Biosynthesis and Biodegradation—Eco-Concept for Polymer Materials
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gilani, I.E.; Sayadi, S.; Zouari, N.; Al-Ghouti, M.A. Plastic waste impact and biotechnology: Exploring polymer degradation, microbial role, and sustainable development implications. Bioresour. Technol. Rep. 2023, 24, 101606. [Google Scholar] [CrossRef]
- Moshood, T.D.; Nawanir, G.; Mahmud, F.; Mohamad, F.; Ahmad, M.H.; AbdulGhani, A. Sustainability of biodegradable plastics: New problem or solution to solve the global plastic pollution? Curr. Res. Green Sustain. Chem. 2022, 5, 100273. [Google Scholar] [CrossRef]
- Singh, N.; Ogunseitan, O.A.; Wong, M.H.; Tang, Y. Sustainable materials alternative to petrochemical plastics pollution: A review analysis. Sustain. Horiz. 2022, 2, 100016. [Google Scholar] [CrossRef]
- The European Union. What It Is and What It Does; Publications Office of the European Union: Luxembourg, 2022; Available online: https://op.europa.eu/webpub/com/eu-what-it-is/en/ (accessed on 18 January 2024).
- Winkler, H. Closed-loop production systems—A sustainable supply chain approach. CIRP J. Manuf. Sci. Technol. 2011, 4, 243–246. [Google Scholar] [CrossRef]
- Sheldon, R.A.; Woodley, J.M. Role of biocatalysis in sustainable chemistry. Chem. Rev. 2018, 118, 801–838. [Google Scholar] [CrossRef] [PubMed]
- Intasian, P.; Prakinee, K.; Phintha, A.; Trisrivirat, D.; Weeranoppanant, N.; Wongnate, T.; Chaiyen, P. Enzymes, in vivo biocatalysis, and metabolic engineering for enabling a circular economy and sustainability. Chem. Rev. 2021, 121, 10367–10451. [Google Scholar] [CrossRef]
- Portilla, N. The Role of Biodegradable Materials in Reducing Medical Plastics Waste. Available online: https://www.medicalplasticsnews.com/medical-plastics-industry-insights/medical-plastics-sustainability-insights/the-role-of-biodegradable-materials-in-reducing-medical-plas/ (accessed on 24 January 2024).
- Szymanek, I.; Cvek, M.; Rogacz, D.; Żarski, A.; Lewicka, K.; Sedlarik, V.; Rychter, P. Degradation of polylactic acid/polypropylene carbonate films in soil and phosphate buffer and their potential usefulness in agriculture and agrochemistry. Int. J. Mol. Sci. 2024, 25, 653. [Google Scholar] [CrossRef] [PubMed]
- Samir, A.; Ashour, F.H.; Hakim, A.A.A.; Bassyouni, M. Recent advances in biodegradable polymers for sustainable applications. NPJ Mater. Degrad. 2022, 6, 68. [Google Scholar] [CrossRef]
- Hofmann, T.; Ghoshal, S.; Tufenkji, N.; Adamowski, J.F.; Bayen, S.; Chen, Q.; Demokritou, P.; Flury, M.; Huffer, T.; Ivleva, N.P.; et al. Plastics can be used more sustainably in agriculture. Commun. Earth Environ. 2023, 4, 332. [Google Scholar] [CrossRef]
- Rydz, J.; Duale, K.; Janeczek, H.; Sikorska, W.; Marcinkowski, A.; Musioł, M.; Godzierz, M.; Kordyka, A.; Sobota, M.; Peptu, C.; et al. Nematic-to-isotropic phase transition in poly(L-lactide) with addition of cyclodextrin during abiotic degradation study. Int. J. Mol. Sci. 2022, 23, 7693. [Google Scholar] [CrossRef]
- Janeczek, H.; Duale, K.; Sikorska, W.; Godzierz, M.; Kordyka, A.; Marcinkowski, A.; Hercog, A.; Musioł, M.; Kowalczuk, M.; Christova, D.; et al. Poly(l-Lactide) liquid crystals with tailor-made properties toward a specific nematic mesophase texture. ACS Sustain. Chem. Eng. 2022, 10, 3323–3334. [Google Scholar] [CrossRef]
- Zhang, H.; Lin, X.; Cao, X.; Wang, Y.; Wang, J.; Zhao, Y. Developing natural polymers for skin wound healing. Bioact. Mater. 2024, 33, 355–376. [Google Scholar] [CrossRef]
- Fernández-Rodríguez, J.; Lorea, B.; González-Gaitano, G. Biological solubilisation of leather industry waste in anaerobic conditions: Effect of chromium (iii) presence, pre-treatments and temperature strategies. Int. J. Mol. Sci. 2022, 23, 13647. [Google Scholar] [CrossRef]
- Giusti, P.; Lazzeri, L.; De Petris, S.; Palla, M.; Cascone, M.G. Collagen-based new bioartificial polymeric materials. Biomaterials 1994, 15, 1229–1233. [Google Scholar] [CrossRef]
- Liu, X.; Zheng, C.; Luo, X.; Wang, X.; Jiang, H. Recent advances of collagen-based biomaterials: Multi-hierarchical structure, modification and biomedical applications. Mater. Sci. Eng. C 2019, 99, 1509–1522. [Google Scholar] [CrossRef]
- Arguchinskaya, N.V.; Isaeva, E.V.; Kisel, A.A.; Beketov, E.E.; Lagoda, T.S.; Baranovskii, D.S.; Yakovleva, N.D.; Demyashkin, G.A.; Komarova, L.N.; Astakhina, S.O.; et al. Properties and printability of the synthesized hydrogel based on GelMA. Int. J. Mol. Sci. 2023, 24, 2121. [Google Scholar] [CrossRef] [PubMed]
- de Andrade, L.R.M.; Guilger-Casagrande, M.; Germano-Costa, T.; de Lima, R. Polymeric nanorepellent systems containing geraniol and icaridin aimed at repelling Aedes aegypti. Int. J. Mol. Sci. 2022, 23, 8317. [Google Scholar] [CrossRef] [PubMed]
- Ayyaril, S.S.; Shanableh, A.; Bhattacharjee, S.; Rawas-Qalaji, M.; Cagliani, R.; Shabib, A.G.; Imran Khan, M. Recent progress in micro and nano-encapsulation techniques for environmental applications: A review. Results Eng. 2023, 18, 101094. [Google Scholar] [CrossRef]
- Kazimierowicz, J.; Dębowski, M. Characteristics of solidified carbon dioxide and perspectives for its sustainable application in sewage sludge management. Int. J. Mol. Sci. 2023, 24, 2324. [Google Scholar] [CrossRef] [PubMed]
- Tooraj, M.; Hooshyar, H.; Kimya, P.; Sheida, A.; Maryam, S.; Dariush, M.; Borhan, A. Future of sludge management. In Sludge Management Systems—The Gutter-to-Good Approaches; Jacob-Lopes, E., Queiroz Zepka, L., Costa Deprá, M., Eds.; IntechOpen: London, UK, 2023. [Google Scholar] [CrossRef]
- Kazimierowicz, J.; Dębowski, M.; Zieliński, M. Biohythane Production in hydrogen-oriented dark fermentation of aerobic granular sludge (AGS) pretreated with solidified carbon dioxide (SCO2). Int. J. Mol. Sci. 2023, 24, 4442. [Google Scholar] [CrossRef] [PubMed]
- Mahmod, S.S.; Arisht, S.N.; Jahim, J.M.; Takriff, M.S.; Tan, J.P.; Indera Luthfi, A.A.; Abdul, P.M. Enhancement of biohydrogen production from palm oil mill effluent (POME): A review. Int. J. Hydrogen Energy 2022, 47, 40637–40655. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rydz, J.; Sikorska, W.; Musioł, M. Biosynthesis and Biodegradation—Eco-Concept for Polymer Materials. Int. J. Mol. Sci. 2024, 25, 2674. https://doi.org/10.3390/ijms25052674
Rydz J, Sikorska W, Musioł M. Biosynthesis and Biodegradation—Eco-Concept for Polymer Materials. International Journal of Molecular Sciences. 2024; 25(5):2674. https://doi.org/10.3390/ijms25052674
Chicago/Turabian StyleRydz, Joanna, Wanda Sikorska, and Marta Musioł. 2024. "Biosynthesis and Biodegradation—Eco-Concept for Polymer Materials" International Journal of Molecular Sciences 25, no. 5: 2674. https://doi.org/10.3390/ijms25052674
APA StyleRydz, J., Sikorska, W., & Musioł, M. (2024). Biosynthesis and Biodegradation—Eco-Concept for Polymer Materials. International Journal of Molecular Sciences, 25(5), 2674. https://doi.org/10.3390/ijms25052674