.94 |
33 | Palmitic acid a | 1.19 | 0.04 | 0.14 | 1.29 | 0.81 | 1.62 | 0.04 | 0.13 | 1.92 | 0.70 |
34 | Myo-inositol a | 1.17 | 0.01 | 0.08 | 2.79 | 0.83 | 2.11 | 0.03 | 0.12 | 7.32 | 0.77 |
35 | Linoleic acid a | 5.24 | 0.03 | 0.13 | 3.91 | 0.91 | 2.48 | 0.02 | 0.09 | 2.75 | 0.85 |
36 | Oleic acid a | - | - | - | - | - | 2.13 | 0.02 | 0.11 | 2.76 | 0.82 |
37 | Stearic acid a | 1.56 | 0.00 | 0.02 | 1.22 | 0.88 | 14.00 | 0.00 | 0.00 | 1.74 | 1.00 |
38 | L-Cystine a | 2.62 | 0.03 | 0.13 | 1.86 | 0.75 | - | - | - | - | - |
39 | Arachidonic acid a | 1.72 | 0.02 | 0.11 | ↑ e | 0.75 | 5.40 | 0.01 | 0.05 | 4.52 | 0.88 |
40 | Oleamide a | 3.20 | 0.02 | 0.11 | 0.41 | 0.82 | 1.55 | 0.03 | 0.13 | 0.46 | 0.84 |
41 | Cholesterol a | 8.23 | 0.00 | 0.00 | 1.21 | 0.95 | 7.00 | 0.00 | 0.04 | 0.86 | 0.92 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kang, S.; Kim, W.; Nam, J.; Li, K.; Kang, Y.; Bae, B.; Chun, K.-H.; Chung, C.; Lee, J. Non-Targeted Metabolomics Investigation of a Sub-Chronic Variable Stress Model Unveils Sex-Dependent Metabolic Differences Induced by Stress. Int. J. Mol. Sci. 2024, 25, 2443. https://doi.org/10.3390/ijms25042443
Kang S, Kim W, Nam J, Li K, Kang Y, Bae B, Chun K-H, Chung C, Lee J. Non-Targeted Metabolomics Investigation of a Sub-Chronic Variable Stress Model Unveils Sex-Dependent Metabolic Differences Induced by Stress. International Journal of Molecular Sciences. 2024; 25(4):2443. https://doi.org/10.3390/ijms25042443
Chicago/Turabian StyleKang, Seulgi, Woonhee Kim, Jimin Nam, Ke Li, Yua Kang, Boyeon Bae, Kwang-Hoon Chun, ChiHye Chung, and Jeongmi Lee. 2024. "Non-Targeted Metabolomics Investigation of a Sub-Chronic Variable Stress Model Unveils Sex-Dependent Metabolic Differences Induced by Stress" International Journal of Molecular Sciences 25, no. 4: 2443. https://doi.org/10.3390/ijms25042443
APA StyleKang, S., Kim, W., Nam, J., Li, K., Kang, Y., Bae, B., Chun, K. -H., Chung, C., & Lee, J. (2024). Non-Targeted Metabolomics Investigation of a Sub-Chronic Variable Stress Model Unveils Sex-Dependent Metabolic Differences Induced by Stress. International Journal of Molecular Sciences, 25(4), 2443. https://doi.org/10.3390/ijms25042443