New Light on Prions: Putative Role of PrPc in Pathophysiology of Mood Disorders
Abstract
:1. Introduction
2. The Function of the Prion Protein (PrPc) in Chemical Neurotransmission
2.1. Monoamine Neurotransmitters
2.2. Glutamatergic Neurotransmission
2.3. Cholinergic and Purinergic Neurotransmission
3. The Function of the Prion Protein (PrPc) in Depressive-like Behavior Regulation, Cognitive Functioning, Sleep and Circadian Rhythms
3.1. Depressive-like Behavior Regulation
3.2. Cognitive Functioning
3.3. Sleep and Circadian Rhythms
4. Human Studies
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kay-Lambkin, F.; Baker, A. Substance Use and Mood Disorders. In Principles of Addiction: Comprehensive Addictive Behaviors and Disorders; Academic Press: Cambridge, MA, USA, 2013; Volume 1, pp. 497–505. [Google Scholar] [CrossRef]
- American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders: DSM-5, 5th ed.; American Psychiatric Association: Washington, DC, USA, 2013. [Google Scholar]
- Rowland, T.A.; Marwaha, S. Epidemiology and Risk Factors for Bipolar Disorder. Ther. Adv. Psychopharmacol. 2018, 8, 251. [Google Scholar] [CrossRef]
- World Health Organization (WHO). Depression. Available online: https://www.who.int/news-room/fact-sheets/detail/depression (accessed on 14 January 2024).
- Simon, G.E. Social and Economic Burden of Mood Disorders. Biol. Psychiatry 2003, 54, 208–215. [Google Scholar] [CrossRef]
- Diaz, A.P.; Fernandes, B.S.; Quevedo, J.; Sanches, M.; Soares, J.C. Treatment-Resistant Bipolar Depression: Concepts and Challenges for Novel Interventions. Braz. J. Psychiatry 2022, 44, 178. [Google Scholar] [CrossRef] [PubMed]
- Ionescu, D.F.; Rosenbaum, J.F.; Alpert, J.E. Pharmacological Approaches to the Challenge of Treatment-Resistant Depression. Dialogues Clin. Neurosci. 2015, 17, 111. [Google Scholar] [CrossRef] [PubMed]
- Abi-Dargham, A.; Moeller, S.J.; Ali, F.; DeLorenzo, C.; Domschke, K.; Horga, G.; Jutla, A.; Kotov, R.; Paulus, M.P.; Rubio, J.M.; et al. Candidate Biomarkers in Psychiatric Disorders: State of the Field. World Psychiatry 2023, 22, 236–262. [Google Scholar] [CrossRef]
- Chrobak, A.A.; Adamek, D. New Light on Prions: Putative Role of Co-Operation of PrPcand Aβ Proteins in Cognition. Folia Neuropathol. 2014, 52, 1–9. [Google Scholar] [CrossRef]
- Westergard, L.; Christensen, H.M.; Harris, D.A. The Cellular Prion Protein (PrPC): Its Physiological Function and Role in Disease. Biochim. Biophys. Acta Mol. Basis Dis. 2007, 1772, 629–644. [Google Scholar] [CrossRef]
- Panes, J.D.; Saavedra, P.; Pineda, B.; Escobar, K.; Cuevas, M.E.; Moraga-Cid, G.; Fuentealba, J.; Rivas, C.I.; Rezaei, H.; Muñoz-Montesino, C. PrPC as a Transducer of Physiological and Pathological Signals. Front. Mol. Neurosci. 2021, 14, 762918. [Google Scholar] [CrossRef]
- Roberts, T.K.; Eugenin, E.A.; Morgello, S.; Clements, J.E.; Zink, M.C.; Berman, J.W. PrPC, the Cellular Isoform of the Human Prion Protein, is a Novel Biomarker of HIV-Associated Neurocognitive Impairment and Mediates Neuroinflammation. Am. J. Pathol. 2010, 177, 1848. [Google Scholar] [CrossRef]
- Leng, B.; Sun, H.; Zhao, J.; Liu, Y.; Shen, T.; Liu, W.; Liu, X.; Tan, M.; Li, F.; Zhang, J.; et al. Plasma Exosomal Prion Protein Levels Are Correlated with Cognitive Decline in PD Patients. Neurosci. Lett. 2020, 723, 134866. [Google Scholar] [CrossRef]
- Scalabrino, G.; Veber, D.; De Giuseppe, R.; Roncaroli, F. Low Levels of Cobalamin, Epidermal Growth Factor, and Normal Prions in Multiple Sclerosis Spinal Cord. Neuroscience 2015, 298, 293–301. [Google Scholar] [CrossRef] [PubMed]
- Persad, A.; Pham, N.; Moien-Afshari, F.; Gormley, W.; Yan, S.; Mannix, R.; Taghibiglou, C. Plasma PrPC and ADAM-10 as Novel Biomarkers for Traumatic Brain Injury and Concussion: A Pilot Study. Brain Inj. 2021, 35, 734–741. [Google Scholar] [CrossRef]
- García-Gutiérrez, M.S.; Navarrete, F.; Sala, F.; Gasparyan, A.; Austrich-Olivares, A.; Manzanares, J. Biomarkers in Psychiatry: Concept, Definition, Types and Relevance to the Clinical Reality. Front. Psychiatry 2020, 11, 432. [Google Scholar] [CrossRef] [PubMed]
- Harrington, K.; Abbott, C.C.; Quinn, D. Case Reports/Case Series with Literature Review Psychiatric Presentations of Creutzfeldt-Jakob Disease: A Case Report. J. Acad. Consult. Liaison Psychiatry 2021, 62, 248–252. [Google Scholar] [CrossRef] [PubMed]
- Thompson, A.; MacKay, A.; Rudge, P.; Lukic, A.; Porter, M.C.; Lowe, J.; Collinge, J.; Mead, D.S. Behavioral and Psychiatric Symptoms in Prion Disease. Am. J. Psychiatry 2014, 171, 265–274. [Google Scholar] [CrossRef]
- Peggion, C.; Stella, R.; Chemello, F.; Massimino, M.L.; Arrigoni, G.; Cagnin, S.; Biancotto, G.; Franchin, C.; Sorgato, M.C.; Bertoli, A. The Prion Protein Regulates Synaptic Transmission by Controlling the Expression of Proteins Key to Synaptic Vesicle Recycling and Exocytosis. Mol. Neurobiol. 2019, 56, 3420–3436. [Google Scholar] [CrossRef]
- Steinert, J.R. Prion Protein as a Mediator of Synaptic Transmission. Commun. Integr. Biol. 2015, 8, 1–5. [Google Scholar] [CrossRef]
- Fournier, J.G. Cellular Prion Protein Electron Microscopy: Attempts/Limits and Clues to a Synaptic Trait. Implications in Neurodegeneration Process. Cell Tissue Res. 2008, 332, 1–11. [Google Scholar] [CrossRef]
- Holmes, S.E.; Scheinost, D.; Finnema, S.J.; Naganawa, M.; Davis, M.T.; DellaGioia, N.; Nabulsi, N.; Matuskey, D.; Angarita, G.A.; Pietrzak, R.H.; et al. Lower Synaptic Density Is Associated with Depression Severity and Network Alterations. Nat. Commun. 2019, 10, 1529. [Google Scholar] [CrossRef]
- Koshy, S.M.; Kincaid, A.E.; Bartz, J.C. Transport of Prions in the Peripheral Nervous System: Pathways, Cell Types, and Mechanisms. Viruses 2022, 14, 630. [Google Scholar] [CrossRef]
- Shafiq, M.; Da Vela, S.; Amin, L.; Younas, N.; Harris, D.A.; Zerr, I.; Altmeppen, H.C.; Svergun, D.; Glatzel, M. The Prion Protein and Its Ligands: Insights into Structure-Function Relationships. Biochim. Biophys. Acta (BBA)-Mol. Cell Res. 2022, 1869, 119240. [Google Scholar] [CrossRef]
- Shah, S.Z.A.; Zhao, D.; Hussain, T.; Yang, L. The Role of Unfolded Protein Response and Mitogen-Activated Protein Kinase Signaling in Neurodegenerative Diseases with Special Focus on Prion Diseases. Front. Aging Neurosci. 2017, 9, 120. [Google Scholar] [CrossRef] [PubMed]
- Hirsch, T.Z.; Hernandez-Rapp, J.; Martin-Lannerée, S.; Launay, J.M.; Mouillet-Richard, S. PrPC Signalling in Neurons: From Basics to Clinical Challenges. Biochimie 2014, 104, 2–11. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Zou, D.; Li, Y.; Gu, S.; Dong, J.; Ma, X.; Xu, S.; Wang, F.; Huang, J.H. Monoamine Neurotransmitters Control Basic Emotions and Affect Major Depressive Disorders. Pharmaceuticals 2022, 15, 1203. [Google Scholar] [CrossRef] [PubMed]
- Stachowicz, K.; Sowa-Kućma, M. The Treatment of Depression—Searching for New Ideas. Front. Pharmacol. 2022, 13, 988648. [Google Scholar] [CrossRef]
- Beckman, D.; Santos, L.E.; Americo, T.A.; Ledo, J.H.; De Mello, F.G.; Linden, R. Prion Protein Modulates Monoaminergic Systems and Depressive-like Behavior in Mice. J. Biol. Chem. 2015, 290, 20488–20498. [Google Scholar] [CrossRef] [PubMed]
- Da Luz, M.H.M.; Peres, I.T.; Santos, T.G.; Martins, V.R.; Icimoto, M.Y.; Lee, K. Dopamine Induces the Accumulation of Insoluble Prion Protein and Affects Autophagic Flux. Front. Cell Neurosci. 2015, 9, 12. [Google Scholar] [CrossRef] [PubMed]
- Rial, D.; Pamplona, F.A.; Moreira, E.L.G.; Moreira, K.M.; Hipolide, D.; Rodrigues, D.I.; Dombrowski, P.A.; Da Cunha, C.; Agostinho, P.; Takahashi, R.N.; et al. Cellular Prion Protein Is Present in Dopaminergic Neurons and Modulates the Dopaminergic System. Eur. J. Neurosci. 2014, 40, 2479–2486. [Google Scholar] [CrossRef] [PubMed]
- Ferrucci, M.; Ryskalin, L.; Biagioni, F.; Gambardella, S.; Busceti, C.L.; Falleni, A.; Lazzeri, G.; Fornai, F. Methamphetamine Increases Prion Protein and Induces Dopamine-Dependent Expression of Protease Resistant PrPsc. Arch. Ital. Biol. 2017, 155, 81–97. [Google Scholar] [CrossRef]
- He, J.G.; Zhou, H.Y.; Wang, F.; Chen, J.G. Dysfunction of Glutamatergic Synaptic Transmission in Depression: Focus on AMPA Receptor Trafficking. Biol. Psychiatry Glob. Open Sci. 2023, 3, 187–196. [Google Scholar] [CrossRef]
- Khoodoruth, M.A.S.; Estudillo-Guerra, M.A.; Pacheco-Barrios, K.; Nyundo, A.; Chapa-Koloffon, G.; Ouanes, S. Glutamatergic System in Depression and Its Role in Neuromodulatory Techniques Optimization. Front. Psychiatry 2022, 13, 886918. [Google Scholar] [CrossRef]
- Vasiliu, O. Esketamine for Treatment resistant Depression: A Review of Clinical Evidence (Review). Exp. Ther. Med. 2023, 25, 111. [Google Scholar] [CrossRef] [PubMed]
- Pochwat, B.; Krupa, A.J.; Siwek, M.; Szewczyk, B. New Investigational Agents for the Treatment of Major Depressive Disorder. Expert. Opin. Investig. Drugs 2022, 31, 1053–1066. [Google Scholar] [CrossRef] [PubMed]
- Meneghetti, E.; Gasperini, L.; Virgilio, T.; Moda, F.; Tagliavini, F.; Benetti, F.; Legname, G. Prions Strongly Reduce NMDA Receptor S-Nitrosylation Levels at Pre-Symptomatic and Terminal Stages of Prion Diseases. Mol. Neurobiol. 2019, 56, 6035–6045. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.; Black, S.A.; Huang, J.; Stys, P.K.; Zamponi, G.W. Mutation of Copper Binding Sites on Cellular Prion Protein Abolishes Its Inhibitory Action on NMDA Receptors in Mouse Hippocampal Neurons. Mol. Brain 2021, 14, 117. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.; Chen, L.; Bladen, C.; Stys, P.K.; Zamponi, G.W. Differential Modulation of NMDA and AMPA Receptors by Cellular Prion Protein and Copper Ions. Mol. Brain 2018, 11, 62. [Google Scholar] [CrossRef] [PubMed]
- Fang, C.; Wu, B.; Le, N.T.T.; Imberdis, T.; Mercer, R.C.C.; Harris, D.A. Prions Activate a P38 MAPK Synaptotoxic Signaling Pathway. PLoS Pathog. 2018, 14, e1007283. [Google Scholar] [CrossRef] [PubMed]
- Perini, G.; Ramusino, M.C.; Sinforiani, E.; Bernini, S.; Petrachi, R.; Costa, A. Cognitive Impairment in Depression: Recent Advances and Novel Treatments. Neuropsychiatr. Dis. Treat. 2019, 15, 1249–1258. [Google Scholar] [CrossRef]
- Zattoni, M.; Garrovo, C.; Xerxa, E.; Spigolon, G.; Fisone, G.; Kristensson, K.; Legname, G. NMDA Receptor and L-Type Calcium Channel Modulate Prion Formation. Cell Mol. Neurobiol. 2021, 41, 191–198. [Google Scholar] [CrossRef]
- Khosravani, H.; Zhang, Y.; Tsutsui, S.; Hameed, S.; Altier, C.; Hamid, J.; Chen, L.; Villemaire, M.; Ali, Z.; Jirik, F.R.; et al. Prion Protein Attenuates Excitotoxicity by Inhibiting NMDA Receptors. J. Cell Biol. 2008, 181, 551–555. [Google Scholar] [CrossRef]
- Rangel, A.; Burgaya, F.; Gavín, R.; Soriano, E.; Aguzzi, A.; Del Río, J.A. Enhanced Susceptibility of Prnp-Deficient Mice to Kainate-Induced Seizures, Neuronal Apoptosis, and Death: Role of AMPA/Kainate Receptors. Proc. J. Neurosci. Res. 2007, 85, 2741–2755. [Google Scholar] [CrossRef] [PubMed]
- Watt, N.T.; Taylor, D.R.; Kerrigan, T.L.; Griffiths, H.H.; Rushworth, J.V.; Whitehouse, I.J.; Hooper, N.M. Prion Protein Facilitates Uptake of Zinc into Neuronal Cells. Nat. Commun. 2012, 3, 1134. [Google Scholar] [CrossRef] [PubMed]
- Ghirardini, E.; Restelli, E.; Morini, R.; Bertani, I.; Ortolan, D.; Perrucci, F.; Pozzi, D.; Matteoli, M.; Chiesa, R. Mutant Prion Proteins Increase Calcium Permeability of AMPA Receptors, Exacerbating Excitotoxicity. PLoS Pathog. 2020, 16, e1008654. [Google Scholar] [CrossRef] [PubMed]
- Ojeda-Juárez, D.; Lawrence, J.A.; Soldau, K.; Pizzo, D.P.; Wheeler, E.; Aguilar-Calvo, P.; Khuu, H.; Chen, J.; Malik, A.; Funk, G.; et al. Prions Induce an Early Arc Response and a Subsequent Reduction in MGluR5 in the Hippocampus. Neurobiol. Dis. 2022, 172, 105834. [Google Scholar] [CrossRef]
- De Mario, A.; Peggion, C.; Massimino, M.L.; Viviani, F.; Castellani, A.; Giacomello, M.; Lim, D.; Bertoli, A.; Sorgato, M.C. The Prion Protein Regulates Glutamate-Mediated Ca2+ Entry and Mitochondrial Ca2+ Accumulation in Neurons. J. Cell Sci. 2017, 130, 2736–2746. [Google Scholar] [CrossRef] [PubMed]
- Matsubara, T.; Satoh, K.; Homma, T.; Nakagaki, T.; Yamaguchi, N.; Atarashi, R.; Sudo, Y.; Uezono, Y.; Ishibashi, D.; Nishida, N. Prion Protein Interacts with the Metabotropic Glutamate Receptor 1 and Regulates the Organization of Ca2+ Signaling. Biochem. Biophys. Res. Commun. 2020, 525, 447–454. [Google Scholar] [CrossRef] [PubMed]
- Goniotaki, D.; Lakkaraju, A.K.K.; Shrivastava, A.N.; Bakirci, P.; Sorce, S.; Senatore, A.; Marpakwar, R.; Hornemann, S.; Gasparini, F.; Triller, A.; et al. Inhibition of Group-I Metabotropic Glutamate Receptors Protects against Prion Toxicity. PLoS Pathog. 2017, 13, e1006733. [Google Scholar] [CrossRef]
- Haas, L.T.; Kostylev, M.A.; Strittmatter, S.M. Therapeutic Molecules and Endogenous Ligands Regulate the Interaction between Brain Cellular Prion Protein (PrPC) and Metabotropic Glutamate Receptor 5 (MGluR5). J. Biol. Chem. 2014, 289, 28460–28477. [Google Scholar] [CrossRef]
- Rodríguez, A.; Martín, M.; Albasanz, J.L.; Barrachina, M.; Espinosa, J.C.; Torres, J.M.; Ferrer, I. Group I MGluR Signaling in BSE-Infected Bovine-PrP Transgenic Mice. Neurosci. Lett. 2006, 410, 115–120. [Google Scholar] [CrossRef]
- Abd-Elrahman, K.S.; Ferguson, S.S.G. Noncanonical Metabotropic Glutamate Receptor 5 Signaling in Alzheimer’s disease. Annu. Rev. Pharmacol. Toxicol. Dis. 2022, 62, 235–254. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhao, Y.; Zhang, L.; Yu, W.; Wang, Y.; Chang, W. Cellular Prion Protein as a Receptor of Toxic Amyloid-Β42 Oligomers Is Important for Alzheimer’s Disease. Front. Cell. Neurosci. 2019, 13, 339. [Google Scholar] [CrossRef] [PubMed]
- Dwomoh, L.; Rossi, M.; Scarpa, M.; Khajehali, E.; Molloy, C.; Herzyk, P.; Mistry, S.N.; Bottrill, A.R.; Sexton, P.M.; Christopoulos, A.; et al. M1 Muscarinic Receptor Activation Reduces the Molecular Pathology and Slows the Progression of Prion-Mediated Neurodegenerative Disease. Sci. Signal. 2022, 15, eabm3720. [Google Scholar] [CrossRef] [PubMed]
- Scarpa, M.; Molloy, C.; Jenkins, L.; Strellis, B.; Budgett, R.F.; Hesse, S.; Dwomoh, L.; Marsango, S.; Tejeda, G.S.; Rossi, M.; et al. Biased M1 Muscarinic Receptor Mutant Mice Show Accelerated Progression of Prion Neurodegenerative Disease. Proc. Natl. Acad. Sci. USA 2021, 118, e2107389118. [Google Scholar] [CrossRef] [PubMed]
- Bradley, S.J.; Bourgognon, J.M.; Sanger, H.E.; Verity, N.; Mogg, A.J.; White, D.J.; Butcher, A.J.; Moreno, J.A.; Molloy, C.; Macedo-Hatch, T.; et al. M1 Muscarinic Allosteric Modulators Slow Prion Neurodegeneration and Restore Memory Loss. J. Clin. Investig. 2017, 127, 487–499. [Google Scholar] [CrossRef]
- Jeong, J.-K.; Park, S.-Y. Neuroprotective Effect of Cellular Prion Protein (PrPC) Is Related with Activation of Alpha7 Nicotinic Acetylcholine Receptor (A7nAchR)-Mediated Autophagy Flux. Oncotarget 2015, 6, 24660. [Google Scholar] [CrossRef] [PubMed]
- Beraldo, F.H.; Arantes, C.P.; Santos, T.G.; Queiroz, N.G.T.; Young, K.; Rylett, R.J.; Markus, R.P.; Prado, M.A.M.; Martins, V.R. Role of A7 Nicotinic Acetylcholine Receptor in Calcium Signaling Induced by Prion Protein Interaction with Stress-Inducible Protein. J. Biol. Chem. 2010, 285, 36542–36550. [Google Scholar] [CrossRef]
- Carneiro, M.V.; Americo, T.A.; Guimarães, M.Z.P.; Linden, R. The Prion Protein Selectively Binds to and Modulates the Content of Purinergic Receptor P2X4R. Biochem. Biophys. Res. Commun. 2016, 472, 293–298. [Google Scholar] [CrossRef]
- Wulf, M.A.; Senatore, A.; Aguzzi, A. The Biological Function of the Cellular Prion Protein: An Update. BMC Biol. 2017, 15, 34. [Google Scholar] [CrossRef]
- Prasad, K.N.; Bondy, S.C. Oxidative and Inflammatory Events in Prion Diseases: Can They Be Therapeutic Targets? Curr. Aging Sci. 2019, 11, 216–225. [Google Scholar] [CrossRef]
- Abramov, A.Y.; Potapova, E.V.; Dremin, V.V.; Dunaev, A.V. Interaction of Oxidative Stress and Misfolded Proteins in the Mechanism of Neurodegeneration. Life 2020, 10, 101. [Google Scholar] [CrossRef]
- Hernandez-Rapp, J.; Martin-Lannerée, S.; Hirsch, T.Z.; Pradines, E.; Alleaume-Butaux, A.; Schneider, B.; Baudry, A.; Launay, J.M.; Mouillet-Richard, S. A PrPC -Caveolin-Lyn Complex Negatively Controls Neuronal GSK3β and Serotonin 1B Receptor. Sci. Rep. 2015, 4, 4881. [Google Scholar] [CrossRef]
- Gasperini, L.; Meneghetti, E.; Pastore, B.; Benetti, F.; Legname, G. Prion Protein and Copper Cooperatively Protect Neurons by Modulating NMDA Receptor through S-Nitrosylation. Antioxid. Redox Signal 2015, 22, 772–784. [Google Scholar] [CrossRef]
- Haas, L.T.; Salazar, S.V.; Kostylev, M.A.; Um, J.W.; Kaufman, A.C.; Strittmatter, S.M. Metabotropic Glutamate Receptor 5 Couples Cellular Prion Protein to Intracellular Signalling in Alzheimer’s Disease. Brain 2016, 139, 526–546. [Google Scholar] [CrossRef] [PubMed]
- Le Pichon, C.E.; Valley, M.T.; Polymenidou, M.; Chesler, A.T.; Sagdullaev, B.T.; Aguzzi, A.; Firestein, S. Olfactory Behavior and Physiology Are Disrupted in Prion Protein Knockout Mice. Nat. Neurosci. 2009, 12, 60–69. [Google Scholar] [CrossRef] [PubMed]
- Huber, R.; Deboer, T.; Tobler, I. Prion Protein: A Role in Sleep Regulation? Eur. Sleep Res. Soc. 1999, 1, 30–36. [Google Scholar] [CrossRef]
- Ragno, M.; Scarcella, M.G.; Cacchiò, G.; Capellari, S.; Di Marzio, F.; Parchi, P.; Trojano, L. Striatal [123I] FP-CIT SPECT Demonstrates Dopaminergic Deficit in a Sporadic Case of Creutzfeldt-Jakob Disease. Acta Neurol. Scand. 2009, 119, 131–134. [Google Scholar] [CrossRef]
- Vital, A.; Fernagut, P.-O.; Canron, M.-H.; Joux, J.; Bezard, E.; Martin-Negrier, M.-L.; Vital, C.; Tison, F. The Nigrostriatal Pathway in Creutzfeldt-Jakob Disease. J. Neuropathol. Exp. Neurol. 2009, 68, 809–815. [Google Scholar] [CrossRef]
- Gadotti, V.M.; Bonfield, S.P.; Zamponi, G.W. Depressive-like Behaviour of Mice Lacking Cellular Prion Protein. Behav. Brain Res. 2012, 227, 319–323. [Google Scholar] [CrossRef]
- Lobão-Soares, B.; Walz, R.; Prediger, R.D.S.; Freitas, R.L.; Calvo, F.; Bianchin, M.M.; Leite, J.P.; Landemberger, M.C.; Coimbra, N.C. Cellular Prion Protein Modulates Defensive Attention and Innate Fear-Induced Behaviour Evoked in Transgenic Mice Submitted to an Agonistic Encounter with the Tropical Coral Snake Oxyrhopus guibei. Behav. Brain Res. 2008, 194, 129–137. [Google Scholar] [CrossRef] [PubMed]
- Schmitz, M.; Zafar, S.; Silva, C.J.; Zerr, I. Behavioral Abnormalities in Prion Protein Knockout Mice and the Potential Relevance of PrPC for the Cytoskeleton. Prion 2014, 8, 381–386. [Google Scholar] [CrossRef]
- Criado, J.R.; Sánchez-Alavez, M.; Conti, B.; Giacchino, J.L.; Wills, D.N.; Henriksen, S.J.; Race, R.; Manson, J.C.; Chesebro, B.; Oldstone, M.B.A. Mice Devoid of Prion Protein Have Cognitive Deficits That Are Rescued by Reconstitution of PrP in Neurons. Neurobiol. Dis. 2005, 19, 255–265. [Google Scholar] [CrossRef] [PubMed]
- Carleton, A.; Tremblay, P.; Vincent, J.D.; Lledo, P.M. Dose-Dependent, Prion Protein (PrP)-Mediated Facilitation of Excitatory Synaptic Transmission in the Mouse Hippocampus. Pflug. Arch. 2001, 442, 223–229. [Google Scholar] [CrossRef] [PubMed]
- Rial, D.; Piermartiri, T.C.; Duarte, F.S.; Tasca, C.I.; Walz, R.; Prediger, R.D. Overexpression of Cellular Prion Protein (PrPC) Prevents Cognitive Dysfunction and Apoptotic Neuronal Cell Death Induced by Amyloid-β (Aβ 1-40) Administration in Mice. Neuroscience 2012, 215, 79–89. [Google Scholar] [CrossRef] [PubMed]
- Rial, D.; Duarte, F.S.; Xikota, J.C.; Schmitz, A.E.; Dafré, A.L.; Figueiredo, C.P.; Walz, R.; Prediger, R.D.S. Cellular Prion Protein Modulates Age-Related Behavioral and Neurochemical Alterations in Mice. Neuroscience 2009, 164, 896–907. [Google Scholar] [CrossRef]
- Ragagnin, A.; Ezpeleta, J.; Guillemain, A.; Boudet-Devaud, F.; Haeberlé, A.M.; Demais, V.; Vidal, C.; Demuth, S.; Béringue, V.; Kellermann, O.; et al. Cerebellar Compartmentation of Prion Pathogenesis. Brain Pathol. 2018, 28, 240–263. [Google Scholar] [CrossRef]
- Starowicz-Filip, A.; Prochwicz, K.; Kłosowska, J.; Chrobak, A.A.; Myszka, A.; Bętkowska-Korpała, B.; Kwinta, B. Cerebellar Functional Lateralization from the Perspective of Clinical Neuropsychology. Front. Psychol. 2021, 12, 775308. [Google Scholar] [CrossRef]
- Starowicz-Filip, A.; Chrobak, A.A.; Milczarek, O.; Kwiatkowski, S. The Visuospatial Functions in Children after Cerebellar Low-Grade Astrocytoma Surgery: A Contribution to the Pediatric Neuropsychology of the Cerebellum. J. Neuropsychol. 2017, 11, 201–221. [Google Scholar] [CrossRef] [PubMed]
- Starowicz-Filip, A.; Chrobak, A.A.; Moskala, M.; Krzyzewski, R.M.; Kwinta, B.; Kwiatkowski, S.; Milczarek, O.; Rajtar-Zembaty, A.; Zielinska, D. Rola Mozduku w Regulacji Funkcji Jezykowych. Psychiatr. Pol. 2017, 51, 661–671. [Google Scholar] [CrossRef] [PubMed]
- Starowicz-Filip, A.; Chrobak, A.A.; Kwiatkowski, S.; Milczarek, O.; Rajtar-Zembaty, A.M. Cerebellar Lesions after Low-Grade Tumor Resection Can Induce Memory Impairment in Children, Similar to That Observed in Patients with Frontal Lesions. Child Neuropsychol. 2020, 26, 388–408. [Google Scholar] [CrossRef] [PubMed]
- Chrobak, A.A.; Soltys, Z.; Dudek, D.; Siwek, M. Neurological and Cerebellar Soft Signs in Bipolar Disorder: The Role of Staging, Type and History of Psychotic Symptoms. Prog. Neuropsychopharmacol. Biol. Psychiatry 2023, 121, 110673. [Google Scholar] [CrossRef]
- Chrobak, A.A.; Siuda, K.; Biela, M.; Arciszewska, A.; Siwek, M.; Pilecki, M.W.; Dudek, D. Convergence Insufficiency with Unilateral Exophoria at near in Schizophrenia and Bipolar Disorder—A Preliminary Study. Psychiatr. Pol. 2014, 48, 1143–1154. [Google Scholar] [CrossRef] [PubMed]
- Chrobak, A.A.; Siuda-Krzywicka, K.; Siwek, G.P.; Arciszewska, A.; Siwek, M.; Starowicz-Filip, A.; Dudek, D. Implicit Motor Learning in Bipolar Disorder. J. Affect. Disord. 2015, 174, 250–256. [Google Scholar] [CrossRef] [PubMed]
- Ho, B.-C.; Mola, C.; Andreasen, C.N. Cerebellar dysfunction in neuroleptic naive schizophrenia patients: Clinical, cognitive, and neuroanatomic correlates of cerebellar neurologic signs. Biol. Psychiatry. 2004, 55, 1146–1153. [Google Scholar] [CrossRef] [PubMed]
- Chrobak, A.A.; Siuda-Krzywicka, K.; Siwek, G.P.; Tereszko, A.; Janeczko, W.; Starowicz-Filip, A.; Siwek, M.; Dudek, D. Disrupted Implicit Motor Sequence Learning in Schizophrenia and Bipolar Disorder Revealed with Ambidextrous Serial Reaction Time Task. Prog. Neuropsychopharmacol. Biol. Psychiatry 2017, 79, 169–175. [Google Scholar] [CrossRef] [PubMed]
- Chrobak, A.A.; Siuda-Krzywicka, K.; Sołtys, Z.; Siwek, G.P.; Bohaterewicz, B.; Sobczak, A.M.; Ceglarek, A.; Tereszko, A.; Starowicz-Filip, A.; Fąfrowicz, M.; et al. Relationship between Neurological and Cerebellar Soft Signs, and Implicit Motor Learning in Schizophrenia and Bipolar Disorder. Prog. Neuropsychopharmacol. Biol. Psychiatry 2021, 111, 110137. [Google Scholar] [CrossRef]
- Chrobak, A.A.; Rybakowski, J.K.; Abramowicz, M.; Perdziak, M.; Gryncewicz, W.; Tereszko, A.; Włodarczyk, M.; Dziuda, S.; Fafrowicz, M.; Czarnecki, P.; et al. Vergence Eye Movements in Bipolar Disorder. Psychiatr. Pol. 2020, 54, 467–485. [Google Scholar] [CrossRef]
- Chrobak, A.A.; Rybakowski, J.K.; Abramowicz, M.; Perdziak, M.; Gryncewicz, W.; Dziuda, S.; Fafrowicz, M.; Czarnecki, P.; Soltys, Z.; Ceglarek, A.; et al. Vergence Eye Movements Impairments in Schizophrenia and Bipolar Disorder. J. Psychiatr. Res. 2022, 156, 379–389. [Google Scholar] [CrossRef]
- Hirano, T. Long-Term Depression and Other Synaptic Plasticity in the Cerebellum. Proc. Jpn. Acad. Ser. B Phys. Biol. Sci. 2013, 89, 183. [Google Scholar] [CrossRef] [PubMed]
- Llinás, R.; Lang, E.J.; Welsh, J.P. The cerebellum, LTD, and memory: Alternative views. Learn. Mem. 1997, 3, 445–455. [Google Scholar] [CrossRef]
- Kishimoto, Y.; Hirono, M.; Atarashi, R.; Sakaguchi, S.; Yoshioka, T.; Katamine, S.; Kirino, Y. Impairment of Cerebellar Long-Term Depression and GABAergic Transmission in Prion Protein Deficient Mice Ectopically Expressing PrPLP/Dpl. Sci. Rep. 2020, 10, 15900. [Google Scholar] [CrossRef]
- Zou, W.Q.; Zhou, X.; Yuan, J.; Xiao, X. Insoluble Cellular Prion Protein and Its Association with Prion and Alzheimer Diseases. Prion 2011, 5, 172–178. [Google Scholar] [CrossRef]
- Kanaani, J.; Prusiner, S.B.; Diacovo, J.; Baekkeskov, S.; Legname, G. Recombinant Prion Protein Induces Rapid Polarization and Development of Synapses in Embryonic Rat Hippocampal Neurons in Vitro. J. Neurochem. 2005, 95, 1373–1386. [Google Scholar] [CrossRef]
- Colling, S.B.; Collinge, J.; Jefferys, J.G.R. Hippocampal Slices from Prion Protein Null Mice: Disrupted Ca2+-activated K+ currents. Neurosci. Lett. 1996, 209, 49–52. [Google Scholar] [CrossRef]
- Collinge, J.; Whittington, M.A.; Sidle, K.C.; Smith, C.J.; Palmer, M.S.; Clarke, A.R.; Jefferys, J.G. Prion Protein Is Necessary for Normal Synaptic Function. Nature 1994, 370, 184–187. [Google Scholar] [CrossRef]
- Biasini, E.; Turnbaugh, J.A.; Unterberger, U.; Harris, D.A. Prion Protein at the Crossroads of Physiology and Disease. Trends Neurosci. 2012, 35, 92–103. [Google Scholar] [CrossRef] [PubMed]
- Gillessen, T.; Budd, S.L.; Lipton, S.A. Excitatory amino acid neurotoxicity. Adv. Exp. Med. Biol. 2002, 513, 3–40. [Google Scholar] [CrossRef]
- Mattson, M.P.; Magnus, T. Ageing and Neuronal Vulnerability. Nat. Rev. Neurosci. 2006, 7, 278–294. [Google Scholar] [CrossRef]
- Seidler, R.D.; Bernard, J.A.; Burutolu, T.B.; Fling, B.W.; Gordon, M.T.; Gwin, J.T.; Kwak, Y.; Lipps, D.B. Motor Control and Aging: Links to Age-Related Brain Structural, Functional, and Biochemical Effects. Neurosci. Biobehav. Rev. 2010, 34, 721–733. [Google Scholar] [CrossRef] [PubMed]
- Coitinho, A.S.; Roesler, R.; Martins, V.R.; Brentani, R.R.; Izquierdo, I. Cellular Prion Protein Ablation Impairs Behavior as a Function of Age. Neuroreport 2003, 14, 1375–1379. [Google Scholar] [CrossRef]
- Maglio, L.E.; Martins, V.R.; Izquierdo, I.; Ramirez, O.A. Role of Cellular Prion Protein on LTP Expression in Aged Mice. Brain Res. 2006, 1097, 11–18. [Google Scholar] [CrossRef] [PubMed]
- Massimino, M.L.; Redaelli, M.; Bertoli, A.; Sorgato, M.C.; Mucignat-Caretta, C. Altered Behavioral Aspects of Aged Mice Lacking the Cellular Prion Protein. Physiol. Behav. 2013, 119, 86–91. [Google Scholar] [CrossRef]
- Nazor, K.E.; Seward, T.; Telling, G.C. Motor Behavioral and Neuropathological Deficits in Mice Deficient for Normal Prion Protein Expression. Biochim. Biophys. Acta Mol. Basis Dis. 2007, 1772, 645–653. [Google Scholar] [CrossRef] [PubMed]
- Claudio, A.; Andrea, F. Circadian Neuromarkers of Mood Disorders. J. Affect. Disord. Rep. 2022, 10, 100384. [Google Scholar] [CrossRef]
- Chrobak, A.A.; Tereszko, A.; Dembinska-Krajewska, D.; Arciszewska, A.; Siwek, M.; Dudek, D.; Rybakowski, J. Morningness-Eveningness and Affective Temperaments Assessed by the Temperament Evaluation of Memphis, Pisa and San Diego-Autoquestionnaire (TEMPS-A). Chronobiol. Int. 2017, 34, 57–65. [Google Scholar] [CrossRef] [PubMed]
- Chrobak, A.A.; Tereszko, A.; Dembinska-Krajewska, D.; Arciszewska, A.; Dopierała, E.; Siwek, M.; Dudek, D.; Rybakowski, J.K. The Role of Affective Temperaments Assessed by the Temperament Evaluation of Memphis, Pisa and San Diego-Autoquestionnaire (TEMPS-A) in the Relationship between Morningness-Eveningness and Bipolarity. J. Affect. Disord. 2018, 232, 83–88. [Google Scholar] [CrossRef]
- Dopierala, E.; Chrobak, A.; Kapczinski, F.; Michalak, M.; Tereszko, A.; Ferensztajn-Rochowiak, E.; Dudek, D.; Jaracz, J.; Siwek, M.; Rybakowski, J.K. A Study of Biological Rhythm Disturbances in Polish Remitted Bipolar Patients Using the BRIAN, CSM, and SWPAQ Scales. Neuropsychobiology 2017, 74, 125–130. [Google Scholar] [CrossRef]
- Dopierala, E.; Chrobak, A.A.; Kapczinski, F.; Michalak, M.; Tereszko, A.; Ferensztajn-Rochowiak, A.; Dudek, D.; Dembinska-Krajewska, D.; Siwek, M.; Jaracz, J.; et al. The Biological Rhythms Interview of Assessment in Neuropsychiatry in Patients with Bipolar Disorder: Correlation with Affective Temperaments and Schizotypy. Rev. Bras. Psiquiatr. 2016, 38, 325–328. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Alavez, M.; Conti, B.; Moroncini, G.; Criado, J.R. Contributions of Neuronal Prion Protein on Sleep Recovery and Stress Response Following Sleep Deprivation. Brain Res. 2007, 1158, 71–80. [Google Scholar] [CrossRef]
- da Luz, M.H.M.; Pino, J.M.V.; Santos, T.G.; Antunes, H.K.M.; Martins, V.R.; de Souza, A.A.L.; Torquato, R.J.S.; Lee, K.S. Sleep Deprivation Regulates Availability of PrPC and Aβ Peptides Which Can Impair Interaction between PrPC and Laminin and Neuronal Plasticity. J. Neurochem. 2020, 153, 377–389. [Google Scholar] [CrossRef]
- Llorens, F.; Zarranz, J.J.; Fischer, A.; Zerr, I.; Ferrer, I. Fatal Familial Insomnia: Clinical Aspects and Molecular Alterations. Curr. Neurol. Neurosci. Rep. 2017, 17, 444. [Google Scholar] [CrossRef]
- Portaluppi, F.; Cortelli, P.; Avoni, P.; Vergnani, L.; Maltoni, P.; Pavani, A.; Sforza, E.; Degli Uberti, E.C.; Gambetti, P.; Lugaresi, E. Progressive Disruption of the Circadian Rhythm of Melatonin in Fatal Familial Insomnia. J. Clin. Endocrinol. Metab. 1994, 78, 1075–1078. [Google Scholar]
- Kang, P.; De Bruin, G.S.; Wang, L.H.; Ward, B.A.; Ances, B.M.; Lim, M.M.; Bucelli, R.C. Sleep Pathology in Creutzfeldt-Jakob Disease. J. Clin. Sleep. Med. 2016, 12, 1033–1039. [Google Scholar] [CrossRef]
- Givaty, G.; Maggio, N.; Cohen, O.S.; Blatt, I.; Chapman, J. Early Pathology in Sleep Studies of Patients with Familial Creutzfeldt–Jakob Disease. J. Sleep Res. 2016, 25, 571–575. [Google Scholar] [CrossRef]
- Bassant, F.; Cathaka, F.; Court, L.; Gourmelon, P.; Hauw, J.J. Experimental Scrapie in Rats: First Electrophysiological Observations. Electroencephalogr. Clin. Neurophysiol. 1984, 57, 541–547. [Google Scholar] [CrossRef]
- Bert, J.; Vuillon-cacciuttolo, G.; Balzamo, E.; Micco, D.; Gambarelli, D.; Tamalet, J.; Gastaut, H. Experimental kuru in the rhesus monkey: A study of eeg modifications in the waking state and during sleep. Electroencephalogr. Clin. Neurophysiol. 1978, 45, 611–620. [Google Scholar] [CrossRef]
- Steele, A.D.; Jackson, W.S.; King, O.D.; Lindquist, S. The Power of Automated High-Resolution Behavior Analysis Revealed by Its Application to Mouse Models of Huntington’s and Prion Diseases. Proc. Natl. Acad. Sci. USA 2007, 104, 1983–1988. [Google Scholar] [CrossRef]
- Pierangeli, G.; Bono, F.; Aguglia, U.; Maltoni, P.; Montagna, P.; Lugers, E.; Quattrone, A.; Cortelli, P. Normal Sleep-Wake and Circadian Rhythms in a Case of Gerstmann-Sträussler-Sheinker (GSS) Disease. Clin. Auton. Res. 2004, 14, 39–41. [Google Scholar] [CrossRef]
- Provini, F.; Vetrugno, R.; Pierangeli, G.; Cortelli, P.; Rizzo, G.; Filla, A.; Strisciuglio, C.; Gallassi, R.; Montagna, P. Sleep and Temperature Rhythms in Two Sisters with P102L Gerstmann-Sträussler-Scheinker (GSS) Disease. Sleep. Med. 2009, 10, 374–377. [Google Scholar] [CrossRef]
- Roguski, A.; Gill, A.C. The Role of the Mammalian Prion Protein in the Control of Sleep. Pathogens 2017, 6, 58. [Google Scholar] [CrossRef]
- Tobler, I.; Gaus, S.E.; Deboer, T.; Achermann, P.; Fischer, M.; Rulicke, T.; Moser, M.; Oescht, B.; McBride, P.A.; Manson, J.C. Altered Circadian Activity Rhythms and Sleep in Mice Devoid of Prion Protein. Nature 1996, 380, 639–642. [Google Scholar] [CrossRef]
- Weis, S.; Haybaeck, J.; Dulay, J.R.; Llenos, I.C. Expression of Cellular Prion Protein (PrPc) in Schizophrenia, Bipolar Disorder, and Depression. J. Neural Transm. 2008, 115, 761–771. [Google Scholar] [CrossRef]
- Llorens, F.; Del Río, J.A. Unraveling the Neuroprotective Mechanisms of PrPC in Excitotoxicity. Prion 2012, 6, 245. [Google Scholar] [CrossRef]
- Zeng, L.; Zou, W.; Wang, G. Cellular Prion Protein (PrPC) and Its Role in Stress Responses. Int. J. Clin. Exp. Med. 2015, 8, 8042. [Google Scholar]
- Tsutsui, S.; Hahn, J.N.; Johnson, T.A.; Ali, Z.; Jirik, F.R. Absence of the Cellular Prion Protein Exacerbates and Prolongs Neuroinflammation in Experimental Autoimmune Encephalomyelitis. Am. J. Pathol. 2008, 173, 1029–1041. [Google Scholar] [CrossRef]
- Mantuano, E.; Azmoon, P.; Banki, M.A.; Sigurdson, C.J.; Campana, W.M.; Gonias, S.L. A Soluble PrPC Derivative and Membrane-Anchored PrPC in Extracellular Vesicles Attenuate Innate Immunity by Engaging the NMDA-R/LRP1 Receptor Complex. J. Immunol. 2022, 208, 85–96. [Google Scholar] [CrossRef]
- Haapakoski, R.; Ebmeier, K.P.; Alenius, H.; Kivimäki, M. Innate and Adaptive Immunity in the Development of Depression: An Update on Current Knowledge and Technological Advances. Prog. Neuropsychopharmacol. Biol. Psychiatry 2016, 66, 63. [Google Scholar] [CrossRef]
- Siwek, M.; Sowa-Kuaema, M.; Dudek, D.; Styczeñz, K.; Szewczyk, B.; Kotarska, K.; Misztak, P.; Pilc, A.; Wolak, M.; Nowak, G. Oxidative Stress Markers in Affective Disorders. Pharmacol. Rep. 2013, 65, 1558–1571. [Google Scholar] [CrossRef]
- Siwek, M.; Sowa-Kućma, M.; Styczeń, K.; Misztak, P.; Nowak, R.J.; Szewczyk, B.; Dudek, D.; Rybakowski, J.K.; Nowak, G.; Maes, M. Associations of Serum Cytokine Receptor Levels with Melancholia, Staging of Illness, Depressive and Manic Phases, and Severity of Depression in Bipolar Disorder. Mol. Neurobiol. 2017, 54, 5883–5893. [Google Scholar] [CrossRef]
- Breitling, L.P.; Müller, H.; Stegmaier, C.; Kliegel, M.; Brenner, H. Association of Prion Protein with Cognitive Functioning in Humans. Exp. Gerontol. 2012, 47, 919–924. [Google Scholar] [CrossRef]
- Yuyama, K.; Igarashi, Y. Physiological and Pathological Roles of Exosomes in the Nervous System. Biomol. Concepts 2016, 7, 53–68. [Google Scholar] [CrossRef]
- Hartmann, A.; Muth, C.; Dabrowski, O.; Krasemann, S.; Glatzel, M. Exosomes and the Prion Protein: More than One Truth. Front. Neurosci. 2017, 11, 250180. [Google Scholar] [CrossRef] [PubMed]
- Vella, L.J.; Greenwood, D.L.V.; Cappai, R.; Scheerlinck, J.P.Y.; Hill, A.F. Enrichment of Prion Protein in Exosomes Derived from Ovine Cerebral Spinal Fluid. Vet. Immunol. Immunopathol. 2008, 124, 385–393. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, D.G.; Temido-Ferreira, M.; Miranda, H.V.; Batalha, V.L.; Coelho, J.E.; Szegö, É.M.; Marques-Morgado, I.; Vaz, S.H.; Rhee, J.S.; Schmitz, M.; et al. α-Synuclein Interacts with PrPC to Induce Cognitive Impairment through MGluR5 and NMDAR2B. Nat. Neurosci. 2017, 20, 1569–1579. [Google Scholar] [CrossRef] [PubMed]
- De Cecco, E.; Legname, G. The Role of the Prion Protein in the Internalization of α-Synuclein Amyloids. Prion 2018, 12, 23–27. [Google Scholar] [CrossRef] [PubMed]
- Pańczyszyn-Trzewik, P.; Czechowska, E.; Stachowicz, K.; Sowa-Kućma, M. The Importance of α-Klotho in Depression and Cognitive Impairment and Its Connection to Glutamate Neurotransmission—An Up-to-Date Review. Int. J. Mol. Sci. 2023, 24, 15268. [Google Scholar] [CrossRef] [PubMed]
- Słupski, J.; Cubała, W.J.; Górska, N.; Gałuszko-Węgielnik, M.; Wiglusz, M.S. Role of Copper in Depression. Relationship with Ketamine Treatment. Med. Hypotheses 2018, 119, 14–17. [Google Scholar] [CrossRef]
- Stys, P.K.; You, H.; Zamponi, G.W. Copper-Dependent Regulation of NMDA Receptors by Cellular Prion Protein: Implications for Neurodegenerative Disorders. J. Physiol. 2012, 590, 1357–1368. [Google Scholar] [CrossRef]
- Siwek, M.; Wróbel, A.; Dudek, D.; Nowak, G.; Zięba, A. The Role of Copper and Magnesium in the Pathogenesis and Treatment of Affective Disorders. Psychiatr. Pol. 2005, 39, 911–920. [Google Scholar]
Neurotransmitter System | Species/Strains | Samples | Methods | Results | References |
---|---|---|---|---|---|
Serotonergic system | PrPc knock-out mice (Npu Prnp−/−) (8–12-week-old male) | Cerebral cortex | Western blot | ↔ 5HT1A receptors ↑ 5HT5A receptors ↔ SERT ↑ TH ↔ TPH | [29] |
Cerebral cortex | HPLC coupled with HPLC-ED | ↔ 5HT, 5-HIAA | |||
Cerebral cortex; SB-699551-A (5HT5A receptor antagonist—100 nM) | Accumulation of cAMP | ↑ cAMP production stimulated by 1 nm serotonin | |||
Cerebral cortex | Immunohistochemistry | colocalization of PrPc with 5HT5A receptors | |||
Cerebral cortex | Overlay assay | binding of PrPc to 5HT5A receptors and SERT | |||
PrPc knock-out mice (3-month-old male) | Behavioral tests | 5-HT1BR antagonist SB224289 (100 nM) in the substantia nigra injection; behavioral outcome | ↓ frequency and time spent in open arms (EPM) ↓ overall distance (EPM) | [64] | |
Dopaminergic system | PrPc knock-out mice (Npu Prnp−/−) (8–12-week-old male) | Cerebral cortex | Western blot | ↔ D1 receptors | [29] |
Cerebral cortex | HPLC coupled with HPLC-ED | ↑ DA | |||
Striatum | HPLC coupled with HPLC-ED | ↔ DA, DOPAC | |||
Cerebral cortex | Immunohistochemistry | colocalization of PrPc with D1 receptors | |||
Cerebral cortex | Overlay assay | binding of PrPc to D1 receptors | |||
PrPc knock-out mice (Prnp−/−) (2–3-month-old female) | Olfactory bulbectomy (OB), striatum (STR), hippocampus (HIP) and prefrontal cortex (PFC) | Western blot | ↓ TH (OB, PFC) ↔ TH (STR, HIP) ↓ DA (OB, PFC) ↔ DA (STR, HIP) | [31] | |
Autoradiography | ↓ D1 receptors (STR) ↔ D2 receptors, DAT (STR) | ||||
Glutamatergic system NMDA receptor | PrPc knock-out mice (Prnp−/−; on a C57BL6 background) | Hippocampal neurons; treated for 24 h with purified PrPSc | Western blot | ↓ GluN1 | [40] |
PrPc knock-out mice (The FVB Prnp−/−) | Hippocampus | Western blot | ↓ S-nitrosylation of GluN1 ↓ S-nitrosylation of GluN2A | [65] | |
Organotypic hippocampal cultures (OHC) by analyzing neuronal death in Cornus Ammonis 1 (CA1), Cornus Ammonis 3 (CA3) and dentate gyrus (DG) treated with 5 μM NMDA for 3 h or 10 μM NMDA for 10 min | Confocal microscope fluorescence | ↑ neuronal cell death (CA1, CA3, DG regions—after 5 µM and 10 µM NMDA exposure) | |||
Tg650 PrPc knock-in mice (with human cellular prion protein) and Tga20 PrPc knock-in mice (over-expressing murine cellular prion protein) | Hippocampal neurons for primary culture | Whole-cell voltage-clamp | ↑ sensitivity to glycine of NMDA receptors (from Tg650 mouse neurons) | [39] | |
Glutamatergic system AMPA receptor | Tg(CJD-A66+/−) and Tg(FFI-26+/−) expressing PrP at ~2X | Hippocampus (co-immunoprecipitate) | Immunoprecipitation/ Western blot | co-immunoprecipitated with GluA2 but not with GluA1 | [46] |
Tg(PG14-A3+/−) expressing transgenic PrP at ~1X | Cerebral cortex (co-immunoprecipitate) | Immunoprecipitation/ Western blot | co-immunoprecipitated with GluA2 | ||
Tg(PG14-A3+/−) expressing transgenic PrP at ~1X | Cerebellar granule neurons | LDH assay | more vulnerable to the toxicity of glutamate and AMPA | ||
Tg650 PrPc knock-in mice (with human cellular prion protein) and Tga20 PrPc knock-in mice (over-expressing murine cellular prion protein) | Hippocampal neurons for primary culture | Whole-cell voltage-clamp | ↑ steady-state AMPA current (Tg650) | [39] | |
C57BL/6J mice (6–8 weeks old) | Hippocampus | Western blot | ↔ GluA1 ↑ pGluA1-S845 | [47] | |
Glutamatergic system metabotropic glutamate receptors (mGluRs) | C57BL/6J mice (6–8 weeks old) | Hippocampus | Western blot | ↓ mGluR5 monomer ↓ mGluR5 dimer | [47] |
Real-time quantitative reverse transcription PCR | ↔ Grm5 mRNA | ||||
PrPc knock-out mice (on a C57/Bl6J background) | Synaptoneurosome of acute mouse brain slices | Immunoprecipitation/ Western blot | co-immunoprecipitation (co-IP) between PrPc with mGluR5 receptors | [66] | |
PrPc knock-out mice (Prnp−/−) | Brain lysates (total extracts; TEs) | Immunoprecipitation/ Western blot | PrPc interacts with mGluR1 and mGluR5 receptors ↔ mGluR1, mGluR5 receptors | [50] | |
Cholinergic and purinergic systems | Knock-in mice expressing M1-PD receptors | Hippocampus | Western blot | ↑ PrPSc ↑ PrPtot. | [56] |
Knock-in mice expressing M1-PD receptors | Cornus Ammonis 1 (CA1), Cornus Ammonis 3 (CA3) and dentate gyrus (DG) | Antibody-based biosensor of receptor activation; following fear-conditioning training | ↑ M1 mAChR | [57] | |
Lister hooded rats | Cerebellum | Overlay assay | detection of P2X4R bound to PrPc but not of P2X7 | [60] |
Category | Species/Strains | Methods | Results | References |
---|---|---|---|---|
Olfactory behavior and physiology | Wild-type mice: C57BL/6J × 129/Sv Knock-out mice: Zürich I Prnp−/−; Nagasaki Prnp−/−; Edinburgh Prnp−/−; Prn knockout Transgenic mice: Tg20; NSE-PrP; MBP-PrP; Tg306; Tg33 | Behavioral tests: cookie finding behavior test; Habituation–dishabituation test Odor delivery: 2 s odor puffs at least seven times Electrophysiology recordings: craniotomies for electrode insertion into the main olfactory bulb and the lateral olfactory tract Local field potential signal processing and analysis | The absence of PrPc leads to disturbances in olfactory function and behavior | [67] |
Depressive-like behavior regulation | Neuropathologic evaluation; cell counting | There is a possible pathophysiological overlap of abnormal protein aggregation in CJD and Parkinson’s disease. | [70] | |
Wild-type and PrP-null mice (C57BL/6J) (10 weeks old, weighing 25–30 g) | Drugs and treatment: Imipramine and MK-801; (dissolved in phosphate-buffered saline; intraperitoneal; 30 min before tests; 10 mL/kg body weight) Behavioral tests: forced swimming test; tail suspension test; open-field test | Transgenic mice with knock-out of the PrPc gene exhibited depressive-like behaviors | [71] | |
PrPc knock-out mice (Prnp−/−, descendants of Zrch I) (adult male, 3 months old, weighing 30–40 g) Wild-type mice (129/Sv × C57BL/6J) (Prnp+/+, male, 30–50 g) Tg-20 mice (deletion of the kanamycin gene from knock-out mice and insertion of four Prnp genes) (Prnps) | Behavioral tests: exposing different mouse strains to coral snakes (15 min confrontation) Predatory and antipredatory behavioral recordings (15 min) Olfactory discrimination task (to discard potential olfactory discrimination deficits; cages with familiar and non-familiar odors; time recording) | PrPc modulates behavioral reactions induced by innate fear | [72] | |
Cognitive functioning | mPrP−/− mice (129/Ola background) mPrP+/+ mice (129/Ola background) mPrP−/− mice in the mixed (129/Ola C57BL/10) background mPrP−/− expressing a hamster PrPc transgene mice (NSE-hPrPc/mPrP−/−) C57BL/10 mice (mPrP+/+ controls) (male and female ~5-month-old mice) | Behavioral tests: spatial version of the Barnes circular maze; non-spatial version of the Barnes circular maze Acute electrophysiological studies | PrPc-null mice displayed deficiencies in spatial learning and memory consolidation that rely on the hippocampus | [74] |
PrPc-deficient mouse line: Zrch Prnp−/− and Ngsk Prnp−/− Transgenic mouse line carrying the wild-type MoPrPA gene [Tg(MoPrP-A)B4053] | Samples: hippocampal slices Western blot Electrophysiological recordings | The mouse hippocampus exhibits an enhancement of excitatory synaptic transmission, mediated by the prion protein, dependent on the administered dose | [75] | |
Prnp-null mice (Prnp−/−, descendants of Zrch I) Wild-type mice (Prnp+/+, 129/Sv × C57BL/6J) PrPc-overexpressing Tg-20 mice (4-month-old male, weighing 30–40 g) | Drug treatment: human Ab1–40 and the inverse peptide Ab40–1 (concentration 1 mg/mL; diluted in 0.1 mol/L phosphate-buffered saline (PBS); intracerebroventricular (i.c.v.) microinjections; 3 µL of PBS, Ab1–40 or Ab40–1; directly into the lateral ventricle; experiments: at least 14 days after administration) Behavioral tests: water maze task Samples: hippocampal slices Cell viability assays: MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) cell viability assay; propidium iodide staining Western blot | Overexpression of cellular prion protein in mice acts as a safeguard against spatial learning and memory impairments | [76] | |
Prnp-null mice (Prnp−/−, descendants of Zrch I) Wild-type mice (Prnp+/+, 129/Sv × C57BL/6J) PrPc-overexpressing Tg-20 mice (11-month-old male, weighing 30–40 g) | Drug treatment: PepSTI1230–245 and PepSTI1422–437 peptides (concentration 50 ng/µL; intracerebroventricular (i.c.v.) microinjections; 3 μL of PBS, PepSTI-1230–245 or PepSTI1422–437; directly into the lateral ventricle; the first juvenile presentation: 5 min after administration) Behavioral tests: open field; activity cages; elevated plus-maze; social recognition task; step-down inhibitory avoidance task Samples: blood (for the acetylcholinesterase (AChE) activity assay); hippocampus AChE activity assessment Immunohistochemistry: at the dorsal hippocampus | PrPc plays a crucial role in the age-related behavioral deficits observed in mice | [77] | |
Ngsk Prnp−/− mice Prnp+/− mice (F3 Ngsk × C57BL/6J) Ngsk Prnp+/+ | Samples: cerebellum Electrophysiology: whole-cell voltage-clamp recordings from Purkinje cells; parallel fibers-evoked excitatory postsynaptic currents measurement, addition of bicuculline (10 μM) to the artificial cerebrospinal fluid; long-term depression induction; measurements of inhibitory postsynaptic currents Behavioral tests: eyeblink conditioning | Significant role of PrPc in cognitive deficits associated with Purkinje cells | [93] | |
Rats | Samples: hippocampus Protein production: full-length recombinant mouse PrP [MoPrP(23–230)] expressed from pET11a plasmid; recombinant full-length Syrian hamster PrP [SHaPrP(29–231)] and C-terminal region [SHaPrP(90–231)] produced from plasmid pNT3A Purification (MoPrP(23–230); SHaPrP(29–231) and SHaPrP(90–231); MoDpl(27–155); synthetic SHaPrP(23–98) peptide) Neuronal culture: protein and inhibitor treatment (RecPrP, recDpl, control proteins, kinase inhibitors) Immunofluorescence analysis | The introduction of recombinant prion protein prompts rapid polarization and the formation of synapses | ||
PrP-null mice (Prnp−/−, 129/Sv × C57BL) (male, 12–16 weeks old) Wild-type mice (Prnp+/+, C57BL × 129/Sv) (male, 12–16 weeks old) | Samples: hippocampus Electrophysiological recordings (intracellular electrophysiological recordings on individual CA1 pyramidal cells) | The deletion of PrPc led to impaired long-term potentiation | [96] | |
PrP null mice (adult male) 129/Sv × C57BL/6J (control) mice (adult male) | Samples: hippocampus Electrophysiological recordings | The deletion of PrPc led to impaired long-term potentiation | [97] | |
PrP-null mice (PrP−/−, Zürich 1 strain) Wild-type mice (PrP+/+, 129 and FVB background) | Samples: hippocampus Neuronal primary culture and transfection: electroporation for introducing exogenous plasmids (cDNA or siRNA) into cells; enhanced YFP as a transfection marker Molecular biology: mouse Prnp cDNA cloned into pCMV-SPORT6 for PrP reconstitution experiments; siRNA experiments with retroviral short hairpin RNA (shRNAmir) constructs; NR2D RNAi experiments with specific shRNAmir constructs; RT-PCR to analyze NMDAR subunit and PrP expression Electrophysiological recordings Immunofluorescence microscopy Western blot ELISA assays and in vitro excitotoxicity assays (NMDA excitotoxicity assays) Lesion surgery and fluoro-jade staining (hippocampal injections of NMDA; staining to assess cell death) Spectral analysis of epileptiform discharges (Fourier-based analysis) | The prion protein mitigates excitotoxicity by suppressing NMDA receptor activity | [43] | |
PrPc-deficient mice (Prnp−/−) 21 C57BL6J mice | Kainic acid injections (glutamate agonist KA; intraperitoneal (i.p.); 8 mg/kg b.w. every 30–60 min for up to 4 h; 0.1 M phosphate-buffered saline (PBS)) Seizure severity scoring (for 7 h after the first injection) Pharmacologic treatments of slice cultures (propidium iodide uptake after glutamate or KA treatment; use of the non-competitive NMDA receptor antagonist MK801) Histologic methods (antibodies used for immunostaining: a-fos, a-GluR1, a-GluR2/3, a-GluR4, a-GluR6-7, a-ERK1-2, a-p38, JNK, a-GFAP) Fluoro-jade B staining of dying neurons in brain sections Cell culture and small interfering RNA (siRNA) transfection Semi-quantitative RT-PCR of AMPA/KA receptors Real-time PCR Western blot | PrPc influences kainate receptors | [44] | |
PrPc-null mice (Prnp−/−, descendants of Zrch I) Wild-type mice (Prnp+/+, 129/Sv × C57BL/6J) | Samples: hippocampus Neuritogenesis assays Immunofluorescence PKC activity measurement PKA activity measurement ERKI/2 activity measurement Ca2+ signaling and data analysis Transfection of HEK 293 cells with mGluR1 and mGluR5 and reconstitution of PrPc-Ln γ1 peptide signaling Coimmunoprecipitation assay Colocalization with mGluRs | PrPc influences metabotropic glutamate receptors | [59] | |
PrPc-null mice (Prnp−/−, 129/Sv and C57BL/6J) Wild-type mice (Prnp+/+, 129/Sv and C57BL/6J) Surgically implanted male Wistar rats (3 and 9 months old) | Surgical procedure (rats) (bilateral implantation of a 30 g cannula, 1 mm above the CA1 area of dorsal hippocampus) Behavioral tests: Open field test; elevated plus-maze; inhibitory avoidance training | Transgenic mice with knock-out of the PrPc gene were found to be more susceptible to age-related declines in memory | [102] | |
Mice disrupted for the PrPc gene (Prnp−/−, 129/Sv × C57BL/6J) Wild-type (control) mice (129/Sv × C57BL/6J) (male, 9 months old) | Samples: hippocampus Electrophysiological procedures: long-term potentiation assessment In situ hybridization and immunological detection | The heightened glutamatergic transmission in the hippocampus of Prnp−/− mice is associated with increased plasticity and prolonged persistence of dentate long-term potentiation | [103] | |
Wild-type mice (WT, FVB strain) PrP-KO mice (carrying an FVB genetic background (F10)) Tg46 mice (re-introduction of the PrP gene into the F10 background, PrPc at amounts similar to the natural levels) | Behavioral tests: pole test; forced swimming test; cookie-finding test; intruder test; predatory aggression test; open field test | As individuals age, the lack of the prion protein leads to changes in neural processing that affect the ability to adapt to new situations. | [104] | |
Prnp−/− mice (Zurich strain, mixed 129/Sv and C57BL/6) FVB/Prnp−/− mice (Prnp−/− mice repeatedly crossed with wild-type FVB animals) Tg(GSS)22 mice (homozygous for the MoPrP-P101L transgene, FVB/Prnp−/− background) | Samples: brain Histopathologic analysis Semi-automated lesion profiling Behavioral tests: rotarod test | Transgenic mice with knock-out of the PrPc gene were found to be more susceptible to age-related declines in motor processes | [105] | |
Circadian rhythms and sleeping patterns | PrP-deficient mice (Prnp−/−) (129/Ola, 15.4 ± 0.4 weeks, 28.0 ± 0.7 g) Wild-type mice (Prnp+/+) (129/Ola, 17.2 ± 1.0 weeks, 31.3 ± 0.8 g) | 12 h light–dark cycle with specific housing, environmental and light conditions Surgery (implantation of two epidural EEG electrodes, EMG electrodes and a thermistor to measure brain temperature) Sleep deprivation EEG analysis EMG analysis Sleep fragmentation assessment Behavioral tests: free choice exploration test; passive avoidance test; delayed and immediate alternation procedure in a T-maze | The absence of PrPc leads to alterations of circadian rhythms and changes in sleeping patterns | [68] |
PrPc-null mice (Prnp−/−, 129/Ola) Wild-type mice (Prnp+/+, 129/Ola) Transgenic mice (Tg) | Measurement of the motor activity rhythm In situ hybridization Implantation with chronical electrodes (for EEG and EMG recordings and with a cortical thermistor) | The PrP gene appears to be involved in regulating sleep patterns and circadian rhythms | [123] | |
mPrP0/0 mice (129/Ola) Wild-type controls: C57BL/10 (BL10 mPrP+/+); 129/Ola (129/Ola mPrP+/+) Transgenic mice: mPrP0/0 expressing hamster PrPc transgene in neurons (NSE-HPrP/PrP0/0 mice); mPrP0/0 expressing hamster PrPc transgene in astrocytes (GFAP HPrP/mPrP0/0 mice) | Surgery (for EEG and EMG electrode implant) Sleep deprivation EEG and EMG analysis Samples: blood (measurement of plasma corticosterone and adrenocorticotropic hormone levels) | The hormonal regulation of the hypothalamic–pituitary–adrenal axis, dependent on neuronal PrPc, may contribute to the maintenance of sleep homeostasis | [111] | |
C57BL/6 mice (male, 3 months of age) (for sleep deprivation protocol) Prnp knock-out mice (used in neurite outgrowth assay) | Sleep deprivation Samples: hippocampus Western blot Immunoenzymatic assay (ELISA) Aβ peptides oligomerization (non-denaturing PAGE; size exclusion chromatography) Silver staining Binding assay Neurite outgrowth assay | Sleep deprivation influences the presence of PrPc and Aβ peptides, potentially disrupting the interaction between PrPc and laminin, as well as impairing neuronal plasticity | [112] | |
Blood sample collection and processing; polygraphic tracings; measurement of plasma melatonin by RIA after diethyl ether extraction; analysis of rhythmicity | A gradual disturbance in the circadian rhythm of melatonin is noticeable in fatal familial insomnia | [114] | ||
Clinical data collection: clinical history, diagnostic data (CSF, EEG, MRI, laboratory values and PSG for a subset); CSF, EEG and MRI analyses; sleep data collection and analysis | Sleep abnormalities are prevalent in Creutzfeldt–Jakob disease, and it is recommended to include screening for sleep issues when assessing patients with rapidly progressing dementias | [115] | ||
Polysomnography recordings; PSG scoring | Sleep-related issues are a common and noteworthy aspect of the clinical presentation in both sporadic and familial forms of CJD. | [116] | ||
Rats (60–80 g body weight) | Inoculation with different strains of scrapie Electrode implantation (for EEG recording) EEG and EMG recording Sleep–wakefulness cycle classification (five states) Neuropathological examination | Rats inoculated with various prion strains demonstrate significant decreases in slow-wave sleep | [117] | |
Rhesus monkeys | Electrode implantation (for EEG recording) Inoculation with a strain of Kuru EEG recording | Rhesus monkeys inoculated with a strain of Kuru exhibit a complete loss of REM sleep and disrupted sleep stage cycling | [118] | |
HD line mice (mixed C57BL/6J and CBA genetic background) C57BL/6 mice (males) | Intracranial injection (with 30 μL of 0.1% uninfected mouse brain homogenate or 0.1% RML scrapie-infected mouse brain homogenate containing ≈ 5.5 log ID50 per 30 μL) Video recording (prion-infected mice were recorded for two consecutive 24 h periods at different time points post-inoculation) | Mice inoculated with the murine prion disease RML display alterations in rest period activity | [119] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chrobak, A.A.; Pańczyszyn-Trzewik, P.; Król, P.; Pawelec-Bąk, M.; Dudek, D.; Siwek, M. New Light on Prions: Putative Role of PrPc in Pathophysiology of Mood Disorders. Int. J. Mol. Sci. 2024, 25, 2967. https://doi.org/10.3390/ijms25052967
Chrobak AA, Pańczyszyn-Trzewik P, Król P, Pawelec-Bąk M, Dudek D, Siwek M. New Light on Prions: Putative Role of PrPc in Pathophysiology of Mood Disorders. International Journal of Molecular Sciences. 2024; 25(5):2967. https://doi.org/10.3390/ijms25052967
Chicago/Turabian StyleChrobak, Adrian Andrzej, Patrycja Pańczyszyn-Trzewik, Patrycja Król, Magdalena Pawelec-Bąk, Dominika Dudek, and Marcin Siwek. 2024. "New Light on Prions: Putative Role of PrPc in Pathophysiology of Mood Disorders" International Journal of Molecular Sciences 25, no. 5: 2967. https://doi.org/10.3390/ijms25052967
APA StyleChrobak, A. A., Pańczyszyn-Trzewik, P., Król, P., Pawelec-Bąk, M., Dudek, D., & Siwek, M. (2024). New Light on Prions: Putative Role of PrPc in Pathophysiology of Mood Disorders. International Journal of Molecular Sciences, 25(5), 2967. https://doi.org/10.3390/ijms25052967