Gene Expression Studies in Down Syndrome: What Do They Tell Us about Disease Phenotypes?
Abstract
:1. Introduction
2. Methods
3. Assessment of Gene Expression Analysis Techniques
Technique | Advantages | Disadvantages |
---|---|---|
Microarray analysis |
|
|
DNA methylationanalysis |
|
|
Quantitative transcriptome map |
|
|
Western blot |
| |
Immunohistochemistry | ||
Real-time PCR (RT-qPCR) |
| |
Flow cytometry analysis | ||
Single-cell RNA sequencing |
4. Gene Expression Changes in Amniocytes and Amniotic Fluid
5. Gene Expression Changes in the Placenta
6. Gene Expression Changes Affecting Brain Development
7. Gene Expression Changes Affecting Cardiac Tissues
8. Gene Expression Changes That Lead to Haematopoietic Cells/Myeloproliferative Disease
9. Gene Expression Changes That Lead to Endocrine Disease
10. Gene Expression Changes Affecting Ocular Development
11. Gene Therapy for Future Implications
12. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Carothers, A.D.; Hecht, C.A.; Hook, E.B. International variation in reported livebirth prevalence rates of Down syndrome, adjusted for maternal age. J. Med. Genet. 1999, 36, 386. [Google Scholar]
- Korenberg, J.R.; Chen, X.N.; Schipper, R.; Sun, Z.; Gonsky, R.; Gerwehr, S.; Carpenter, N.; Daumer, C.; Dignan, P.; Disteche, C. Down syndrome phe-notypes: The consequences of chromosomal imbalance. Proc. Natl. Acad. Sci. USA 1994, 91, 4997. [Google Scholar] [CrossRef]
- Sidman, R.L.; Rakic, P. Neuronal migration, with special reference to developing human brain: A review. Brain Res. 1973, 62, 1–35. [Google Scholar] [CrossRef]
- Chiang, J.C.; Jiang, J.; Newburger, P.E.; Lawrence, J.B. Trisomy silencing by XIST normalizes Down syndrome cell pathogenesis demonstrated for hematopoietic defects in vitro. Nat. Commun. 2018, 9, 1–12. [Google Scholar] [CrossRef]
- Olson, L.E.; Richtsmeier, J.T.; Leszl, J.; Reeves, R.H. A Chromosome 21 Critical Region Does Not Cause Specific Down Syndrome Phenotypes. Science 2004, 5696, 687. [Google Scholar] [CrossRef] [PubMed]
- Rozovski, U.; Jonish-Grossman, A.; Bar-Shira, A.; Ochshorn, Y.; Goldstein, M.; Yaron, Y. Genome-wide expression analysis of cultured trophoblast with trisomy 21 karyotype. Hum. Reprod. 2007, 22, 2538–2545. [Google Scholar] [CrossRef] [PubMed]
- Rovelet-Lecrux, A.; Hannequin, D.; Raux, G.; Le Meur, N.; Laquerrière, A.; Vital, A.; Dumanchin, C.; Feuillette, S.; Brice, A.; Vercelletto, M.; et al. APP locus duplication causes autosomal dominant early-onset Alzheimer disease with cerebral amyloid angiopathy. Nat. Genet. 2006, 38, 24–26. [Google Scholar] [CrossRef] [PubMed]
- Cabrejo, L.; Guyant-Maréchal, L.; Laquerrière, A.; Vercelletto, M.; De La Fournière, F.; Thomas-Antérion, C.; Verny, C.; Letournel, F.; Pasquier, F.; Vital, A.; et al. Phenotype associated with APP duplication in five families. Brain 2006, 129, 2966–2976. [Google Scholar] [CrossRef] [PubMed]
- Park, H.J.; Cho, H.Y.; Cha, D.H. The Amniotic Fluid Cell-Free Transcriptome Provides Novel Information about Fetal Development and Placental Cellular Dynamics. Int. J. Mol. Sci. 2021, 22, 2612. [Google Scholar] [CrossRef] [PubMed]
- Herault, Y.; Delabar, J.M.; Fisher, E.M.C.; Tybulewicz, V.L.J.; Yu, E.; Brault, V. Rodent models in Down syndrome research: Impact and future opportunities. Dis. Model. Mech. 2017, 10, 1165. [Google Scholar] [CrossRef] [PubMed]
- Sago, H.; Carlson, E.J.; Smith, D.J.; Kilbridge, J.; Rubin, E.M.; Mobley, W.C. Ts1Cje, a partial trisomy 16 mouse model for Down syndrome, exhibits learning and behavioral abnormalities. Proc. Natl. Acad. Sci. USA 1998, 95, 6256–6261. [Google Scholar] [CrossRef]
- Villar, A.J.; Belichenko, P.V.; Gillespie, A.M.; Kozy, H.M.; Mobley, W.C.; Epstein, C.J. Identification and characterization of a new Down syndrome model, Ts2Cje, resulting from a spontaneous Robertsonian fusion between T65Dn and mouse chromosome 12. Mamm. Genome 2005, 16, 79–90. [Google Scholar] [CrossRef]
- Lee, D.E.; Lim, J.H.; Kim, M.H.; Park, S.Y.; Ryu, H.M. Novel Epigenetic Markers on Chromosome 21 for Noninvasive Prenatal Testing of Fetal Trisomy 21. J. Mol. Diagn. 2016, 18, 378–387. [Google Scholar] [CrossRef] [PubMed]
- Shi, W.-L.; Liu, Z.-Z.; Wang, H.-D.; Wu, D.; Zhang, H.; Xiao, H.; Chu, Y.; Hou, Q.-F.; Liao, S.-X. Integrated miRNA and mRNA expression profiling in fetal hippocampus with Down syndrome. J. Biomed. Sci. 2016, 23, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Haque, A.; Engel, J.; Teichmann, S.A.; Lönnberg, T. A practical guide to single-cell RNA-sequencing for biomedical research and clinical applications. Genome Med. 2017, 9, 75. [Google Scholar] [CrossRef] [PubMed]
- Stamoulis, G.; Garieri, M.; Makrythanasis, P.; Letourneau, A.; Guipponi, M.; Panousis, N.; Sloan-Béna, F.; Falconnet, E.; Ribaux, P.; Borel, C.; et al. Single cell transcriptome in aneuploidies reveals mechanisms of gene dosage imbalance. Nat. Commun. 2019, 10, 1–11. [Google Scholar] [CrossRef]
- Kurdyukov, S.; Bullock, M. DNA Methylation Analysis: Choosing the Right Method. Biology 2016, 5, 3. [Google Scholar] [CrossRef] [PubMed]
- Letourneau, A.; Santoni, F.A.; Bonilla, X.; Sailani, M.R.; Gonzalez, D.; Kind, J.; Chevalier, C.; Thurman, R.; Sandstrom, R.S.; Hibaoui, Y.; et al. Domains of genome-wide gene expression dysregulation in Down’s syndrome. Nature 2014, 508, 345–350. [Google Scholar] [CrossRef]
- Yu, Y.E.; Xing, Z.; Do, C.; Pao, A.; Lee, E.J.; Krinsky-McHale, S. Genetic and epigenetic pathways in Down syndrome: Insights to the brain and immune system from humans and mouse models. Prog. Brain Res. 2020, 251, 1–28. [Google Scholar]
- Lenzi, L.; Facchin, F.; Piva, F.; Giulietti, M.; Pelleri, M.C.; Frabetti, F.; Vitale, L.; Casadei, R.; Canaider, S.; Bortoluzzi, S.; et al. TRAM (Transcriptome Mapper): Database-driven creation and analysis of transcriptome maps from multiple sources. BMC Genom. 2011, 12, 121. [Google Scholar] [CrossRef]
- Antonaros, F.; Zenatelli, R.; Guerri, G.; Bertelli, M.; Locatelli, C.; Vione, B.; Catapano, F.; Gori, A.; Vitale, L.; Pelleri, M.C.; et al. The transcriptome profile of human trisomy 21 blood cells. Hum. Genom. 2021, 15, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Xu, J. DNA methyltransferases and their roles in tumorigenesis. Biomark. Res. 2017, 5, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Evans, T.G.; Podrabsky, J.E.; Stillman, J.H.; Tomanek, L. Considerations for the use of transcriptomics in identifying the ‘genes that matter’ for environmental adaptation. J. Exp. Biol. 2015, 218, 1925–1935. [Google Scholar] [CrossRef] [PubMed]
- Lacoma, T. Electrophoresis Process. Sciencing. Available online: https://sciencing.com/electrophoresis-process-5481819.html (accessed on 18 January 2023).
- Wu, B. Immunohistochemistry Stains. DermNet. 2015. Available online: https://dermnetnz.org/topics/immunohistochemistry-stains (accessed on 18 January 2023).
- Dymond, J.S. Explanatory chapter: Quantitative PCR. Methods Enzymol. 2013, 529, 279–289. [Google Scholar]
- Cole, M. What Are the Advantages & Disadvantages of Flow Cytometry? Sciencing. 2018. Available online: https://sciencing.com/calculate-cell-concentration-2788.html (accessed on 18 January 2023).
- Luo, Q.; Zhang, H. Emergence of Bias During the Synthesis and Amplification of cDNA for scRNA-seq. Adv. Exp. Med. Biol. 2018, 1068, 149–158. [Google Scholar]
- Allyse, M.; Minear, M.; Rote, M.; Hung, A.; Chandrasekharan, S.; Berson, E.; Sridhar, S. Non-invasive prenatal testing: A review of international implementation and challenges. Int. J. Womens Health 2015, 7, 113–126. [Google Scholar] [CrossRef]
- Publications & Guidelines|SMFM.org—The Society for Maternal-Fetal Medicine. Available online: https://www.smfm.org/publications/223-practice-bulletin-162-prenatal-diagnostic-testing-for-genetic-disorders (accessed on 11 September 2023).
- Chung, I.-H.; Lee, S.-H.; Lee, K.-W.; Park, S.-H.; Cha, K.-Y.; Kim, N.-S.; Yoo, H.-S.; Kim, Y.S.; Lee, S. Gene expression analysis of cultured amniotic fluid cell with Down syndrome by DNA microarray. J. Korean Med. Sci. 2005, 20, 82–87. [Google Scholar] [CrossRef]
- Chen, H.; Sandler, D.; Taylor, J.; Bell, D.; Shore, D.; Liu, E.; Bloomfield, C. Increased risk for myelodysplastic syndromes in individuals with glutathione transferase theta 1 (GSTT1) gene defect. Lancet 1996, 347, 295–297. [Google Scholar] [CrossRef]
- *600436—GLUTATHIONE S-TRANSFERASE, THETA-1; GSTT1—OMIM. Available online: https://www.omim.org/entry/600436?search=gstt1&highlight=gstt1 (accessed on 11 September 2023).
- Altug-Teber, Ö.; Bonin, M.; Walter, M.; Mau-Holzmann, U.; Dufke, A.; Stappert, H.; Tekesin, I.; Heilbronner, H.; Nieselt, K.; Riess, O. Specific transcriptional changes in human fetuses with autosomal trisomies. Cytogenet. Genome Res. 2007, 119, 171–184. [Google Scholar] [CrossRef]
- COL6A1 Gene|CO6A1 Protein|CO6A1 Antibody. Available online: https://www.genecards.org/cgi-bin/carddisp.pl?gene=COL6A1 (accessed on 11 September 2023).
- Davies, G.E.; Howard, C.M.; Farrer, M.J.; Coleman, M.M.; Bennett, L.B.; Cullen, L.M. Genetic variation in the COL6A1 region is associated with congenital heart defects in trisomy 21 (Down’s syndrome). Ann. Hum. Genet. 1995, 59, 253–269. [Google Scholar] [CrossRef]
- Anlar, B.; Atilla, P.; Çakar, A.N.; Kose, M.F.; Beksaç, M.S.; Dagdeviren, A.; Akçören, Z. Expression of adhesion and extracellular matrix molecules in the developing human brain. J. Child Neurol. 2022, 17, 707–713. [Google Scholar] [CrossRef]
- Loftis, M.J.; Sexton, D.; Carver, W. Effects of collagen density on cardiac fibroblast behavior and gene expression. J. Cell Physiol. 2003, 196, 504–511. [Google Scholar] [CrossRef] [PubMed]
- Wilson, G.N.; Tonk, V.S.; Wilson, G.N. Demon Genes May Deform Common Syndromes: Collagen VI Gene Change in Down Syndrome Unifies the Medical and Molecular Approach to Hypermobility Disorders. J. Biosci. Med. 2022, 10, 1–7. [Google Scholar] [CrossRef]
- *120220—COLLAGEN, TYPE VI, ALPHA-1; COL6A1—OMIM. Available online: https://www.omim.org/entry/120220?search=COL6A1&highlight=col6a1 (accessed on 11 September 2023).
- Fuentes, J.J.; Genescà, L.; Kingsbury, T.J.; Cunningham, K.W.; Pérez-Riba, M.; Estivill, X.; de la Luna, S. DSCR1, overexpressed in Down syndrome, is an inhibitor of calcineurin-mediated signaling pathways. Hum. Mol. Genet. 2000, 9, 1681–1690. [Google Scholar] [CrossRef] [PubMed]
- Saber, M.M.; Karimiavargani, M.; Hettiarachchi, N.; Hamada, M.; Uzawa, T.; Ito, Y.; Saitou, N. The hominoid-specific gene DSCR4 is involved in regulation of human leukocyte migration. bioRxiv 2017, 176503. [Google Scholar] [CrossRef]
- Slonim, D.K.; Koide, K.; Johnson, K.L.; Tantravahi, U.; Cowan, J.M.; Jarrah, Z.; Bianchi, D.W. Functional genomic analysis of amniotic fluid cell-free mRNA suggests that oxidative stress is significant in Down syndrome fetuses. Proc. Natl. Acad. Sci. USA 2009, 106, 9425–9429. [Google Scholar] [CrossRef] [PubMed]
- Zhu, W.; Zhou, M.; Xiong, Z.; Peng, F.; Wei, W. The cAMP-PKA signaling pathway regulates pathogenicity, hyphal growth, appressorial formation, conidiation, and stress tolerance in Colletotrichum higginsianum. Front. Microbiol. 2017, 8, 1416. [Google Scholar] [CrossRef] [PubMed]
- Block, A.; Mahiuddin, M.; Ahmed Ranjitha Dhanasekaran Tong, A.S.; Gardiner, K.J. Sex differences in protein expression in the mouse brain and their perturbations in a model of Down syndrome. Biol. Sex Differ. 2015, 6, 1–18. [Google Scholar] [CrossRef]
- Huang, J.; Mo, J.; Zhao, G.; Lin, Q.; Wei, G.; Deng, W.; Chen, D.; Yu, B. Application of the amniotic fluid metabolome to the study of fetal malformations, using Down syndrome as a specific model. Mol. Med. Rep. 2017, 16, 7405–7415. [Google Scholar] [CrossRef]
- Gross, S.J.; Ferreira, J.C.; Morrow, B.; Dar, P.; Funke, B.; Khabele, D.; Merkatz, I. Gene expression profile of trisomy 21 placentas: A potential approach for designing noninvasive techniques of prenatal diagnosis. Am. J. Obstet. Gynecol. 2002, 187, 457–462. [Google Scholar] [CrossRef]
- Nishita, Y.; Yoshida, I.; Sado, T.; Takagi, N. Genomic imprinting and chromosomal localization of the human MEST gene. Genomics 1996, 36, 539–542. [Google Scholar] [CrossRef]
- Lott, I.T. Neurological phenotypes for Down syndrome across the life span. Prog. Brain Res. 2012, 197, 101. [Google Scholar]
- El Hajj, N.; Dittrich, M.; Böck, J.; Kraus, T.F.J.; Nanda, I.; Müller, T.; Seidmann, L.; Tralau, T.; Galetzka, D.; Schneider, E.; et al. Epigenetic dysregulation in the developing Down syndrome cortex. Epigenetics 2016, 11, 563–578. [Google Scholar] [CrossRef]
- *600855—DUAL-SPECIFICITY TYROSINE PHOSPHORYLATION-REGULATED KINASE 1A; DYRK1A—OMIM. Available online: https://www.omim.org/entry/600855?search=dyrk1a&highlight=dyrk1a (accessed on 11 September 2023).
- Arron, J.R.; Winslow, M.M.; Polleri, A.; Chang, C.P.; Wu, H.; Gao, X. NFAT dysregulation by increased dosage of DSCR1 and DYRK1A on chromosome 21. Nature 2006, 441, 595–600. [Google Scholar] [CrossRef]
- Qiao, F.; Shao, B.; Wang, C.; Wang, Y.; Zhou, R.; Liu, G.; Meng, L.; Hu, P.; Xu, Z. A De Novo Mutation in DYRK1A Causes Syndromic Intellectual Disability: A Chinese Case Report. Front. Genet. 2019, 10, 1194. [Google Scholar] [CrossRef]
- Shanshan, D.; Yanli, Z.; Chundi, X.U.; Duan, M.A. MicroRNA-125b-2 overexpression represses ectodermal differentiation of mouse embryonic stem cells. Int. J. Mol. Med. 2015, 36, 355–362. [Google Scholar]
- Lim, J.H.; Lee, D.E.; Kim, S.Y.; Kim, H.J.; Kim, K.S.; Han, Y.J.; Kim, M.H.; Choi, J.S.; Kim, M.Y.; Ryu, H.M.; et al. MicroRNAs as potential biomarkers for noninvasive detection of fetal trisomy 21. J. Assist. Reprod. Genet. 2015, 32, 827–837. [Google Scholar] [CrossRef] [PubMed]
- Esposito, G.; Imitola, J.; Lu, J.; De Filippis, D.; Scuderi, C.; Ganesh, V.S.; Folkerth, R.; Hecht, J.; Shin, S.; Iuvone, T.; et al. Genomic and functional profiling of human Down syndrome neural progenitors implicates S100B and aquaporin 4 in cell injury. Hum Mol. Genet. 2008, 17, 440–457. [Google Scholar] [CrossRef] [PubMed]
- Moftakhar, P.; Lynch, M.D.; Pomakian, J.L.; Vinters, H.V. Aquaporin Expression in the Brains of Patients With or Without Cerebral Amyloid Angiopathy. J. Neuropathol. Exp. Neurol. 2010, 69, 1201. [Google Scholar] [CrossRef] [PubMed]
- Vandebroek, A.; Yasui, M. Regulation of AQP4 in the Central Nervous System. Int. J. Mol. Sci. 2020, 21, 1603. [Google Scholar] [CrossRef]
- *600308—AQUAPORIN 4; AQP4—OMIM. Available online: https://www.omim.org/entry/600308?search=aqp4&highlight=aqp4 (accessed on 11 September 2023).
- Lyle, R.; Béna, F.; Gagos, S.; Gehrig, C.; Lopez, G.; Schinzel, A.; Lespinasse, J.; Bottani, A.; Dahoun, S.; Taine, L.; et al. Genotype–phenotype correlations in Down syndrome identified by array CGH in 30 cases of partial trisomy and partial monosomy chromosome 21. Eur. J. Hum. Genet. 2009, 17, 454–466. [Google Scholar] [CrossRef] [PubMed]
- Olmos-Serrano, J.L.; Kang, H.J.; Tyler, W.A.; Silbereis, J.C.; Cheng, F.; Zhu, Y.; Pletikos, M.; Jankovic-Rapan, L.; Cramer, N.P.; Galdzicki, Z.; et al. Down Syndrome Developmental Brain Transcriptome Reveals Defective Oligodendrocyte Differentiation and Myelination. Neuron 2016, 89, 1208–1222. [Google Scholar] [CrossRef] [PubMed]
- Miller, D.J.; Duka, T.; Stimpson, C.D.; Schapiro, S.J.; Baze, W.B.; McArthur, M.J.; Fobbs, A.J.; Sousa, A.M.M.; Šestan, N.; Wildman, D.E.; et al. Prolonged myelination in human neocortical evolution. Proc. Natl. Acad. Sci. USA 2012, 109, 16480–16485. [Google Scholar] [CrossRef] [PubMed]
- Benes, F.M.; Turtle, M.; Khan, Y.; Farol, P. Myelination of a key relay zone in the hippocampal formation occurs in the human brain during childhood, adolescence, and adulthood. Arch. Gen. Psychiatry 1994, 51, 477–484. [Google Scholar] [CrossRef] [PubMed]
- Shimizu, R.; Ishihara, K.; Kawashita, E.; Sago, H.; Yamakawa, K.; Mizutani, K.-I.; Akiba, S. Decrease in the T-box1 gene expression in embryonic brain and adult hippocampus of down syndrome mouse models. Biochem. Biophys. Res. Commun. 2021, 535, 87–92. [Google Scholar] [CrossRef]
- Yagi, H.; Furutani, Y.; Hamada, H.; Sasaki, T.; Asakawa, S.; Minoshima, S. Role of TBX1 in human del22q11.2 syndrome. Lancet 2003, 362, 1366–1373. [Google Scholar] [CrossRef]
- Lu, J.; Lian, G.; Zhou, H.; Esposito, G.; Steardo, L.; Delli-Bovi, L.C.; Hecht, J.L.; Lu, Q.R.; Sheen, V. OLIG2 over-expression impairs proliferation of human Down syndrome neural progenitors. Hum. Mol. Genet. 2012, 21, 2330. [Google Scholar] [CrossRef]
- Chakrabarti, L.; Best, T.K.; Cramer, N.P.; Carney, E.R.S.; Isaac, J.T.R.; Galdzicki, Z.; Haydar, T.F. Olig1 and Olig2 triplication causes developmental brain defects in Down syndrome. Nat. Neurosci. 2010, 13, 927. [Google Scholar] [CrossRef]
- Lai, D.; Gade, M.; Yang, E.; Koh, H.Y.; Lu, J.; Walley, N.M.; Buckley, A.F.; Sands, T.T.; Akman, I.C.; Mikati, A.M.; et al. Somatic variants in diverse genes leads to a spectrum of focal cortical malformations. Brain 2021, 145, 2704–2720. [Google Scholar] [CrossRef]
- Takashima, S.; Becker, L.E.; Armstrong, D.L.; Chan, F. Abnormal neuronal development in the visual cortex of the human fetus and infant with down’s syndrome. A quantitative and qualitative Golgi study. Brain Res. 1981, 225, 1–21. [Google Scholar] [CrossRef]
- Sarnat, H.B.; Flores-Sarnat, L. Excitatory/Inhibitory Synaptic Ratios in Polymicrogyria and Down Syndrome Help Explain Epileptogenesis in Malformations. Pediatr. Neurol. 2020, 116, 41–54. [Google Scholar] [CrossRef] [PubMed]
- Sarnat, H.B. Proteoglycan (Keratan Sulfate) Barrier in Developing Human Forebrain Isolates Cortical Epileptic Networks from Deep Heterotopia, Insulates Axonal Fascicles, and Explains Why Axosomatic Synapses Are Inhibitory. J. Neuropathol. Exp. Neurol. 2019, 78, 1147–1159. [Google Scholar] [CrossRef] [PubMed]
- Petralia, R.S.; Sans, N.; Wang, Y.X.; Wenthold, R.J. Ontogeny of postsynaptic density proteins at glutamatergic synapses. Mol. Cell Neurosci. 2005, 29, 436–452. [Google Scholar] [CrossRef]
- Crocker-Buque, A.; Currie, S.P.; Luz, L.L.; Grant, S.G.; Duffy, K.R.; Kind, P.C.; Daw, M.I. Altered thalamocortical development in the SAP102 knockout model of intellectual disability. Hum. Mol. Genet. 2016, 25, 4052–4061. [Google Scholar] [CrossRef] [PubMed]
- Torres, M.D.; Garcia, O.; Tang, C.; Busciglio, J. Dendritic spine pathology and thrombospondin-1 deficits in Down syndrome. Free Radic. Biol. Med. 2018, 114, 10. [Google Scholar] [CrossRef] [PubMed]
- Garcia, O.; Torres, M.; Helguera, P.; Coskun, P.; Busciglio, J. A role for thrombospondin-1 deficits in astrocyte-mediated spine and synaptic pathology in Down’s syndrome. PLoS ONE 2010, 5, e14200. [Google Scholar] [CrossRef]
- Antonarakis, S.E.; Skotko, B.G.; Rafii, M.S.; Strydom, A.; Pape, S.E.; Bianchi, D.W. Down syndrome. Nat. Rev. Dis. Primers 2020, 6, 1–20. [Google Scholar] [CrossRef]
- Li, C.M.; Guo, M.; Salas, M.; Schupf, N.; Silverman, W.; Zigman, W.B. Cell type-specific over-expression of chromosome 21 genes in fibroblasts and fetal hearts with trisomy 21. BMC Med. Genet. 2006, 7, 1–5. [Google Scholar] [CrossRef]
- *138440—PHOSPHORIBOSYLGLYCINAMIDE FORMYLTRANSFERASE/PHOSPHORIBOSYLGLYCINAMIDE SYNTHETASE/PHOSPHORIBOSYLAMINOIMIDAZOLE SYNTHETASE; GART—OMIM. Available online: https://www.omim.org/entry/138440?search=gart&highlight=gart (accessed on 11 September 2023).
- Patterson, D.; Graw, S.; Jones, C. Genes for two enzymes of purine synthesis are located on human chromosome 21 and are structurally linked in mammalian cells. Am. J. Hum. Genet. 1980, 22, 159A. [Google Scholar]
- Izzo, A.; Manco, R.; de Cristofaro, T.; Bonfiglio, F.; Cicatiello, R.; Mollo, N.; De Martino, M.; Genesio, R.; Zannini, M.; Conti, A.; et al. Overexpression of Chromosome 21 miRNAs May Affect Mitochondrial Function in the Hearts of Down Syndrome Fetuses. Int. J. Genom. 2017, 2017, 8737649. [Google Scholar] [CrossRef]
- Valenti, D.; Braidy, N.; De Rasmo, D.; Signorile, A.; Rossi, L.; Atanasov, A.; Volpicella, M.; Henrion-Caude, A.; Nabavi, S.; Vacca, R. Mitochondria as pharmacological targets in Down syndrome. Free Radic. Biol. Med. 2018, 114, 69–83. [Google Scholar] [CrossRef]
- Bosman, A.; Letourneau, A.; Sartiani, L.; Del Lungo, M.; Ronzoni, F.; Kuziakiv, R.; Tohonen, V.; Zucchelli, M.; Santoni, F.; Guipponi, M.; et al. Perturbations of heart development and function in cardiomyocytes from human embryonic stem cells with trisomy 21. Stem Cells 2015, 33, 1434–1446. [Google Scholar] [CrossRef]
- Liu, C.; Morishima, M.; Jiang, X.; Yu, T.; Meng, K.; Ray, D.; Pao, A.; Ye, P.; Parmacek, M.S.; Yu, Y.E. Engineered chromosome-based genetic mapping establishes a 3.7 Mb critical genomic region for Down syndrome-associated heart defects in mice. Hum. Genet. 2014, 133, 743–753. [Google Scholar] [CrossRef] [PubMed]
- Keyte, A.; Hutson, M.R. The Neural Crest in Cardiac Congenital Anomalies. Differentiation 2012, 84, 25. [Google Scholar] [CrossRef] [PubMed]
- Hitzler, J.K.; Zipursky, A. Origins of leukaemia in children with Down syndrome. Nat. Rev. Cancer 2005, 5, 11–20. [Google Scholar] [CrossRef]
- Massey, G.V. Transient leukemia in newborns with Down syndrome. Pediatr. Blood Cancer 2005, 44, 29–32. [Google Scholar] [CrossRef]
- Marlow, E.C.; Ducore, J.; Kwan, M.L.; Cheng, S.Y.; Bowles, E.J.; Greenlee, R.T.; Pole, J.D.; Rahm, A.K.; Stout, N.K.; Weinmann, S.; et al. Leukemia Risk in a Cohort of 3.9 Million Children With and Without Down Syndrome. J. Pediatr. 2021, 234, 172. [Google Scholar] [CrossRef]
- *314670—X INACTIVATION-SPECIFIC TRANSCRIPT; XIST—OMIM. Available online: https://www.omim.org/entry/314670?search=xist&highlight=xist (accessed on 11 September 2023).
- Kubota, Y.; Uryu, K.; Ito, T.; Seki, M.; Kawai, T.; Isobe, T.; Kumagai, T.; Toki, T.; Yoshida, K.; Suzuki, H.; et al. Integrated genetic and epigenetic analysis revealed heterogeneity of acute lymphoblastic leukemia in Down syndrome. Cancer Sci. 2019, 110, 3358–3367. [Google Scholar] [CrossRef] [PubMed]
- Muskens, I.S.; Li, S.; Jackson, T.; Elliot, N.; Hansen, H.M.; Myint, S.S.; Pandey, P.; Schraw, J.M.; Roy, R.; Anguiano, J.; et al. The genome-wide impact of trisomy 21 on DNA methylation and its implications for hematopoiesis. Nat. Commun. 2021, 12, 1–15. [Google Scholar] [CrossRef]
- *151385—RUNT-RELATED TRANSCRIPTION FACTOR 1; RUNX1—OMIM. Available online: https://www.omim.org/entry/151385?search=runx1&highlight=runx1 (accessed on 11 September 2023).
- Belmonte, R.L.; Engbretson, I.L.; Kim, J.H.; Cajias, I.; Ahn, E.Y.E.; Stachura, D.L. son is necessary for proper vertebrate blood development. PLoS ONE 2021, 16, e0247489. [Google Scholar] [CrossRef]
- Ram, G.; Chinen, J. Infections and immunodeficiency in Down syndrome. Clin. Exp. Immunol. 2011, 164, 9–16. [Google Scholar] [CrossRef]
- Ishihara, K.; Shimizu, R.; Takata, K.; Kawashita, E.; Amano, K.; Shimohata, A.; Low, D.; Nabe, T.; Sago, H.; Alexander, W.S.; et al. Perturbation of the immune cells and prenatal neurogenesis by the triplication of the Erg gene in mouse models of Down syndrome. Brain Pathol. 2020, 30, 75–91. [Google Scholar] [CrossRef] [PubMed]
- Taoudi, S.; Bee, T.; Hilton, A.; Knezevic, K.; Scott, J.; Willson, T.A.; Collin, C.; Thomas, T.; Voss, A.K.; Kile, B.T.; et al. ERG dependence distinguishes developmental control of hematopoietic stem cell maintenance from hematopoietic specification. Genes Dev. 2011, 25, 251–262. [Google Scholar] [CrossRef]
- Xie, Y.; Koch, M.L.; Zhang, X.; Hamblen, M.J.; Godinho, F.J.; Fujiwara, Y.; Xie, H.; Klusmann, J.-H.; Orkin, S.H.; Li, Z. Reduced Erg dosage impairs survival of hematopoietic stem and progenitor cells. Stem Cells 2017, 35, 1773. [Google Scholar] [CrossRef]
- Kong, X.F.; Worley, L.; Rinchai, D.; Bondet, V.; Jithesh, P.V.; Goulet, M.; Nonnotte, E.; Rebillat, A.S.; Conte, M.; Mircher, C.; et al. Three Copies of Four Interferon Receptor Genes Underlie a Mild Type I Interferonopathy in Down Syndrome. J. Clin. Immunol. 2020, 40, 807–819. [Google Scholar] [CrossRef] [PubMed]
- *600555—SIGNAL TRANSDUCER AND ACTIVATOR OF TRANSCRIPTION 1; STAT1—OMIM. Available online: https://www.omim.org/entry/600555?search=stat1&highlight=stat1 (accessed on 11 September 2023).
- REST Gene—GeneCards|REST Protein|REST Antibody. Available online: https://www.genecards.org/cgi-bin/carddisp.pl?gene=REST (accessed on 6 January 2023).
- Cho, H.J.; Lee, J.G.; Kim, J.H.; Kim, S.Y.; Huh, Y.H.; Kim, H.J.; Lee, K.-S.; Yu, K.; Lee, J.-S. Vascular defects of DYRK1A knockouts are ameliorated by modulating calcium signaling in zebrafish. Dis. Model. Mech. 2019, 12, dmm037044. [Google Scholar] [CrossRef] [PubMed]
- Ly6c1 Lymphocyte Antigen 6 Family Member C1 [Mus Musculus (House Mouse)]—Gene—NCBI. Available online: https://www.ncbi.nlm.nih.gov/gene/17067 (accessed on 11 September 2023).
- Danopoulos, S.; Bhattacharya, S.; Deutsch, G.; Nih, L.R.; Slaunwhite, C.; Mariani, T.J.; Al Alam, D. Prenatal histological, cellular, and molecular anomalies in trisomy 21 lung. J. Pathol. 2021, 255, 41–51. [Google Scholar] [CrossRef] [PubMed]
- Parra, V.; Altamirano, F.; Hernández-Fuentes, C.P.; Tong, D.; Kyrychenko, V.; Rotter, D. Down syndrome critical region 1 gene, rcan1, helps maintain a more fused mitochondrial network. Circ. Res. 2018, 122, e20–e33. [Google Scholar] [CrossRef] [PubMed]
- Panagaki, T.; Randi, E.B.; Augsburger, F.; Szabo, C. Overproduction of H2S, generated by CBS, inhibits mitochondrial Complex IV and suppresses oxidative phosphorylation in down syndrome. Proc. Natl. Acad. Sci. USA 2019, 116, 18769–18771. [Google Scholar] [CrossRef]
- Peled-Kamar, M.; Degani, H.; Bendel, P.; Margalit, R.; Groner, Y. Altered brain glucose metabolism in transgenic-PFKL mice with elevated l-phosphofructokinase: In vivo NMR studies. Brain Res. 1998, 810, 138–145. [Google Scholar] [CrossRef]
- *171840—PHOSPHOFRUCTOKINASE, PLATELET TYPE; PFKP—OMIM. Available online: https://www.omim.org/entry/171840?search=pfk&highlight=pfk (accessed on 11 September 2023).
- Dierssen, M.; Fructuoso, M.; Martínez de Lagrán, M.; Perluigi, M.; Barone, E. Down Syndrome Is a Metabolic Disease: Altered Insulin Signaling Mediates Peripheral and Brain Dysfunctions. Front. Neurosci. 2020, 14, 548378. [Google Scholar] [CrossRef]
- Szabo, C. The re-emerging pathophysiological role of the cystathionine-β-synthase—Hydrogen sulfide system in Down syndrome. FEBS J. 2019, 287, 3150–3160. [Google Scholar] [CrossRef]
- Elson, A.; Levanon, D.; Weiss, Y.; Groner, Y. Overexpression of liver-type phosphofructokinase (PFKL) in transgenic-PFKL mice: Implication for gene dosage in trisomy 21. Biochem. J. 1994, 299 Pt 2, 409–415. [Google Scholar] [CrossRef]
- Alcarraz-Vizán, G.; Casini, P.; Cadavez, L.; Visa, M.; Montane, J.; Servitja, J.M.; Novials, A. Inhibition of BACE2 counteracts hIAPP-induced insulin secretory defects in pancreatic β-cells. FASEB J. 2015, 29, 95–104. [Google Scholar] [CrossRef]
- Peiris, H.; Duffield, M.D.; Fadista, J.; Jessup, C.F.; Kashmir, V.; Genders, A.J. A Syntenic Cross Species Aneuploidy Genetic Screen Links RCAN1 Expression to β-Cell Mitochondrial Dysfunction in Type 2 Diabetes. PLoS Genet. 2016, 12, e1006033. [Google Scholar] [CrossRef] [PubMed]
- Rachdi, L.; Kariyawasam, D.; Guez, F.; Aïello, V.; Arbonés, M.L.; Janel, N.; Delabar, J.-M.; Polak, M. Dyrk1a haploinsufficiency induces diabetes in mice through decreased pancreatic beta cell mass. Diabetologia 2014, 57, 960–969. [Google Scholar] [CrossRef] [PubMed]
- Kristianslund, O.; Drolsum, L. Prevalence of keratoconus in persons with Down syndrome: A review. BMJ Open Ophthalmol. 2021, 6, e000754. [Google Scholar] [CrossRef] [PubMed]
- Melrose, J. Keratan sulfate (KS)-proteoglycans and neuronal regulation in health and disease: The importance of KS-glycodynamics and interactive capability with neuroregulatory ligands. J. Neurochem. 2019, 149, 170–194. [Google Scholar] [CrossRef] [PubMed]
- Akoto, T.; Li, J.J.; Estes, A.J.; Karamichos, D.; Liu, Y. The Underlying Relationship between Keratoconus and Down Syndrome. Int. J. Mol. Sci. 2022, 23, 10796. [Google Scholar] [CrossRef] [PubMed]
- Perluigi, M.; Butterfield, D.A. Oxidative stress and down syndrome: A route toward Alzheimer-like dementia. Curr. Gerontol. Geriatr. Res. 2012, 2012, 724904. [Google Scholar] [CrossRef]
- Inglis, A.; Lohn, Z.; Austin, J.C.; Hippman, C. A “cure” for Down syndrome: What do parents want? Clin. Genet. 2014, 86, 310. [Google Scholar] [CrossRef] [PubMed]
Gene | Chromosome Position | Gene Expression Change | How This Affects Development | |
---|---|---|---|---|
Nervous system | NRSF/REST [61] | 4q12 | Downregulated | Transcriptional repressor, represses neuronal genes in non-neuronal tissues [99] |
Ngn1 [66] | 14 | Downregulated | Neuronal cell death [66] | |
Ngn2 [66] | 4 | Downregulated | ||
Pax6 [66] | 11 | Downregulated | ||
DNMT3A [61] | 2q23 | Downregulated | DNA methylation in the late stage of embryonic development [61] | |
DNMT3B [61] | 20q11.2 | Downregulated | DNA methylation in a broader range of genes in early embryonic development [22] | |
PCDHG [61] | 5q31 | Downregulated | Reduction in dendrite arborisation and growth in cortical neurons [61] | |
M43 [62] | Downregulated | Regulation of action potential and axon ensheathment, neocortex and hippocampus over development [62] | ||
TBX1 [66] | HSA22q11 | Downregulated | Fetal brain development and postnatal psychiatric phenotypes in DS [66] | |
Olig1 [66] | DSCR | Upregulated | Microcephaly, cortical dyslamination, hippocampus malformation, profound motor deficits. Promotes enhancer regions of Nfact4, Dscr1/Rcan1 and Dyrk1a > DS phenotype [66] | |
Olig2 [66] | DSCR | Upregulated | ||
S100B [57] | DSCR | Upregulated | Activate the stress response kinase pathways and upregulated aquaporin 4 [57] | |
APP [57] | DSCR | Upregulated | ||
DYRK1A [50,61] | 21qq22.13 | Upregulated | Reduces NRSF/REST [50,61] | |
DNMT3L [61] | 21q22.4 | Upregulated | De novo methylation in neuroprogenitors that persist in fetal DS brain [61] | |
TSP-1 [74,75] | 15q14 | Downregulated | Alter dendritic spine structure, reduce spinal and synaptic numbers—causing developmental delay [74,75] | |
GART [77] | 21 | Upregulated | De novo purine synthesis > intellectual disability, hypotonia, increased sensorineural deafness [78] | |
ETS2 [83] | 21q22 | Upregulated | Most likely cause 2nd heart field development, AVSDs [83] | |
Mmu16 [80] | 16 | Triplication | AVSDs [80] | |
Blood | SON [94] | 21 | Downregulated | Lower RBCs produced, brain and spinal malformations, reduced thrombocytes and myeloid cells, significant decrease in T cells [94] |
STAT1 [100] | 2q32.2 | Downregulated | Low = reduced enhanced cellular response to IFN [98] | |
XIST [4] | Xq | Upregulated | X-chromosome inactivation in females Induction corrected the over-production of megakaryocytes and erythrocytes [88] | |
RUNX1 [90,92] | 21 | Hypermethylation | Differentiation of blood cells, B cells Support bone cell development and differentiation [91] | |
S100A8 [95] | 1q21 | Upregulated | Abundant in neutrophils/monocytes [95] | |
S100A9 [95] | 1q21 | Upregulated | ||
MPO [95] | 17q12-24 | Upregulated | Creates reactive oxidant species, part of the innate immune response, and contributes to tissue damage during inflammation | |
Ly6c1 [95] | 15 | Upregulated | Part of the inflammatory response in atherosclerosis, regulates endothelial adhesion of CD8 T cells [101] | |
IFN-αR1 [66,100] | 21 | Upregulated | Expressed on the surface of monocytes, EBV-transformed B cells and important in immunodeficiency [66,100] | |
IFN-αR2 [66,100] | 21 | Upregulated | ||
IFN-γR2 [100] | 12 | Upregulated | ||
ERG [95] | 21 | Triplication | Self-renewal of haematopoietic stem cells and haematopoiesis in the liver during embryogenesis Dysregulation of the homeostatic proportion of the population of immune cells in the embryonic brain and decreased prenatal cortical neurogenesis [95] | |
SOX2 [102] | 3q26.33 | Downregulated | Reduction in airway smooth muscle discontinuous in the proximal airway [102] | |
Lung | DYRK1A [102] | DSCR | Upregulated | Reduced incidence of solid tumours (neuroblastoma) and defects in angiogenesis of central arteries developing in the hindbrain [102] |
Endocrine | RCAN1 [103] | DSCR | Downregulated | Important in cardiac remodelling and mitochondrial function [103] |
CBS [104] | 21q | Upregulated | Enzymes involved in homocysteine, folate and transsulfuration pathways, mitochondrial electron transport and ATP generation [104] | |
PFK [105,106] | 12q13, 21q22 and 10p [106] | Upregulated | A key regulatory hormone in glycolysis [105,106] | |
Other | DSCR4 [42] | DSCR | Upregulated | Regulation of human leukocyte migration Craniofacial abnormalities [42] |
miRNA | Chromosome position | Gene expression change | How this affects development | |
Neuro | Hsa-miR-138 [14] | 16q13 | Upregulated | Hippocampus development [14] |
hsa-miR-409 [14] | 14 | Upregulated | ||
hsa-miR-138-5p [14] | 3 and 13 | Upregulated | Intellectual disability [14] | |
miR-125b-2 [55] | 21 | Upregulated | Cognitive impairment, promotes neuronal differentiation [55] | |
mir-1973 [64] | 21 | Upregulated | Regulating CNS and nervous systems [64] | |
mir-3196 [64] | 20 | Upregulated | ||
Cardiac | miR-99a-5p [81] | 21q21.1 | Downregulated | Congenital heart defects [81] |
miR-155-5p [81] | 21 | Downregulated | Mitochondrial dysfunction [81] | |
Let-7c-5p [81] | 21q21.1 | Downregulated |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chapman, L.R.; Ramnarine, I.V.P.; Zemke, D.; Majid, A.; Bell, S.M. Gene Expression Studies in Down Syndrome: What Do They Tell Us about Disease Phenotypes? Int. J. Mol. Sci. 2024, 25, 2968. https://doi.org/10.3390/ijms25052968
Chapman LR, Ramnarine IVP, Zemke D, Majid A, Bell SM. Gene Expression Studies in Down Syndrome: What Do They Tell Us about Disease Phenotypes? International Journal of Molecular Sciences. 2024; 25(5):2968. https://doi.org/10.3390/ijms25052968
Chicago/Turabian StyleChapman, Laura R., Isabela V. P. Ramnarine, Dan Zemke, Arshad Majid, and Simon M. Bell. 2024. "Gene Expression Studies in Down Syndrome: What Do They Tell Us about Disease Phenotypes?" International Journal of Molecular Sciences 25, no. 5: 2968. https://doi.org/10.3390/ijms25052968
APA StyleChapman, L. R., Ramnarine, I. V. P., Zemke, D., Majid, A., & Bell, S. M. (2024). Gene Expression Studies in Down Syndrome: What Do They Tell Us about Disease Phenotypes? International Journal of Molecular Sciences, 25(5), 2968. https://doi.org/10.3390/ijms25052968