Collectin-K1 Plays a Role in the Clearance of Streptococcus agalactiae in Nile Tilapia (Oreochromis niloticus)
Abstract
:1. Introduction
2. Results
2.1. OnCL-K1 Promotes Bacterial Clearance
2.2. Different Tissue Expression of OnCL-K1 after Infection In Vivo
2.3. Impacts of OnCL-K1 on Inflammatory and Migration Reactions In Vivo
2.4. Histopathological Examination
2.5. OnCL-K1 Improved the Survival Rate of Nile Tilapia Infected with S. agalactiae
3. Discussion
4. Materials and Methods
4.1. Fish Rearing
4.2. Preparation of OnCL-K1 Recombinant Protein
4.3. Immunization and Sample Collection
4.4. Bacterial Counts
4.5. qRT-PCR Method for Detection of OnCL-K1 Gene Expression
4.6. Impacts of OnCL-K1 on Migration and Inflammation Response after Infection
4.7. Histopathological Observation
4.8. Fish Survival Assay
4.9. Statistical Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Diamond, M.S.; Kanneganti, T.D. Innate immunity: The first line of defense against SARS-CoV-2. Nat. Immunol. 2022, 23, 165–176. [Google Scholar] [CrossRef] [PubMed]
- Kumar, H.; Kawai, T.; Akira, S. Pathogen recognition by the innate immune system. Int. Rev. Immunol. 2011, 30, 16–34. [Google Scholar] [CrossRef] [PubMed]
- Akira, S.; Uematsu, S.; Takeuchi, O. Pathogen recognition and innate immunity. Cell 2006, 124, 783–801. [Google Scholar] [CrossRef] [PubMed]
- Thaiss, C.A.; Zmora, N.; Levy, M.; Elinav, E. The microbiome and innate immunity. Nature 2016, 535, 65–74. [Google Scholar] [CrossRef]
- Kaur, B.P.; Secord, E. Innate Immunity. Immunol. Allergy Clin. N. Am. 2021, 41, 535–541. [Google Scholar] [CrossRef]
- Vasta, G.R.; Nita-Lazar, M.; Giomarelli, B.; Ahmed, H.; Du, S.; Cammarata, M.; Parrinello, N.; Bianchet, M.A.; Amzel, L.M. Structural and functional diversity of the lectin repertoire in teleost fish: Relevance to innate and adaptive immunity. Dev. Comp. Immunol. 2011, 35, 1388–1399. [Google Scholar] [CrossRef]
- Doherty, T.M.; Arditi, M. Innate immunity, Toll-like receptors and host response to infection. Pediatr. Infect. Dis. J. 2005, 24, 643–644. [Google Scholar] [CrossRef]
- Xia, X.; You, M.; Rao, X.J.; Yu, X.Q. Insect C-type lectins in innate immunity. Dev. Comp. Immunol. 2018, 83, 70–79. [Google Scholar] [CrossRef]
- Robinson, M.J.; Sancho, D.; Slack, E.C.; LeibundGut-Landmann, S.; e Sousa, C.R. Myeloid C-type lectins in innate immunity. Nat. Immunol. 2006, 7, 1258–1265. [Google Scholar] [CrossRef]
- Viana, J.T.; Rocha, R.; Maggioni, R. Structural and functional diversity of lectins associated with immunity in the marine shrimp Litopenaeusvannamei. Fish Shellfish Immunol. 2022, 129, 152–160. [Google Scholar] [CrossRef]
- Vasta, G.R.; Ahmed, H.; Tasumi, S.; Odom, E.W.; Saito, K. Biological roles of lectins in innate immunity: Molecular and structural basis for diversity in self/non-self recognition. Adv. Exp. Med. Biol. 2007, 598, 389–406. [Google Scholar]
- Vasta, G.R.; Quesenberry, M.S.; Ahmed, H.; O’Leary, N. Lectins from tunicates: Structure-function relationships in innate immunity. Adv. Exp. Med. Biol. 2001, 484, 275–287. [Google Scholar]
- Ofek, I.; Crouch, E.; Keisari, Y. The role of C-type lectins in the innate immunity against pulmonary pathogens. Adv. Exp. Med. Biol. 2000, 479, 27–36. [Google Scholar]
- Mayer, S.; Raulf, M.K.; Lepenies, B. C-type lectins: Their network and roles in pathogen recognition and immunity. Histochem. Cell Biol. 2017, 147, 223–237. [Google Scholar] [CrossRef]
- Raymond, B.; Neyrolles, O.; Rombouts, Y. C-type lectins in immunity to lung pathogens. Curr. Top. Microbiol. Immunol. 2020, 429, 19–62. [Google Scholar]
- Liu, Y.; Liu, J.; Pang, X.; Liu, T.; Ning, Z.; Cheng, G. The roles of direct recognition by animal lectins in antiviral immunity and viral pathogenesis. Molecules 2015, 20, 2272–2295. [Google Scholar] [CrossRef]
- Hansen, S.W.; Ohtani, K.; Roy, N.; Wakamiya, N. The collectins CL-L1, CL-K1 and CL-P1, and their roles in complement and innate immunity. Immunobiology 2016, 221, 1058–1067. [Google Scholar] [CrossRef]
- Keshi, H.; Sakamoto, T.; Kawai, T.; Ohtani, K.; Katoh, T.; Jang, S.J.; Motomura, W.; Yoshizaki, T.; Fukuda, M.; Koyama, S.; et al. Identification and characterization of a novel human collectin CL-K1. Microbiol. Immunol. 2006, 50, 1001–1013. [Google Scholar] [CrossRef]
- Selman, L.; Hansen, S. Structure and function of collectin liver 1 (CL-L1) and collectin 11 (CL-11, CL-K1). Microbiol. Immunol. 2012, 217, 851–863. [Google Scholar] [CrossRef]
- Hansen, S.; Selman, L.; Palaniyar, N.; Ziegler, K.; Brandt, J.; Kliem, A.; Jonasson, M.; Skjoedt, M.O.; Nielsen, O.; Hartshorn, K.; et al. Collectin 11 (CL-11, CL-K1) is a MASP-1/3-associated plasma collectin with microbial-binding activity. J. Immunol. 2010, 185, 6096–6104. [Google Scholar] [CrossRef]
- Venkatraman, G.U.; Furze, C.M.; Gingras, A.R.; Yoshizaki, T.; Ohtani, K.; Marshall, J.E.; Wallis, A.K.; Schwaeble, W.J.; El-Mezgueldi, M.; Mitchell, D.A.; et al. Molecular basis of sugar recognition by collectin-K1 and the effects of mutations associated with 3MC syndrome. BMC Biol. 2015, 13, 27. [Google Scholar] [CrossRef]
- Mabrook, M.; Abd, E.A.; Ali, Y.M.; Hassan, R. Inhibition of CL-11 reduces pulmonary inflammation in a mouse model of Klebsiella pneumoniae lung infection. Microb. Pathog. 2022, 164, 105408. [Google Scholar] [CrossRef]
- Yuan, H.; Gao, Z.; Lu, X.; Hu, F. Role of collectin-11 in innate defence against uropathogenic Escherichia coli infection. Innate Immun. 2021, 27, 50–60. [Google Scholar] [CrossRef]
- Fanelli, G.; Romano, M.; Lombardi, G.; Sacks, S.H. Soluble collectin 11 (CL-11) acts as a immunosuppressive molecule potentially used by stem cell-derived retinal epithelial cells to modulate T cell response. Cells 2023, 12, 1805. [Google Scholar] [CrossRef] [PubMed]
- Rooryck, C.; Diaz-Font, A.; Osborn, D.P.; Chabchoub, E.; Hernandez-Hernandez, V.; Shamseldin, H.; Kenny, J.; Waters, A.; Jenkins, D.; Al Kaissi, A.; et al. Mutations in lectin complement pathway genes COLEC11 and MASP1 cause 3MC syndrome. Nat. Genet. 2011, 43, 197–203. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.X.; Cao, B.; Ma, N.; Wu, K.Y.; Chen, W.B.; Wu, W.; Dong, X.; Liu, C.-F.; Gao, Y.-F.; Diao, T.-Y.; et al. Collectin-11 promotes cancer cell proliferation and tumor growth. JCI Insight. 2023, 8, e159452. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Y.; Yongming, Y.; Yunyun, D.; Zongli, Z.; Yunchong, G.; Yiqun, Y. Technical efficiency of different farm sizes for tilapia farming in China. Aquac. Res. 2020, 51, 307–315. [Google Scholar] [CrossRef]
- Liu, L.; Lu, D.; Xu, J.; Luo, H.; Li, A. Development of attenuated erythromycin-resistant Streptococcus agalactiae vaccine for tilapia (Oreochromis niloticus) culture. J. Fish Dis. 2019, 42, 693–701. [Google Scholar] [CrossRef] [PubMed]
- Phuoc, N.N.; Linh, N.T.H.; Crestani, C.; Zadoks, R.N. Effect of strain and environmental conditions on the virulence of Streptococcus agalactiae (Group B Streptococcus; GBS) in red tilapia (Oreochromis sp.). Aquaculture 2021, 534, 736256. [Google Scholar] [CrossRef]
- Lei, L.; Yunfei, D. Antimicrobial activity of mannose binding lectin in grass carp (Ctenopharyngodon idella) in vivo and in vitro. Fish Shellfish Immunol. 2020, 98, 25–33. [Google Scholar]
- Mu, L.; Yin, X.; Wu, H.; Lei, Y.; Han, K.; Mo, J.; Guo, Z.; Li, J.; Ye, J. Mannose-binding lectin possesses agglutination activity and promotes opsonophagocytosis of macrophages with calreticulin interaction in an early vertebrate. J. Immunol. 2020, 205, 3443–3455. [Google Scholar] [CrossRef] [PubMed]
- Mu, L.; Yin, X.; Bai, H.; Li, J.; Wu, H.; Qi, W.; Wang, B.; Ye, J. Expression and functional characterization of an L-rhamnose-binding lectin from Nile tilapia (Oreochromis niloticus) in host defense against bacterial infection. Aquaculture. 2021, 545, 737195. [Google Scholar] [CrossRef]
- Mu, L.; Yin, X.; Bian, X.; Wu, L.; Yang, Y.; Wei, X.; Guo, Z.; Ye, J. Expression and functional characterization of collection-K1 from Nile tilapia (Oreochromis niloticus) in host innate immune defense. Mol. Immunol. 2018, 103, 21–34. [Google Scholar] [CrossRef] [PubMed]
- Yang, T.Z.; Zhu, Q.; Xue, T.; Cao, M.; Fu, Q.; Yang, N.; Li, C.; Huo, H.J. Identification and functional characterization of CL-11 in black rockfish (Sebastes schlegelii). Fish Shellfish Immunol. 2022, 131, 527–536. [Google Scholar] [CrossRef] [PubMed]
- Garraud, O.; Cognasse, F.; Hamzeh-Cognasse, H.; Pozzetto, B. Platelets and their immune role in anti-infective immunity. Future Microbiol. 2016, 11, 167–170. [Google Scholar] [CrossRef]
- Su, Y.; Feng, J.; Liu, C.; Li, W.; Xie, Y.; Li, A. Dynamic bacterial colonization and microscopic lesions in multiple organs of tilapia infected with low and high pathogenic Streptococcus agalactiae strains. Aquaculture 2017, 471, 190–230. [Google Scholar] [CrossRef]
- Mu, L.; Yin, X.; Xiao, Y.; Bian, X.; Yang, Y.; Wu, L.; Ye, J. A C-type lectin (CL11X1-like) from Nile tilapia (Oreochromis niloticus) is involved in host defense against bacterial infection. Dev. Comp. Immunol. 2018, 84, 230–240. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Bai, L.; Chen, Y.; Wang, Q.; Sha, Z. Identification, expression profile and analysis of the antimicrobial activity of collectin 11 (CL-11, CL-K1), a novel complement-associated pattern recognition molecule, in half-smooth tongue sole (Cynoglossus semilaevis). Fish Shellfish Immunol. 2019, 95, 679–687. [Google Scholar] [CrossRef]
- Zamri-Saad, M.; Amal, M.N.A.; Siti-Zahrah, A. Pathological changes in red tilapias (Oreochromis spp.) naturally infected by Streptococcus agalactiae. J. Comp. Pathol. 2010, 143, 229. [Google Scholar] [CrossRef]
- Huang, J. Study on Etiology, Pathology of Tilapias Streptococcus agalactiae Disease and on the Function of cpsE Gene. Ph.D. Thesis, Sichuan Agricultural University, Yaan, China, 2012. [Google Scholar]
- Rombout, J.H.W.M.; Huttenhuis, H.B.T.; Picchietti, S.; Scapigliati, G. Phylogeny and ontogeny of fish leucocytes. Fish Shellfish Immunol. 2005, 19, 441–455. [Google Scholar] [CrossRef]
- Rasighaemi, P.; Basheer, F.; Liongue, C.; Ward, A.C. Zebrafish as a model for leukemia and other hematopoietic disorders. J. Hematol. Oncol. 2015, 8, 29. [Google Scholar] [CrossRef]
- Franz, V.; Alin, C.; Rodolfo, A.; Margarita, I.C. High density lipoproteins down-regulate transcriptional expression of pro-inflammatory factors and oxidative burst in head kidney leukocytes from rainbow trout, Oncorhynchus mykiss. Fish Shellfish Immunol. 2013, 35, 180–183. [Google Scholar]
- Miriam, F.; Elisabeth, H.; Pedro, A.; Kai, K.L.; Mari, M. Cytokine gene expression and prostaglandin production in head kidney leukocytes isolated from Atlantic cod (Gadus morhua) added different levels of arachidonic acid and eicosapentaenoic acid. Fish Shellfish Immunol. 2013, 34, 770–777. [Google Scholar]
- He, J. Histopathology of the Head Kidney in Tilapia Infected by Streptococcus agalactiae. Ph.D. Thesis, Sichuan Agricultural University, Yaan, China, 2018. [Google Scholar]
- Guo, F. The Mechanism of Influence of Different Water Temperature on Streptococcus agalactiae Infection in Tilapia. Ph.D. Thesis, Guangdong Ocean University, Zhanjiang, China, 2018. [Google Scholar]
- Pattanapon, K.; Nopadon, P.; Ikuo, H.; Channarong, R. Increasing of temperature induces pathogenicity of Streptococcus agalactiae and the up-regulation of inflammatory related genes in infected Nile tilapia (Oreochromis niloticus). Vet. Microbiol. 2014, 172, 265–271. [Google Scholar]
- Zhang, X.; Huang, Y.; Cai, J.; Jian, J.; Wang, B. Effect of miRNA-155-targeted SOCS5 gene on inflammatory response of brain astrocytes of Oreochromis niloticus induced by Streptococcus agalactiae. J. Guangdong Ocean Univ. 2023, 43, 1–10. [Google Scholar]
- Tanaka, T.; Narazaki, M.; Kishimoto, T. IL-6 in inflammation, immunity, and disease. Cold Spring Harb. Perspect. Biol. 2014, 6, a16295. [Google Scholar] [CrossRef] [PubMed]
- Saraiva, M.; O’Garra, A. The regulation of IL-10 production by immune cells. Nat. Rev. Immunol. 2010, 10, 170–181. [Google Scholar] [CrossRef] [PubMed]
- Li, A.; Dubey, S.; Varney, M.L.; Dave, B.J.; Singh, R.K. IL-8 directly enhanced endothelial cell survival, proliferation, and matrix metalloproteinases production and regulated angiogenesis. J. Immunol. 2003, 170, 3369–3376. [Google Scholar] [CrossRef] [PubMed]
- Sumaiya, K.; Langford, D.; Natarajaseenivasan, K.; Shanmughapriya, S. Macrophage migration inhibitory factor (MIF): A multifaceted cytokine regulated by genetic and physiological strategies. Pharmacol. Ther. 2022, 233, 108024. [Google Scholar] [CrossRef] [PubMed]
- Kang, I.; Bucala, R. The immunobiology of MIF: Function, genetics and prospects for precision medicine. Nat. Rev. Rheumatol. 2019, 15, 427–437. [Google Scholar] [CrossRef] [PubMed]
- Mu, L.; Yin, X.; Qi, W.; Li, J.; Bai, H.; Chen, N.; Yang, Y.; Wang, B.; Ye, J. An l-rhamnose-binding lectin from Nile tilapia (Oreochromis niloticus) possesses agglutination activity and regulates inflammation, phagocytosis and respiratory burst of monocytes/macrophages. Dev. Comp. Immunol. 2022, 126, 104256. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Bu, L.; Sun, W.; Hu, L.; Zhang, S. Functional characterization of mannose-binding lectin in zebrafish: Implication for a lectin-dependent complement system in early embryos. Dev. Comp. Immunol. 2014, 46, 314–322. [Google Scholar] [CrossRef] [PubMed]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef] [PubMed]
Primers | Nucleotide Sequence (5′-3′) | Purpose |
---|---|---|
β-actin-F | CGAGAGGGAAATCGTGCGTGACA | Control |
β-actin-R | AGGAAGGAAGGCTGGAAGAGGGC | Control |
qCL-K1-F | AGGTTCTCGTGGTCCCAAAGG | qRT-PCR |
qCL-K1-R | CCAAGTCGTCCCACATTACCAA | qRT-PCR |
qIL-6-F | ACAGAGGAGGCGGAGATG | qRT-PCR |
qIL-6-R | GCAGTGCTTCGGGATAGAG | qRT-PCR |
qIL-8-F | GATAAGCAACAGAATCATTGTCAGC | qRT-PCR |
qIL-8-R | CCTCGCAGTGGGAGTTGG | qRT-PCR |
qIL-10-F | TGGAGGGCTTCCCCGTCAG | qRT-PCR |
qIL-10-R | CTGTCGGCAGAACCGTGTCC | qRT-PCR |
qMIF-F | CACATCAACCCTGACCAAAT | qRT-PCR |
qMIF-R | GCCTGTTGGCAGCACC | qRT-PCR |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mo, J.; Li, J.; Qiu, L.; Wang, Y.; Mu, L.; Ye, J. Collectin-K1 Plays a Role in the Clearance of Streptococcus agalactiae in Nile Tilapia (Oreochromis niloticus). Int. J. Mol. Sci. 2024, 25, 2508. https://doi.org/10.3390/ijms25052508
Mo J, Li J, Qiu L, Wang Y, Mu L, Ye J. Collectin-K1 Plays a Role in the Clearance of Streptococcus agalactiae in Nile Tilapia (Oreochromis niloticus). International Journal of Molecular Sciences. 2024; 25(5):2508. https://doi.org/10.3390/ijms25052508
Chicago/Turabian StyleMo, Jinfeng, Jiadong Li, Li Qiu, Yiqing Wang, Liangliang Mu, and Jianmin Ye. 2024. "Collectin-K1 Plays a Role in the Clearance of Streptococcus agalactiae in Nile Tilapia (Oreochromis niloticus)" International Journal of Molecular Sciences 25, no. 5: 2508. https://doi.org/10.3390/ijms25052508
APA StyleMo, J., Li, J., Qiu, L., Wang, Y., Mu, L., & Ye, J. (2024). Collectin-K1 Plays a Role in the Clearance of Streptococcus agalactiae in Nile Tilapia (Oreochromis niloticus). International Journal of Molecular Sciences, 25(5), 2508. https://doi.org/10.3390/ijms25052508