Alcohol Impairs Bioenergetics and Differentiation Capacity of Myoblasts from Simian Immunodeficiency Virus-Infected Female Macaques
Abstract
:1. Introduction
2. Results
2.1. Myoblast Differentiation Indices
2.2. Mitochondrial Stress Test
2.3. Glycolysis Stress Test
2.4. ATP Production Rates
2.5. Mitochondrial Health
2.6. Glycolytic Enzyme Activity
2.7. Correlations between Differentiation Indices and Bioenergetics Parameters
3. Discussion
3.1. Differentiation Indices
3.2. Bioenergetic Health and Function
3.3. Glycolytic Enzyme Activity
3.4. Associations between Differentiation Indices and Bioenergetics Parameters
3.5. Limitations
4. Materials and Methods
4.1. Myoblast Isolation and Expansion
4.2. Short-Term In Vitro Ethanol Treatment and HEMA3 Staining
4.3. Differentiation Indices
4.4. Mitochondrial Stress Test
4.5. Glycolysis Stress Test
4.6. ATP Production Rates
4.7. Mitochondrial Health
4.8. Glycolytic Enzyme Activity
4.9. Statistical Analyses
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- SAMHSA, Center for Behavioral Health Statistics and Quality. 2021 National Survey on Drug Use and Health, Table 2.28B—Binge Alcohol Use in Past Month: Among People Aged 12 or Older; by Age Group and Demographic Characteristics, Percentages; SAMHSA: Rockville, MD, USA, 2021. [Google Scholar]
- SAMHSA, Center for Behavioral Health Statistics and Quality. 2021 National Survey on Drug Use and Health, Table 2.29B—Heavy Alcohol Use in Past Month: Among People Aged 12 or Older; by Age Group and Demographic Characteristics, Percentages; SAMHSA: Rockville, MD, USA, 2021. [Google Scholar]
- SAMHSA, Center for Behavioral Health Statistics and Quality. 2021 National Survey on Drug Use and Health, Table 5.6A—Alcohol Use Disorder in Past Year: Among People Aged 12 or Older; by Age Group and Demographic Characteristics, Numbers in Thousands; SAMHSA: Rockville, MD, USA, 2021. [Google Scholar]
- Duko, B.; Ayalew, M.; Ayano, G. The Prevalence of Alcohol Use Disorders among People Living with HIV/AIDS: A Systematic Review and Meta-Analysis. Subst. Abus. Treat. Prev. Policy 2019, 14, 52. [Google Scholar] [CrossRef]
- Glantz, M.D.; Bharat, C.; Degenhardt, L.; Sampson, N.A.; Scott, K.M.; Lim, C.C.W.; Al-Hamzawi, A.; Alonso, J.; Andrade, L.H.; Cardoso, G.; et al. The Epidemiology of Alcohol Use Disorders Cross-Nationally: Findings from the World Mental Health Surveys. Addict. Behav. 2020, 102, 106128. [Google Scholar] [CrossRef] [PubMed]
- Crotty, K.; Anton, P.; Coleman, L.G.; Morris, N.L.; Lewis, S.A.; Samuelson, D.R.; McMahan, R.H.; Hartmann, P.; Kim, A.; Ratna, A.; et al. A Critical Review of Recent Knowledge of Alcohol’s Effects on the Immunological Response in Different Tissues. Alcohol Clin. Exp. Res. 2023, 47, 36–44. [Google Scholar] [CrossRef] [PubMed]
- Olesen, M.A.; Quintanilla, R.A. The Effects of Alcohol Abuse against the Mitochondria: Functional Consequences for Liver, Muscle, and the Brain. In Mitochondrial Intoxication; Elsevier: Amsterdam, The Netherlands, 2023; pp. 181–204. ISBN 978-0-323-88462-4. [Google Scholar]
- Molina, P.E.; Simon, L.; Amedee, A.M.; Welsh, D.A.; Ferguson, T.F. Impact of Alcohol on HIV Disease Pathogenesis, Comorbidities and Aging: Integrating Preclinical and Clinical Findings. Alcohol Alcohol. 2018, 53, 439–447. [Google Scholar] [CrossRef] [PubMed]
- Estruch, R.; Nicolás, J.M.; Villegas, E.; Junqué, A.; Urbano-Márquez, A. Relationship between Ethanol-Related Diseases and Nutritional Status in Chronically Alcoholic Men. Alcohol Alcohol. 1993, 28, 543–550. [Google Scholar] [PubMed]
- Richert, L.; Dehail, P.; Mercié, P.; Dauchy, F.-A.; Bruyand, M.; Greib, C.; Dabis, F.; Bonnet, F.; Chêne, G.; Groupe d’Epidémiologie Clinique du SIDA en Aquitaine (GECSA). High Frequency of Poor Locomotor Performance in HIV-Infected Patients. AIDS 2011, 25, 797–805. [Google Scholar] [CrossRef] [PubMed]
- Echeverría, P.; Bonjoch, A.; Puig, J.; Estany, C.; Ornelas, A.; Clotet, B.; Negredo, E. High Prevalence of Sarcopenia in HIV-Infected Individuals. BioMed Res. Int. 2018, 2018, 5074923. [Google Scholar] [CrossRef] [PubMed]
- Koon-Yee Lee, G.; Chun-Ming Au, P.; Hoi-Yee Li, G.; Chan, M.; Li, H.-L.; Man-Yung Cheung, B.; Chi-Kei Wong, I.; Ho-Fun Lee, V.; Mok, J.; Hon-Kei Yip, B.; et al. Sarcopenia and Mortality in Different Clinical Conditions: A Meta-Analysis. Osteoporos. Sarcopenia 2021, 7, S19–S27. [Google Scholar] [CrossRef] [PubMed]
- Cáceres-Ayala, C.; Mira, R.G.; Acuña, M.J.; Brandan, E.; Cerpa, W.; Rebolledo, D.L. Episodic Binge-like Ethanol Reduces Skeletal Muscle Strength Associated with Atrophy, Fibrosis, and Inflammation in Young Rats. Int. J. Mol. Sci. 2023, 24, 1655. [Google Scholar] [CrossRef]
- Steiner, J.L.; Lang, C.H. Dysregulation of Skeletal Muscle Protein Metabolism by Alcohol. Am. J. Physiol. Endocrinol. Metab. 2015, 308, E699–E712. [Google Scholar] [CrossRef]
- Preedy, V.R.; Ohlendieck, K.; Adachi, J.; Koll, M.; Sneddon, A.; Hunter, R.; Rajendram, R.; Mantle, D.; Peters, T.J. The Importance of Alcohol-Induced Muscle Disease. J. Muscle Res. Cell. Motil. 2003, 24, 55–63. [Google Scholar] [CrossRef]
- Chen, B.; Shan, T. The Role of Satellite and Other Functional Cell Types in Muscle Repair and Regeneration. J. Muscle Res. Cell Motil. 2019, 40, 1–8. [Google Scholar] [CrossRef]
- Schmidt, M.; Schüler, S.C.; Hüttner, S.S.; von Eyss, B.; von Maltzahn, J. Adult Stem Cells at Work: Regenerating Skeletal Muscle. Cell Mol. Life Sci. 2019, 76, 2559–2570. [Google Scholar] [CrossRef]
- Bhattacharya, D.; Scimè, A. Mitochondrial Function in Muscle Stem Cell Fates. Front. Cell Dev. Biol. 2020, 8, 480. [Google Scholar] [CrossRef]
- Tang, A.H.; Rando, T.A. Induction of Autophagy Supports the Bioenergetic Demands of Quiescent Muscle Stem Cell Activation. EMBO J. 2014, 33, 2782–2797. [Google Scholar] [CrossRef] [PubMed]
- Abreu, P.; Garay, B.I.; Nemkov, T.; Yamashita, A.M.S.; Perlingeiro, R.C.R. Metabolic Changes during In Vivo Maturation of PSC-Derived Skeletal Myogenic Progenitors. Cells 2023, 13, 76. [Google Scholar] [CrossRef]
- Levitt, D.E.; Ferguson, T.F.; Primeaux, S.D.; Zavala, J.A.; Ahmed, J.; Marshall, R.H.; Simon, L.; Molina, P.E. Skeletal Muscle Bioenergetic Health and Function in People Living with HIV: Association with Glucose Tolerance and Alcohol Use. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2021, 321, R781–R790. [Google Scholar] [CrossRef] [PubMed]
- Duplanty, A.A.; Siggins, R.W.; Allerton, T.; Simon, L.; Molina, P.E. Myoblast Mitochondrial Respiration Is Decreased in Chronic Binge Alcohol Administered Simian Immunodeficiency Virus-Infected Antiretroviral-Treated Rhesus Macaques. Physiol. Rep. 2018, 6, e13625. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Davuluri, G.; Welch, N.; Kim, A.; Gangadhariah, M.; Allawy, A.; Priyadarshini, A.; McMullen, M.R.; Sandlers, Y.; Willard, B.; et al. Oxidative Stress Mediates Ethanol-Induced Skeletal Muscle Mitochondrial Dysfunction and Dysregulated Protein Synthesis and Autophagy. Free Radic. Biol. Med. 2019, 145, 284–299. [Google Scholar] [CrossRef]
- Levitt, D.E.; Chalapati, N.; Prendergast, M.J.; Simon, L.; Molina, P.E. Ethanol-Impaired Myogenic Differentiation Is Associated With Decreased Myoblast Glycolytic Function. Alcohol. Clin. Exp. Res. 2020, 44, 2166–2176. [Google Scholar] [CrossRef]
- Ganjayi, M.S.; Brown, A.M.; Baumann, C.W. Longitudinal Assessment of Strength and Body Composition in Mice Subjected to Chronic Ethanol Consumption. Alcohol 2023, Ahead of Print, 1–12. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention. Estimated HIV Incidence and Prevalence in the United States, 2015–2019. HIV Surveill. Suppl. Rep. 2021, 26, 1. [Google Scholar]
- Zhang, Z.; Luo, W.; Chen, G.; Chen, J.; Lin, S.; Ren, T.; Lin, Z.; Zhao, C.; Wen, H.; Nie, Q.; et al. Chicken Muscle Antibody Array Reveals the Regulations of LDHA on Myoblast Differentiation through Energy Metabolism. Int. J. Biol. Macromol. 2024, 254, 127629. [Google Scholar] [CrossRef]
- Tixier, V.; Bataillé, L.; Etard, C.; Jagla, T.; Weger, M.; Daponte, J.P.; Strähle, U.; Dickmeis, T.; Jagla, K. Glycolysis Supports Embryonic Muscle Growth by Promoting Myoblast Fusion. Proc. Natl. Acad. Sci. USA 2013, 110, 18982–18987. [Google Scholar] [CrossRef] [PubMed]
- Sin, J.; Andres, A.M.; Taylor, D.J.R.; Weston, T.; Hiraumi, Y.; Stotland, A.; Kim, B.J.; Huang, C.; Doran, K.S.; Gottlieb, R.A. Mitophagy Is Required for Mitochondrial Biogenesis and Myogenic Differentiation of C2C12 Myoblasts. Autophagy 2016, 12, 369–380. [Google Scholar] [CrossRef]
- Fortini, P.; Ferretti, C.; Iorio, E.; Cagnin, M.; Garribba, L.; Pietraforte, D.; Falchi, M.; Pascucci, B.; Baccarini, S.; Morani, F.; et al. The Fine Tuning of Metabolism, Autophagy and Differentiation during in Vitro Myogenesis. Cell Death Dis. 2016, 7, e2168. [Google Scholar] [CrossRef]
- Roman, W.; Pinheiro, H.; Pimentel, M.R.; Segalés, J.; Oliveira, L.M.; García-Domínguez, E.; Gómez-Cabrera, M.C.; Serrano, A.L.; Gomes, E.R.; Muñoz-Cánoves, P. Muscle Repair after Physiological Damage Relies on Nuclear Migration for Cellular Reconstruction. Science 2021, 374, 355–359. [Google Scholar] [CrossRef] [PubMed]
- Radugina, E.A.; Almeida, E.A.C.; Blaber, E.; Poplinskaya, V.A.; Markitantova, Y.V.; Grigoryan, E.N. Exposure to Microgravity for 30 Days Onboard Bion M1 Caused Muscle Atrophy and Impaired Regeneration in Murine Femoral Quadriceps. Life Sci. Space Res. 2018, 16, 18–25. [Google Scholar] [CrossRef]
- Simon, L.; LeCapitaine, N.; Berner, P.; Vande Stouwe, C.; Mussell, J.C.; Allerton, T.; Primeaux, S.D.; Dufour, J.; Nelson, S.; Bagby, G.J.; et al. Chronic Binge Alcohol Consumption Alters Myogenic Gene Expression and Reduces in Vitro Myogenic Differentiation Potential of Myoblasts from Rhesus Macaques. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2014, 306, R837–R844. [Google Scholar] [CrossRef]
- Webster, K.A.; Gunning, P.; Hardeman, E.; Wallace, D.C.; Kedes, L. Coordinate Reciprocal Trends in Glycolytic and Mitochondrial Transcript Accumulations during the in Vitro Differentiation of Human Myoblasts. J. Cell. Physiol. 1990, 142, 566–573. [Google Scholar] [CrossRef]
- Levitt, D.E.; Yeh, A.Y.; Prendergast, M.J.; Jr, R.G.B.; Adler, K.A.; Cook, G.; Molina, P.E.; Simon, L. Chronic Alcohol Dysregulates Skeletal Muscle Myogenic Gene Expression after Hind Limb Immobilization in Female Rats. Biomolecules 2020, 10, 441. [Google Scholar] [CrossRef] [PubMed]
- Simon, L.; Ford, S.M.; Song, K.; Berner, P.; Vande Stouwe, C.; Nelson, S.; Bagby, G.J.; Molina, P.E. Decreased Myoblast Differentiation in Chronic Binge Alcohol-Administered Simian Immunodeficiency Virus-Infected Male Macaques: Role of Decreased miR-206. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2017, 313, R240–R250. [Google Scholar] [CrossRef] [PubMed]
- Yarasheski, K.E.; Scherzer, R.; Kotler, D.P.; Dobs, A.S.; Tien, P.C.; Lewis, C.E.; Kronmal, R.A.; Heymsfield, S.B.; Bacchetti, P.; Grunfeld, C.; et al. Age-Related Skeletal Muscle Decline Is Similar in HIV-Infected and Uninfected Individuals. J. Gerontol. A Biol. Sci. Med. Sci. 2011, 66, 332–340. [Google Scholar] [CrossRef] [PubMed]
- Margolis, A.M.; Heverling, H.; Pham, P.A.; Stolbach, A. A Review of the Toxicity of HIV Medications. J. Med. Toxicol. 2014, 10, 26–39. [Google Scholar] [CrossRef] [PubMed]
- Pala, F.; Di Girolamo, D.; Mella, S.; Yennek, S.; Chatre, L.; Ricchetti, M.; Tajbakhsh, S. Distinct Metabolic States Govern Skeletal Muscle Stem Cell Fates during Prenatal and Postnatal Myogenesis. J. Cell. Sci. 2018, 131, jcs212977. [Google Scholar] [CrossRef] [PubMed]
- Olson, K.N.; Smith, S.W.; Kloss, J.S.; Ho, J.D.; Apple, F.S. Relationship Between Blood Alcohol Concentration and Observable Symptoms of Intoxication in Patients Presenting to an Emergency Department. Alcohol Alcohol. 2013, 48, 386–389. [Google Scholar] [CrossRef]
- Liang, Y.; Harris, F.L.; Jones, D.P.; Brown, L.A.S. Alcohol Induces Mitochondrial Redox Imbalance in Alveolar Macrophages. Free Radic. Biol. Med. 2013, 65, 1427–1434. [Google Scholar] [CrossRef]
- Han, D.; Ybanez, M.D.; Johnson, H.S.; McDonald, J.N.; Mesropyan, L.; Sancheti, H.; Martin, G.; Martin, A.; Lim, A.M.; Dara, L.; et al. Dynamic Adaptation of Liver Mitochondria to Chronic Alcohol Feeding in Mice: Biogenesis, Remodeling, and Functional Alterations. J. Biol. Chem. 2012, 287, 42165–42179. [Google Scholar] [CrossRef]
- Han, D.; Johnson, H.S.; Rao, M.P.; Martin, G.; Sancheti, H.; Silkwood, K.H.; Decker, C.W.; Nguyen, K.T.; Casian, J.G.; Cadenas, E.; et al. Mitochondrial Remodeling in the Liver Following Chronic Alcohol Feeding to Rats. Free Radic. Biol. Med. 2017, 102, 100–110. [Google Scholar] [CrossRef]
- Tice, A.L.; Laudato, J.A.; Fadool, D.A.; Gordon, B.S.; Steiner, J.L. Acute Binge Alcohol Alters Whole Body Metabolism and the Time-Dependent Expression of Skeletal Muscle-Specific Metabolic Markers for Multiple Days in Mice. Am. J. Physiol.-Endocrinol. Metab. 2022, 323, E215–E230. [Google Scholar] [CrossRef] [PubMed]
- Keen, C.; Tamura, T.; Lönnerdal, B.; Hurley, L.; Halsted, C. Changes in Hepatic Superoxide Dismutase Activity in Alcoholic Monkeys. Am. J. Clin. Nutr. 1985, 41, 929–932. [Google Scholar] [CrossRef]
- Nye, G.A.; Sakellariou, G.K.; Degens, H.; Lightfoot, A.P. Muscling in on Mitochondrial Sexual Dimorphism; Role of Mitochondrial Dimorphism in Skeletal Muscle Health and Disease. Clin. Sci. (Lond.) 2017, 131, 1919–1922. [Google Scholar] [CrossRef]
- Colom, B.; Alcolea, M.; Valle, A.; Oliver, J.; Roca, P.; García-Palmer, F. Skeletal Muscle of Female Rats Exhibit Higher Mitochondrial Mass and Oxidative-Phosphorylative Capacities Compared to Males. Cell Physiol. Biochem. 2007, 19, 205–212. [Google Scholar] [CrossRef] [PubMed]
- Miotto, P.M.; McGlory, C.; Holloway, T.M.; Phillips, S.M.; Holloway, G.P. Sex Differences in Mitochondrial Respiratory Function in Human Skeletal Muscle. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2018, 314, R909–R915. [Google Scholar] [CrossRef] [PubMed]
- Chacko, B.K.; Kramer, P.A.; Ravi, S.; Benavides, G.A.; Mitchell, T.; Dranka, B.P.; Ferrick, D.; Singal, A.K.; Ballinger, S.W.; Bailey, S.M.; et al. The Bioenergetic Health Index: A New Concept in Mitochondrial Translational Research. Clin. Sci. 2014, 127, 367–373. [Google Scholar] [CrossRef] [PubMed]
- Thome, J.; Foley, P.; Gsell, W.; Davids, E.; Wodarz, N.; Wiesbeck, G.A.; Böning, J.; Riederer, P. Increased Concentrations of Manganese Superoxide Dismutase in Serum of Alcohol-Dependent Patients. Alcohol Alcohol. 1997, 32, 65–69. [Google Scholar] [CrossRef] [PubMed]
- Trounce, I.; Byrne, E.; Dennett, X. Biochemical and Morphological Studies of Skeletal Muscle in Experimental Chronic Alcoholic Myopathy. Acta Neurol. Scand. 1990, 82, 386–391. [Google Scholar] [CrossRef] [PubMed]
- Hajra, A.K.; Larkins, L.K.; Das, A.K.; Hemati, N.; Erickson, R.L.; MacDougald, O.A. Induction of the Peroxisomal Glycerolipid-Synthesizing Enzymes during Differentiation of 3T3-L1 Adipocytes. Role in Triacylglycerol Synthesis. J. Biol. Chem. 2000, 275, 9441–9446. [Google Scholar] [CrossRef] [PubMed]
- Smith, S.B.; Lin, K.C.; Wilson, J.J.; Lunt, D.K.; Cross, H.R. Starvation Depresses Acylglycerol Biosynthesis in Bovine Subcutaneous but Not Intramuscular Adipose Tissue Homogenates. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 1998, 120, 165–174. [Google Scholar] [CrossRef]
- Whitfield, J.B.; Heath, A.C.; Madden, P.A.F.; Pergadia, M.L.; Montgomery, G.W.; Martin, N.G. Metabolic and Biochemical Effects of Low-to-Moderate Alcohol Consumption. Alcohol. Clin. Exp. Res. 2013, 37, 575–586. [Google Scholar] [CrossRef]
- Foerster, M.; Marques-Vidal, P.; Gmel, G.; Daeppen, J.-B.; Cornuz, J.; Hayoz, D.; Pécoud, A.; Mooser, V.; Waeber, G.; Vollenweider, P.; et al. Alcohol Drinking and Cardiovascular Risk in a Population with High Mean Alcohol Consumption. Am. J. Cardiol. 2009, 103, 361–368. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Han, J.; Jia, L.; Hu, X.; Chen, L.; Wang, Y. PKM2 Coordinates Glycolysis with Mitochondrial Fusion and Oxidative Phosphorylation. Protein Cell 2019, 10, 583–594. [Google Scholar] [CrossRef] [PubMed]
- Adler, K.; Molina, P.E.; Simon, L. Epigenomic Mechanisms of Alcohol-Induced Impaired Differentiation of Skeletal Muscle Stem Cells; Role of Class IIA Histone Deacetylases. Physiol. Genom. 2019, 51, 471–479. [Google Scholar] [CrossRef] [PubMed]
- Simon, L.; Torres, D.; Saravia, A.; Levitt, D.E.; Vande Stouwe, C.; McGarrah, H.; Coleman, L.; Dufour, J.P.; Amedee, A.M.; Molina, P.E. Chronic Binge Alcohol and Ovariectomy-Mediated Impaired Insulin Responsiveness in SIV-Infected Female Rhesus Macaques. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2021, 321, R699–R711. [Google Scholar] [CrossRef] [PubMed]
- Molina, P.E.; Amedee, A.M.; Veazey, R.; Dufour, J.; Volaufova, J.; Bagby, G.J.; Nelson, S. Chronic Binge Alcohol Consumption Does Not Diminish Effectiveness of Continuous Antiretroviral Suppression of Viral Load in Simian Immunodeficiency Virus-Infected Macaques. Alcohol. Clin. Exp. Res. 2014, 38, 2335–2344. [Google Scholar] [CrossRef] [PubMed]
- Levitt, D.E.; Adler, K.A.; Simon, L. HEMA 3 Staining: A Simple Alternative for the Assessment of Myoblast Differentiation. Curr. Protoc. Stem Cell Biol. 2019, 51, e101. [Google Scholar] [CrossRef] [PubMed]
- Honkanen, R.; Visuri, T. Blood Alcohol Levels in a Series of Injured Patients with Special Reference to Accident and Type of Injury. Ann. Chir. Gynaecol. 1976, 65, 287–294. [Google Scholar]
- Perry, P.J.; Argo, T.R.; Barnett, M.J.; Liesveld, J.L.; Liskow, B.; Hernan, J.M.; Trnka, M.G.; Brabson, M.A. The Association of Alcohol-Induced Blackouts and Grayouts to Blood Alcohol Concentrations. J. Forensic Sci. 2006, 51, 896–899. [Google Scholar] [CrossRef]
- Kenna, G.A.; Haass-Koffler, C.L.; Zywiak, W.H.; Edwards, S.M.; Brickley, M.B.; Swift, R.M.; Leggio, L. Role of the A1 Blocker Doxazosin in Alcoholism: A Proof-of-Concept Randomized Controlled Trial. Addict. Biol. 2016, 21, 904–914. [Google Scholar] [CrossRef]
- Grant, K.A.; Leng, X.; Green, H.L.; Szeliga, K.T.; Rogers, L.S.M.; Gonzales, S.W. Drinking Typography Established by Scheduled Induction Predicts Chronic Heavy Drinking in a Monkey Model of Ethanol Self-Administration. Alcohol. Clin. Exp. Res. 2008, 32, 1824–1838. [Google Scholar] [CrossRef]
- TeSlaa, T.; Teitell, M.A. Techniques to Monitor Glycolysis. In Methods in Enzymology; Elsevier: Amsterdam, The Netherlands, 2014; Volume 542, pp. 91–114. ISBN 978-0-12-416618-9. [Google Scholar]
- Desousa, B.R.; Kim, K.K.; Jones, A.E.; Ball, A.B.; Hsieh, W.Y.; Swain, P.; Morrow, D.H.; Brownstein, A.J.; Ferrick, D.A.; Shirihai, O.S.; et al. Calculation of ATP Production Rates Using the Seahorse XF Analyzer. EMBO Rep. 2023, 24, e56380. [Google Scholar] [CrossRef] [PubMed]
- Kuznetsov, A.V.; Kehrer, I.; Kozlov, A.V.; Haller, M.; Redl, H.; Hermann, M.; Grimm, M.; Troppmair, J. Mitochondrial ROS Production under Cellular Stress: Comparison of Different Detection Methods. Anal. Bioanal. Chem. 2011, 400, 2383–2390. [Google Scholar] [CrossRef] [PubMed]
- Gilkerson, R.; De La Torre, P.; St. Vallier, S. Mitochondrial OMA1 and OPA1 as Gatekeepers of Organellar Structure/Function and Cellular Stress Response. Front. Cell Dev. Biol. 2021, 9, 626117. [Google Scholar] [CrossRef]
- Guo, Z.; Pan, F.; Peng, L.; Tian, S.; Jiao, J.; Liao, L.; Lu, C.; Zhai, G.; Wu, Z.; Dong, H.; et al. Systematic Proteome and Lysine Succinylome Analysis Reveals Enhanced Cell Migration by Hyposuccinylation in Esophageal Squamous Cell Carcinoma. Mol. Cell. Proteom. 2021, 20, 100053. [Google Scholar] [CrossRef] [PubMed]
- Coassolo, S.; Davidson, G.; Negroni, L.; Gambi, G.; Daujat, S.; Romier, C.; Davidson, I. Citrullination of Pyruvate Kinase M2 by PADI1 and PADI3 Regulates Glycolysis and Cancer Cell Proliferation. Nat. Commun. 2021, 12, 1718. [Google Scholar] [CrossRef]
- Trounce, I.; Byrne, E.; Dennett, X.; Santamaria, J.; Doery, J.; Peppard, R. Chronic Alcoholic Proximal Wasting: Physiological, Morphological and Biochemical Studies in Skeletal Muscle. Aust. N. Z. J. Med. 1987, 17, 413–419. [Google Scholar] [CrossRef]
- Pek, J.; Wong, O.; Wong, A.C.M. How to Address Non-Normality: A Taxonomy of Approaches, Reviewed, and Illustrated. Front. Psychol. 2018, 9, 2104. [Google Scholar] [CrossRef]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; Erlbaum: Hillsdale, NJ, USA, 1988. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Levitt, D.E.; Bourgeois, B.L.; Rodríguez-Graciani, K.M.; Molina, P.E.; Simon, L. Alcohol Impairs Bioenergetics and Differentiation Capacity of Myoblasts from Simian Immunodeficiency Virus-Infected Female Macaques. Int. J. Mol. Sci. 2024, 25, 2448. https://doi.org/10.3390/ijms25042448
Levitt DE, Bourgeois BL, Rodríguez-Graciani KM, Molina PE, Simon L. Alcohol Impairs Bioenergetics and Differentiation Capacity of Myoblasts from Simian Immunodeficiency Virus-Infected Female Macaques. International Journal of Molecular Sciences. 2024; 25(4):2448. https://doi.org/10.3390/ijms25042448
Chicago/Turabian StyleLevitt, Danielle E., Brianna L. Bourgeois, Keishla M. Rodríguez-Graciani, Patricia E. Molina, and Liz Simon. 2024. "Alcohol Impairs Bioenergetics and Differentiation Capacity of Myoblasts from Simian Immunodeficiency Virus-Infected Female Macaques" International Journal of Molecular Sciences 25, no. 4: 2448. https://doi.org/10.3390/ijms25042448
APA StyleLevitt, D. E., Bourgeois, B. L., Rodríguez-Graciani, K. M., Molina, P. E., & Simon, L. (2024). Alcohol Impairs Bioenergetics and Differentiation Capacity of Myoblasts from Simian Immunodeficiency Virus-Infected Female Macaques. International Journal of Molecular Sciences, 25(4), 2448. https://doi.org/10.3390/ijms25042448