Genome-Wide Identification and Drought Stress Response Pattern of the NF-Y Gene Family in Cymbidium sinense
Abstract
:1. Introduction
2. Result
2.1. Identification and Physicochemical Properties
2.2. Gene Conserved Motif Analysis
2.3. Analysis of Amino Acid Conserved Domains
2.4. Gene Structure and Characterization Analysis
2.5. Chromosome Distribution Analysis
2.6. cis-Elements Analysis
2.7. Analysis of the Interaction Network and Secondary and Tertiary Structures of CsNF-Ys Proteins
2.8. Analysis of Expression Patterns under Drought Stress in Leaves and Roots
2.9. Expression of CsNY-Fs in Response to Drought Stress
3. Discussion
4. Materials and Methods
4.1. Identification and Classification of the NF-Y Gene Family in C. sinense
4.2. Multiple-Sequence Alignment and Phylogenetic Analysis
4.3. Analysis of Protein Physicochemical Properties and Structure of CsNF-Ys
4.4. Chromosome Distribution and cis-Elements in the Promoters of CsNF-Ys
4.5. Plant Drought Stress Treatment
4.6. Isolation of RNA, cDNA Preparation, and Expression Analysis
4.7. RNA Extraction and Real-Time Reverse Transcription Quantitative PCR (qRT-PCR) Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Maity, S.N.; de Crombrugghe, B. Role of the CCAAT-binding protein CBF/NF-Y in transcription. Trends. Biochem. Sci. 1998, 23, 174–178. [Google Scholar] [CrossRef]
- Li, M.; Li, G.; Liu, W.; Dong, X.; Zhang, A. Genome-wide analysis of the NF-Y gene family in peach (Prunus persica L.). BMC Genom. 2019, 20, 612. [Google Scholar] [CrossRef] [PubMed]
- Petroni, K.; Kumimoto, R.W.; Gnesutta, N.; Calvenzani, V.; Fornari, M.; Tonelli, C.; Holt, B.F.; Mantovani, R. The promiscuous life of plant NUCLEAR FACTOR Y transcription factors. Plant Cell 2012, 24, 4777–4792. [Google Scholar] [CrossRef] [PubMed]
- Kahle, J.; Baake, M.; Doenecke, D.; Albig, W. Subunits of the heterotrimeric transcription factor NF-Y are imported into the nucleus by distinct pathways involving importin beta and importin 13. Mol. Cell. Biol. 2005, 25, 5339–5354. [Google Scholar] [CrossRef] [PubMed]
- Ballif, J.; Endo, S.; Kotani, M.; MacAdam, J.; Wu, Y. Over-expression of HAP3b enhances primary root elongation in Arabidopsis. Plant Physiol. Biochem. 2011, 49, 579–583. [Google Scholar] [CrossRef] [PubMed]
- Sorin, C.; Declerck, M.; Christ, A.; Blein, T.; Ma, L.; Lelandais-Brière, C.; Njo, M.F.; Beeckman, T.; Crespi, M.; Hartmann, C. A miR169 isoform regulates specific NF-YA targets and root architecture in Arabidopsis. New Phytol. 2014, 202, 1197–1211. [Google Scholar] [CrossRef] [PubMed]
- Mu, J.; Tan, H.; Hong, S.; Liang, Y.; Zuo, J. Arabidopsis transcription factor genes NF-YA1, 5, 6, and 9 play redundant roles in male gametogenesis, embryogenesis, and seed development. Mol. Plant 2013, 6, 188–201. [Google Scholar] [CrossRef] [PubMed]
- Kumimoto, R.W.; Zhang, Y.; Siefers, N.; Holt, B.F., 3rd. NF-YC3, NF-YC4 and NF-YC9 are required for CONSTANS-mediated, photoperiod-dependent flowering in Arabidopsis thaliana. Plant J. 2010, 63, 379–391. [Google Scholar] [CrossRef]
- Hou, X.; Zhou, J.; Liu, C.; Liu, L.; Shen, L.; Yu, H. Nuclear factor Y-mediated H3K27me3 demethylation of the SOC1 locus orchestrates flowering responses of Arabidopsis. Nat. Commun. 2014, 5, 4601. [Google Scholar] [CrossRef]
- Warpeha, K.M.; Upadhyay, S.; Yeh, J.; Adamiak, J.; Hawkins, S.I.; Lapik, Y.R.; Anderson, M.B.; Kaufman, L.S. The GCR1, GPA1, PRN1, NF-Y signal chain mediates both blue light and abscisic acid responses in Arabidopsis. Plant Physiol. 2007, 143, 1590–1600. [Google Scholar] [CrossRef]
- Nelson, D.E.; Repetti, P.P.; Adams, T.R.; Creelman, R.A.; Wu, J.; Warner, D.C.; Anstrom, D.C.; Bensen, R.J.; Castiglioni, P.P.; Donnarummo, M.G.; et al. Plant nuclear factor Y (NF-Y) B subunits confer drought tolerance and lead to improved corn yields on water-limited acres. Proc. Natl. Acad. Sci. USA 2007, 104, 16450–16455. [Google Scholar] [CrossRef]
- Li, W.-X.; Oono, Y.; Zhu, J.; He, X.-J.; Wu, J.-M.; Iida, K.; Lu, X.-Y.; Cui, X.; Jin, H.; Zhu, J.-K. The Arabidopsis NFYA5 transcription factor is regulated transcriptionally and posttranscriptionally to promote drought resistance. Plant Cell 2008, 20, 2238–2251. [Google Scholar] [CrossRef]
- Li, Y.J.; Fang, Y.; Fu, Y.R.; Huang, J.G.; Wu, C.A.; Zheng, C.C. NFYA1 is involved in regulation of postgermination growth arrest under salt stress in Arabidopsis. PLoS ONE 2013, 8, e61289. [Google Scholar] [CrossRef]
- Shi, H.; Ye, T.; Zhong, B.; Liu, X.; Jin, R.; Chan, Z. AtHAP5A modulates freezing stress resistance in Arabidopsis through binding to CCAAT motif of AtXTH21. New Phytol. 2014, 203, 554–567. [Google Scholar] [CrossRef]
- Sato, H.; Mizoi, J.; Tanaka, H.; Maruyama, K.; Qin, F.; Osakabe, Y.; Morimoto, K.; Ohori, T.; Kusakabe, K.; Nagata, M.; et al. AArabidopsis DPB3-1, a DREB2A interactor, specifically enhances heat stress-induced gene expression by forming a heat stress-specific transcriptional complex with NF-Y subunits. Plant Cell 2014, 26, 4954–4973. [Google Scholar] [CrossRef]
- Yan, X.; Han, M.; Li, S.; Liang, Z.; Ouyang, J.; Wang, X.; Liao, P. A member of NF-Y family, OsNF-YC5 negatively regulates salt tolerance in rice. Gene 2024, 892, 147869. [Google Scholar] [CrossRef]
- Wang, T.; Zou, H.; Ren, S.; Jin, B.; Lu, Z. Genome-Wide Identification, Characterization, and Expression Analysis of NF-Y Gene Family in Ginkgo biloba Seedlings and GbNF-YA6 Involved in Heat-Stress Response and Tolerance. Int. J. Mol. Sci. 2023, 24, 12284. [Google Scholar] [CrossRef] [PubMed]
- Wei, Q.; Wen, S.; Lan, C.; Yu, Y.; Chen, G. Genome-Wide Identification and Expression Profile Analysis of the NF-Y Transcription Factor Gene Family in Petunia hybrida. Plants 2020, 9, 336. [Google Scholar] [CrossRef] [PubMed]
- Cao, L.; Ma, C.; Ye, F.; Pang, Y.; Wang, G.; Fahim, A.M.; Lu, X. Genome-wide identification of NF-Y gene family in maize (Zea mays L.) and the positive role of ZmNF-YC12 in drought resistance and recovery ability. Front. Plant Sci. 2023, 14, 1159955. [Google Scholar] [CrossRef]
- Jiang, Z.; Wang, Y.; Li, W.; Wang, Y.; Liu, X.; Ou, X.; Su, W.; Song, S.; Chen, R. Genome-Wide Identification of the NF-Y Gene Family and Their Involvement in Bolting and Flowering in Flowering Chinese Cabbage. Int. J. Mol. Sci. 2023, 24, 11898. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Du, Q.; Li, J.; Wang, H.; Xiao, H.; Wang, J. Genome-Wide Identification and Chilling Stress Analysis of the NF-Y Gene Family in Melon. Int. J. Mol. Sci. 2023, 24, 6934. [Google Scholar] [CrossRef] [PubMed]
- Jiang, L.; Ren, Y.; Jiang, Y.; Hu, S.; Wu, J.; Wang, G. Characterization of NF-Y gene family and their expression and interaction analysis in Phalaenopsis orchid. Plant Physiol. Biochem. 2023, 204, 108143. [Google Scholar] [CrossRef] [PubMed]
- Christenhusz, M.J.M.; Byng, J.W. The number of known plants species in the world and its annual increase. Phytotaxa 2016, 261, 201–217. [Google Scholar] [CrossRef]
- Ai, Y.; Li, Z.; Sun, W.-H.; Chen, J.; Zhang, D.; Ma, L.; Zhang, Q.-H.; Chen, M.-K.; Zheng, Q.-D.; Liu, J.-F.; et al. The Cymbidium genome reveals the evolution of unique morphological traits. Hortic. Res. 2021, 8, 255. [Google Scholar] [CrossRef] [PubMed]
- Yang, F.; Gao, J.; Wei, Y.; Ren, R.; Zhang, G.; Lu, C.; Jin, J.; Ai, Y.; Wang, Y.; Chen, L.; et al. The genome of Cymbidium sinense revealed the evolution of orchid traits. Plant Biotechnol. J. 2021, 19, 2501–2516. [Google Scholar] [CrossRef]
- Singh, D.; Laxmi, A. Transcriptional regulation of drought response: A tortuous network of transcriptional factors. Front. Plant Sci. 2015, 6, 895. [Google Scholar] [CrossRef]
- Zhu, J.K. Abiotic Stress Signaling and Responses in Plants. Cell 2016, 167, 313–324. [Google Scholar] [CrossRef]
- Zotz, G.; Bader, M.Y. Epiphytic Plants in a Changing World-Global: Change Effects on Vascular and Non-Vascular Epiphytes. In Progress in Botany; Lüttge, U., Beyschlag, W., Büdel, B., Francis, D., Eds.; Springer: Berlin/Heidelberg, Germany, 2009; pp. 147–170. [Google Scholar]
- Zotova, L.; Kurishbayev, A.; Jatayev, S.; Goncharov, N.P.; Shamambayeva, N.; Kashapov, A.; Nuralov, A.; Otemissova, A.; Sereda, S.; Shvidchenko, V.; et al. The General Transcription Repressor TaDr1 Is Co-expressed With TaVrn1 and TaFT1 in Bread Wheat Under Drought. Front. Genet. 2019, 10, 63. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Xu, K.; Chen, S.; Li, T.; Xia, H.; Chen, L.; Liu, H.; Luo, L. A stress-responsive bZIP transcription factor OsbZIP62 improves drought and oxidative tolerance in rice. BMC Plant Biol. 2019, 19, 260. [Google Scholar] [CrossRef]
- Qi, M.; Zheng, W.; Zhao, X.; Hohenstein, J.D.; Kandel, Y.; O’Conner, S.; Wang, Y.; Du, C.; Nettleton, D.; MacIntosh, G.C.; et al. QQS orphan gene and its interactor NF-YC4 reduce susceptibility to pathogens and pests. Plant Biotechnol. J. 2019, 17, 252–263. [Google Scholar] [CrossRef]
- Niu, B.; Deng, H.; Li, T.; Sharma, S.; Yun, Q.; Li, Q.; E, Z.; Chen, C. OsbZIP76 interacts with OsNF-YBs and regulates endosperm cellularization in rice (Oryza sativa). J. Integr. Plant Biol. 2020, 62, 1983–1996. [Google Scholar] [CrossRef] [PubMed]
- Zanetti, M.E.; Rípodas, C.; Niebel, A. Plant NF-Y transcription factors: Key players in plant-microbe interactions, root development and adaptation to stress. Biochim. Biophys. Acta Gene Regul. Mech. 2017, 1860, 645–654. [Google Scholar] [CrossRef] [PubMed]
- Siefers, N.; Dang, K.K.; Kumimoto, R.W.; Bynum WEt Tayrose, G.; Holt, B.F., 3rd. Tissue-specific expression patterns of Arabidopsis NF-Y transcription factors suggest potential for extensive combinatorial complexity. Plant Physiol. 2009, 149, 625–641. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Wu, D.; Kong, F.; Lin, K.; Zhang, H.; Li, G. The Arabidopsis thaliana Nuclear Factor Y Transcription Factors. Front. Plant Sci. 2016, 7, 2045. [Google Scholar] [CrossRef] [PubMed]
- Gnesutta, N.; Mantovani, R.; Fornara, F. Plant Flowering: Imposing DNA Specificity on Histone-Fold Subunits. Trends. Plant Sci. 2018, 23, 293–301. [Google Scholar] [CrossRef]
- Swathik Clarancia, P.; Naveenarani, M.; Ashwin Narayan, J.; Krishna, S.S.; Thirugnanasambandam, P.P.; Valarmathi, R.; Suresha, G.S.; Gomathi, R.; Kumar, R.A.; Manickavasagam, M.; et al. Genome-Wide Identification, Characterization and Expression Analysis of Plant Nuclear Factor (NF-Y) Gene Family Transcription Factors in Saccharum spp. Genes 2023, 14, 1147. [Google Scholar] [CrossRef]
- Xing, Y.; Fikes, J.D.; Guarente, L. Mutations in yeast HAP2/HAP3 define a hybrid CCAAT box binding domain. EMBO J. 1993, 12, 4647–4655. [Google Scholar] [CrossRef]
- Yang, J.; Zhu, J.; Yang, Y. Genome-Wide Identification and Expression Analysis of NF-Y Transcription Factor Families in Watermelon (Citrullus lanatus). J. Plant Growth Regul. 2017, 36, 590–607. [Google Scholar] [CrossRef]
- Yan, H.L.; Wu, F.W.; Jiang, G.X.; Xiao, L.; Li, Z.W.; Duan, X.W.; Jiang, Y.M. Genome-wide identification, characterization and expression analysis of NFY gene family in relation to fruit ripening in banana. Postharvest Biol. Technol. 2019, 151, 98–110. [Google Scholar] [CrossRef]
- Stephenson, T.J.; McIntyre, C.L.; Collet, C.; Xue, G.P. Genome-wide identification and expression analysis of the NF-Y family of transcription factors in Triticum aestivum. Plant Mol. Biol. 2007, 65, 77–92. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Wu, Y.; Li, J.; Wang, X.; Zeng, Z.; Xu, J.; Liu, Y.; Feng, J.; Chen, H.; He, Y.; et al. TBtools-II: A “one for all, all for one” bioinformatics platform for biological big-data mining. Mol. Plant 2023, 16, 1733–1742. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Gao, F.; Jakovlić, I.; Zou, H.; Zhang, J.; Li, W.X.; Wang, G.T. PhyloSuite: An integrated and scalable desktop platform for streamlined molecular sequence data management and evolutionary phylogenetics studies. Mol. Ecol. Resour. 2020, 20, 348–355. [Google Scholar] [CrossRef] [PubMed]
- Thirumurugan, T.; Ito, Y.; Kubo, T.; Serizawa, A.; Kurata, N. Identification, characterization and interaction of HAP family genes in rice. Mol. Genet. Genom. 2008, 279, 279–289. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Chen, Y.; Shi, C.; Huang, Z.; Zhang, Y.; Li, S.; Li, Y.; Ye, J.; Yu, C.; Li, Z.; et al. SOAPnuke: A MapReduce acceleration-supported software for integrated quality control and preprocessing of high-throughput sequencing data. GigaScience 2017, 7, gix120. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.; Langmead, B.; Salzberg, S.L. HISAT: A fast spliced aligner with low memory requirements. Nat. Methods 2015, 12, 357–360. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Dewey, C.N. RSEM: Accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinform. 2011, 12, 323. [Google Scholar] [CrossRef] [PubMed]
- Langmead, B.; Salzberg, S.L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 2012, 9, 357–359. [Google Scholar] [CrossRef]
- Zhu, M.; Wang, Q.; Tu, S.; Ke, S.; Bi, Y.; Ahmad, S.; Zhang, D.; Liu, D.; Lan, S. Genome-Wide Identification Analysis of the R2R3-MYB Transcription Factor Family in Cymbidium sinense for Insights into Drought Stress Responses. Int. J. Mol. Sci. 2023, 24, 3235. [Google Scholar] [CrossRef]
- Lalitha, S. Primer Premier 5. Biotech Softw. Internet Rep. 2000, 1, 270–272. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
Gene ID | Gene Name | Chr NO. | Location | Number of Amino Acids | Molecular Weight (kDa) | Theoretical pI | Instability Index | Aliphatic Index | Grand Average of Hydropathicity |
---|---|---|---|---|---|---|---|---|---|
Mol019234 | CsNF-YA1 | chr08 | 67,164,417–67,204,027 | 289 | 32.50 | 8.84 | 57.99 | 58.79 | −0.78 |
Mol027851 | CsNF-YA2 | chr11 | 16,254,640–16,255,008 | 245 | 27.15 | 9.75 | 54.38 | 64.94 | −0.671 |
Mol003533 | CsNF-YA3 | chr17 | 20,206,566–20,207,862 | 224 | 24.47 | 9.95 | 69.36 | 60.58 | −0.771 |
Mol028384 | CsNF-YA4 | chr18 | 84,252,997–84,253,640 | 229 | 25.37 | 9.93 | 47.59 | 80.92 | −0.44 |
Mol020046 | CsNF-YA5 | chr19 | 25,325,945–25,326,205 | 293 | 32.87 | 9.35 | 61.94 | 60.34 | −0.805 |
Mol015093 | CsNF-YB1 | chr01 | 264,776,444–264,779,726 | 142 | 16.13 | 6.3 | 37.11 | 72.89 | −0.71 |
Mol009348 | CsNF-YB2 | chr02 | 121,704,186–121,705,915 | 174 | 19.34 | 5.97 | 56.96 | 61.84 | −0.78 |
Mol010155 | CsNF-YB3 | chr03 | 124,927,390–124,966,757 | 188 | 20.57 | 5.76 | 54.6 | 65.96 | −0.549 |
Mol022192 | CsNF-YB4 | chr06 | 123,326,327–123,331,668 | 190 | 20.16 | 9.04 | 48.19 | 51.84 | −0.729 |
Mol009007 | CsNF-YB5 | chr09 | 119,339,357–119,339,539 | 217 | 23.72 | 5.64 | 43.91 | 70.14 | −0.553 |
Mol015140 | CsNF-YB6 | chr11 | 21,094,709–21,099,846 | 160 | 18.07 | 4.63 | 45.77 | 76.19 | −0.527 |
Mol020786 | CsNF-YB7 | chr11 | 31,574,371–31,574,769 | 180 | 19.52 | 6.22 | 46.07 | 58.61 | −0.676 |
Mol000779 | CsNF-YB8 | chr18 | 67,770,568–67,771,008 | 211 | 22.16 | 6.06 | 47.93 | 48.15 | −0.665 |
Mol022232 | CsNF-YB9 | chr19 | 73,711,581–73,712,652 | 176 | 19.44 | 4.78 | 53.9 | 62.67 | −0.61 |
Mol021145 | CsNF-YC1 | chr01 | 14,533,186–14,533,851 | 132 | 14.92 | 9.73 | 51.34 | 90.83 | 0 |
Mol006573 | CsNF-YC2 | chr02 | 131,790,300–131,790,867 | 171 | 19.53 | 5.5 | 52.88 | 78.3 | −0.531 |
Mol016977 | CsNF-YC3 | chr04 | 107,344,266–107,383,215 | 224 | 25.84 | 9.94 | 76.21 | 73.75 | −0.559 |
Mol010830 | CsNF-YC4 | chr05 | 1,569,897–1,578,459 | 274 | 30.31 | 5.61 | 63.06 | 72.41 | −0.354 |
Mol006806 | CsNF-YC5 | chr05 | 31,684,723–31,686,067 | 151 | 17.02 | 9.61 | 37.63 | 80.07 | −0.594 |
Mol003568 | CsNF-YC6 | chr08 | 40,739,665–40,746,569 | 167 | 19.33 | 5.77 | 54.89 | 73.71 | −0.617 |
Mol006576 | CsNF-YC7 | chr09 | 57,558,417–57,571,073 | 251 | 28.80 | 5.57 | 58.05 | 76.61 | −0.467 |
Mol006575 | CsNF-YC8 | chr09 | 57,732,435–57,733,510 | 143 | 16.34 | 7.82 | 42.83 | 105.8 | −0.129 |
Mol006574 | CsNF-YC9 | chr09 | 57,813,604–57,814,353 | 250 | 29.31 | 5.27 | 63.8 | 70.64 | −0.672 |
Mol006573 | CsNF-YC10 | chr09 | 57,884,670–57,925,774 | 249 | 28.88 | 5.38 | 64.55 | 83.94 | −0.408 |
Mol005117 | CsNF-YC11 | chr10 | 6,723,581–6,723,919 | 112 | 12.14 | 8.5 | 52.85 | 90.62 | 0.014 |
Mol006317 | CsNF-YC12 | chr10 | 120,958,331–120,966,041 | 127 | 13.72 | 9.57 | 44.46 | 85.98 | −0.136 |
Mol004335 | CsNF-YC13 | chr11 | 72,273,837–72,280,957 | 150 | 16.33 | 9.26 | 59.39 | 73.6 | −0.406 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, L.; Zhao, X.; Zheng, R.; Huang, Y.; Zhang, C.; Zhang, M.-M.; Lan, S.; Liu, Z.-J. Genome-Wide Identification and Drought Stress Response Pattern of the NF-Y Gene Family in Cymbidium sinense. Int. J. Mol. Sci. 2024, 25, 3031. https://doi.org/10.3390/ijms25053031
Wang L, Zhao X, Zheng R, Huang Y, Zhang C, Zhang M-M, Lan S, Liu Z-J. Genome-Wide Identification and Drought Stress Response Pattern of the NF-Y Gene Family in Cymbidium sinense. International Journal of Molecular Sciences. 2024; 25(5):3031. https://doi.org/10.3390/ijms25053031
Chicago/Turabian StyleWang, Linying, Xuewei Zhao, Ruiyue Zheng, Ye Huang, Cuili Zhang, Meng-Meng Zhang, Siren Lan, and Zhong-Jian Liu. 2024. "Genome-Wide Identification and Drought Stress Response Pattern of the NF-Y Gene Family in Cymbidium sinense" International Journal of Molecular Sciences 25, no. 5: 3031. https://doi.org/10.3390/ijms25053031
APA StyleWang, L., Zhao, X., Zheng, R., Huang, Y., Zhang, C., Zhang, M. -M., Lan, S., & Liu, Z. -J. (2024). Genome-Wide Identification and Drought Stress Response Pattern of the NF-Y Gene Family in Cymbidium sinense. International Journal of Molecular Sciences, 25(5), 3031. https://doi.org/10.3390/ijms25053031