Cathelicidin Antimicrobial Peptide Levels in Atherosclerosis and Myocardial Infarction in Mice and Human
Abstract
:1. Introduction
2. Results
2.1. Increased CRAMP Serum Levels in Atherosclerotic Mice
2.2. Elevated Cramp Gene Expression in the Spleen and Liver of Atherosclerotic Mice
2.3. Decreased CRAMP Serum Levels after Experimental Myocardial Infarction in Mice
2.4. Circulating CAMP Levels in CAD Patients
2.5. Correlation Analyses
3. Discussion
4. Materials and Methods
4.1. Animal Experiments
4.2. Study Cohort
4.3. Isolation of mRNA and Quantitative Real-Time PCR Analysis of Cramp Gene Expression in Murine Tissues
4.4. Quantification of CRAMP/CAMP in Murine and Human Blood via Enzyme-Linked Immunosorbent Assay (ELISA)
4.5. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- WHO’s Global Health Estimates. Available online: https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death (accessed on 6 December 2023).
- Mozaffarian, D.; Benjamin, E.J.; Go, A.S.; Arnett, D.K.; Blaha, M.J.; Cushman, M.; Das, S.R.; de Ferranti, S.; Després, J.-P.; Fullerton, H.J.; et al. Heart Disease and Stroke Statistics-2016 Update: A Report from the American Heart Association. Circulation 2016, 133, e38–e360. [Google Scholar] [CrossRef]
- Anderson, J.L.; Morrow, D.A. Acute Myocardial Infarction. N. Engl. J. Med. 2017, 376, 2053–2064. [Google Scholar] [CrossRef] [PubMed]
- Ouchi, N.; Parker, J.L.; Lugus, J.J.; Walsh, K. Adipokines in inflammation and metabolic disease. Nat. Rev. Immunol. 2011, 11, 85–97. [Google Scholar] [CrossRef]
- Kościuczuk, E.M.; Lisowski, P.; Jarczak, J.; Strzałkowska, N.; Jóźwik, A.; Horbańczuk, J.; Krzyżewski, J.; Zwierzchowski, L.; Bagnicka, E. Cathelicidins: Family of antimicrobial peptides. A review. Mol. Biol. Rep. 2012, 39, 10957–10970. [Google Scholar] [CrossRef] [PubMed]
- Dürr, U.H.N.; Sudheendra, U.S.; Ramamoorthy, A. LL-37, the only human member of the cathelicidin family of antimicrobial peptides. Biochim. Biophys. Acta 2006, 1758, 1408–1425. [Google Scholar] [CrossRef]
- Wertenbruch, S.; Drescher, H.; Grossarth, V.; Kroy, D.; Giebeler, A.; Erschfeld, S.; Heinrichs, D.; Soehnlein, O.; Trautwein, C.; Brandenburg, L.-O.; et al. The Anti-Microbial Peptide LL-37/CRAMP Is Elevated in Patients with Liver Diseases and Acts as a Protective Factor during Mouse Liver Injury. Digestion 2015, 91, 307–317. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Liang, W.; Gong, W.; Yoshimura, T.; Chen, K.; Wang, J.M. The Critical Role of the Antimicrobial Peptide LL-37/CRAMP in Protection of Colon Microbiota Balance, Mucosal Homeostasis, Anti-Inflammatory Responses, and Resistance to Carcinogenesis. Crit. Rev. Immunol. 2019, 39, 83–92. [Google Scholar] [CrossRef]
- Gallo, R.L.; Kim, K.J.; Bernfield, M.; Kozak, C.A.; Zanetti, M.; Merluzzi, L.; Gennaro, R. Identification of CRAMP, a cathelin-related antimicrobial peptide expressed in the embryonic and adult mouse. J. Biol. Chem. 1997, 272, 13088–13093. [Google Scholar] [CrossRef]
- Pestonjamasp, V.K.; Huttner, K.H.; Gallo, R.L. Processing site and gene structure for the murine antimicrobial peptide CRAMP. Peptides 2001, 22, 1643–1650. [Google Scholar] [CrossRef]
- Agerberth, B.; Charo, J.; Werr, J.; Olsson, B.; Idali, F.; Lindbom, L.; Kiessling, R.; Jörnvall, H.; Wigzell, H.; Gudmundsson, G.H. The human antimicrobial and chemotactic peptides LL-37 and α-defensins are expressed by specific lymphocyte and monocyte populations. Blood 2000, 96, 3086–3093. [Google Scholar] [CrossRef]
- Tjabringa, G.S.; Ninaber, D.K.; Drijfhout, J.W.; Rabe, K.F.; Hiemstra, P.S. Human cathelicidin LL-37 is a chemoattractant for eosinophils and neutrophils that acts via formyl-peptide receptors. Int. Arch. Allergy Immunol. 2006, 140, 103–112. [Google Scholar] [CrossRef]
- Gao, W.; Xing, L.; Qu, P.; Tan, T.; Yang, N.; Li, D.; Chen, H.; Feng, X. Identification of a novel cathelicidin antimicrobial peptide from ducks and determination of its functional activity and antibacterial mechanism. Sci. Rep. 2015, 5, 17260. [Google Scholar] [CrossRef]
- Yang, D.; Chen, Q.; Schmidt, A.P.; Anderson, G.M.; Wang, J.M.; Wooters, J.; Oppenheim, J.J.; Chertov, O. LL-37, the neutrophil granule- and epithelial cell-derived cathelicidin, utilizes formyl peptide receptor-like 1 (FPRL1) as a receptor to chemoattract human peripheral blood neutrophils, monocytes, and T cells. J. Exp. Med. 2000, 192, 1069–1074. [Google Scholar] [CrossRef]
- Zhang, L.-J.; Guerrero-Juarez, C.F.; Hata, T.; Bapat, S.P.; Ramos, R.; Plikus, M.V.; Gallo, R.L. Innate immunity. Dermal adipocytes protect against invasive Staphylococcus aureus skin infection. Science 2015, 347, 67–71. [Google Scholar] [CrossRef]
- Suzuki, K.; Ohkuma, M.; Someya, A.; Mita, T.; Nagaoka, I. Human Cathelicidin Peptide LL-37 Induces Cell Death in Autophagy-Dysfunctional Endothelial Cells. J. Immunol. 2022, 208, 2163–2172. [Google Scholar] [CrossRef] [PubMed]
- Döring, Y.; Drechsler, M.; Wantha, S.; Kemmerich, K.; Lievens, D.; Vijayan, S.; Gallo, R.L.; Weber, C.; Soehnlein, O. Lack of neutrophil-derived CRAMP reduces atherosclerosis in mice. Circ. Res. 2012, 110, 1052–1056. [Google Scholar] [CrossRef]
- Henning, R.J. Obesity and obesity-induced inflammatory disease contribute to atherosclerosis: A review of the pathophysiology and treatment of obesity. Am. J. Cardiovasc. Dis. 2021, 11, 504–529. [Google Scholar] [PubMed]
- Hochberg, A.; Patz, M.; Karrasch, T.; Schäffler, A.; Schmid, A. Serum Levels and Adipose Tissue Gene Expression of Cathelicidin Antimicrobial Peptide (CAMP) in Obesity and during Weight Loss. Horm. Metab. Res. 2021, 53, 169–177. [Google Scholar] [CrossRef]
- Edfeldt, K.; Agerberth, B.; Rottenberg, M.E.; Gudmundsson, G.H.; Wang, X.-B.; Mandal, K.; Xu, Q.; Yan, Z. Involvement of the antimicrobial peptide LL-37 in human atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 2006, 26, 1551–1557. [Google Scholar] [CrossRef]
- Bandurska, K.; Berdowska, A.; Barczyńska-Felusiak, R.; Krupa, P. Unique features of human cathelicidin LL-37. Biofactors 2015, 41, 289–300. [Google Scholar] [CrossRef]
- Singh, P.; Covassin, N.; Marlatt, K.; Gadde, K.M.; Heymsfield, S.B. Obesity, Body Composition, and Sex Hormones: Implications for Cardiovascular Risk. Compr. Physiol. 2021, 12, 2949–2993. [Google Scholar] [CrossRef]
- Chuang, H.-C.; Sheu, W.H.-H.; Lin, Y.-T.; Tsai, C.-Y.; Yang, C.-Y.; Cheng, Y.-J.; Huang, P.-Y.; Li, J.-P.; Chiu, L.-L.; Wang, X.; et al. HGK/MAP4K4 deficiency induces TRAF2 stabilization and Th17 differentiation leading to insulin resistance. Nat. Commun. 2014, 5, 4602. [Google Scholar] [CrossRef]
- Höpfinger, A.; Karrasch, T.; Schäffler, A.; Schmid, A. Circulating Concentrations of Cathelicidin Anti-Microbial Peptide (CAMP) Are Increased during Oral Glucose Tolerance Test. Int. J. Mol. Sci. 2023, 24, 12901. [Google Scholar] [CrossRef]
- Höpfinger, A.; Karrasch, T.; Schäffler, A.; Schmid, A. Circulating Levels of Cathelicidin Antimicrobial Peptide (CAMP) Are Affected by Oral Lipid Ingestion. Nutrients 2023, 15, 3021. [Google Scholar] [CrossRef]
- Ciornei, C.D.; Tapper, H.; Bjartell, A.; Sternby, N.H.; Bodelsson, M. Human antimicrobial peptide LL-37 is present in atherosclerotic plaques and induces death of vascular smooth muscle cells: A laboratory study. BMC Cardiovasc. Disord. 2006, 6, 49. [Google Scholar] [CrossRef]
- Höpfinger, A.; Schmid, A.; Schweitzer, L.; Patz, M.; Weber, A.; Schäffler, A.; Karrasch, T. Regulation of Cathelicidin Antimicrobial Peptide (CAMP) Gene Expression by TNFα and cfDNA in Adipocytes. Int. J. Mol. Sci. 2023, 24, 15820. [Google Scholar] [CrossRef]
- Mohanty, S.; Kamolvit, W.; Zambrana, S.; Gonzales, E.; Tovi, J.; Brismar, K.; Östenson, C.-G.; Brauner, A. HIF-1 mediated activation of antimicrobial peptide LL-37 in type 2 diabetic patients. J. Mol. Med. 2022, 100, 101–113. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Yan, H.; Yamashita, S.; Li, W.; Liu, C.; Chen, Y.; Zhou, P.; Chi, Y.; Wang, S.; Zhao, B.; et al. Acute ST-segment elevation myocardial infarction is associated with decreased human antimicrobial peptide LL-37 and increased human neutrophil peptide-1 to 3 in plasma. J. Atheroscler. Thromb. 2012, 19, 357–368. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Sheng, Z.; Tan, Y.; Chen, R.; Zhou, J.; Li, J.; Zhao, Q.; Wang, Y.; Zhao, X.; Chen, Y.; et al. High Human Antimicrobial Peptide LL-37 Level Predicts Lower Major Adverse Cardiovascular Events after an Acute ST-Segment Elevation Myocardial Infarction. J. Atheroscler. Thromb. 2022, 29, 1499–1510. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Q.; Pan, L.-L.; Xue, R.; Ni, G.; Duan, Y.; Bai, Y.; Shi, C.; Ren, Z.; Wu, C.; Li, G.; et al. The anti-microbial peptide LL-37/CRAMP levels are associated with acute heart failure and can attenuate cardiac dysfunction in multiple preclinical models of heart failure. Theranostics 2020, 10, 6167–6181. [Google Scholar] [CrossRef]
- Bowdish, D.M.E.; Davidson, D.J.; Hancock, R.E.W. Immunomodulatory properties of defensins and cathelicidins. Curr. Top. Microbiol. Immunol. 2006, 306, 27–66. [Google Scholar] [CrossRef] [PubMed]
- Da Pinheiro Silva, F.; Machado, M.C.C. The dual role of cathelicidins in systemic inflammation. Immunol. Lett. 2017, 182, 57–60. [Google Scholar] [CrossRef] [PubMed]
- Witten, A.; Martens, L.; Schäfer, A.-C.; Troidl, C.; Pankuweit, S.; Vlacil, A.-K.; Oberoi, R.; Schieffer, B.; Grote, K.; Stoll, M.; et al. Monocyte subpopulation profiling indicates CDK6-derived cell differentiation and identifies subpopulation-specific miRNA expression sets in acute and stable coronary artery disease. Sci. Rep. 2022, 12, 5589. [Google Scholar] [CrossRef] [PubMed]
Ctrl. (n = 31) | CCS (n = 64) | ACS-1 (n = 73) | ACS-2 (n = 66) | |
---|---|---|---|---|
sex (men/women) | 17/14 | 53/11 | 53/20 | 54/12 |
age [y] | 54.10 ± 6.04 | 63.41 ± 7.86 * | 57.93 ± 5.80 ° | 61.92 ± 7.86 *+ |
BMI [kg/m2] | 27.97 ± 4.77 | 30.57 ± 5.43 | 28.39 ± 4.57 | 29.13 ± 5.39 |
Total cholesterol [mg/dL] | n.a. | 174.33 ± 45.80 | 209.14 ± 57.43 ° | 176.96 ± 46.39 + |
LDL cholesterol [mg/dL] | n.a. | 113.80 ± 34.48 | 144.57 ± 56.57 ° | 112.57 ± 34.36 + |
HDL cholesterol [mg/dL] | n.a. | 49.07 ± 10.49 | 51.93 ± 16.78 | 50.85 ± 17.45 |
Triglycerides [mg/dL] | n.a. | 190.46 ± 136.94 | 158.75 ± 98.71 | 190.98 ± 131.55 |
Leukocytes [giga/L] | n.a. | 7.70 ± 2.06 | 9.84 ± 3.60 ° | 8.99 ± 2.91 |
Monocytes [% total monocytes] | 54.09 ± 22.69 | 64.28 ± 19.70 | 55.73 ± 25.31 | 65.83 ± 16.64 |
CD14++/CD16− [% total monocytes] | 77.81 ± 20.22 | 82.09 ± 13.82 | 80.90 ± 15.95 | 84.53 ± 12.74 |
CD14++/CD16+ [% total monocytes] | 7.03 ± 5.07 | 8.42 ± 10.19 | 9.47 ± 8.08 | 7.96 ± 5.86 |
CD14+/CD16++ [% total monocytes] | 18.02 ± 25.74 | 10.20 ± 6.86 | 10.70 ± 13.25 ° | 7.65 ± 9.02 ° |
CRP [mg/L] | n.a. | 31.11 ± 34.29 | 45.17 ± 57.97 | 19.28 ± 25.24 |
CAMP [ng/mL] | 97.94 ± 57.46 | 86.47 ± 40.61 | 84.23 ± 33.05 | 85.66 ± 37.08 |
MCP-1 [pg/mL] | 76.13 ± 25.39 | 64.09 ± 40.95 | 56.87 ± 23.96 | 51.25 ± 55.94 * |
IL-1β [pg/mL] | 11.64 ± 16.76 | 3.65 ± 0.88 | 4.33 ± 1.76 | 19.49 ± 33.76 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Höpfinger, A.; Schmid, A.; Karrasch, T.; Pankuweit, S.; Schäffler, A.; Grote, K. Cathelicidin Antimicrobial Peptide Levels in Atherosclerosis and Myocardial Infarction in Mice and Human. Int. J. Mol. Sci. 2024, 25, 2909. https://doi.org/10.3390/ijms25052909
Höpfinger A, Schmid A, Karrasch T, Pankuweit S, Schäffler A, Grote K. Cathelicidin Antimicrobial Peptide Levels in Atherosclerosis and Myocardial Infarction in Mice and Human. International Journal of Molecular Sciences. 2024; 25(5):2909. https://doi.org/10.3390/ijms25052909
Chicago/Turabian StyleHöpfinger, Alexandra, Andreas Schmid, Thomas Karrasch, Sabine Pankuweit, Andreas Schäffler, and Karsten Grote. 2024. "Cathelicidin Antimicrobial Peptide Levels in Atherosclerosis and Myocardial Infarction in Mice and Human" International Journal of Molecular Sciences 25, no. 5: 2909. https://doi.org/10.3390/ijms25052909
APA StyleHöpfinger, A., Schmid, A., Karrasch, T., Pankuweit, S., Schäffler, A., & Grote, K. (2024). Cathelicidin Antimicrobial Peptide Levels in Atherosclerosis and Myocardial Infarction in Mice and Human. International Journal of Molecular Sciences, 25(5), 2909. https://doi.org/10.3390/ijms25052909