Roles of Histone H2A Variants in Cancer Development, Prognosis, and Treatment
Abstract
:1. Introduction
2. Classification of H2A Variants
3. The 19 Histone H2A Variants
3.1. H2A.X—Good Helper in DNA Damage Repair
3.1.1. Non-DDR Function of H2A.X
3.1.2. H2A.X Role in Cancers–Tumor Suppressor
3.1.3. H2A.X–A Potential Prognostic/Biomarker for Cancers
3.2. H2A.Z–Regulator of Gene Transcription
3.2.1. H2A.Z Functions Other Than Gene Regulation
3.2.2. H2A.Z Role in Cancers–Oncogenic Variants
3.2.3. H2A.Z–Potential Diagnostic Biomarker and Therapeutic Target for Cancers
3.3. MacroH2A–Maintainer of Nuclear Organization and Heterochromatin Architecture
3.3.1. Other Roles of MacroH2A and Its Isoform
3.3.2. MacroH2A Roles in Cancer–Tumor Suppressor
3.3.3. MacroH2A and Isoforms–Novel Prognostic Factor and Diagnostic Markers
3.4. Short H2A (sH2A)–H2A.R
3.5. Short H2A (sH2A)–H2A.Bbd
H2A.Bbd Role in Cancers
3.6. Short H2A (sH2A)–H2A.P, H2A.Q, H2A.L
3.7. H2A.22 (H2A.J)
3.7.1. H2A.22/H2A.J Role in Cancer
3.7.2. H2A.22/H2A.J–Potential Biomarker and Indicator for Therapeutic Treatment
3.8. H2A.1 and H2A.2
H2A.1, H2A.2 Role in Cancer
4. Conclusions and Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Baldi, S.; Korber, P.; Becker, P.B. Beads on a String—Nucleosome Array Arrangements and Folding of the Chromatin Fiber. Nat. Struct. Mol. Biol. 2020, 27, 109–118. [Google Scholar] [CrossRef] [PubMed]
- Luger, K.; Hansen, J.C. Nucleosome and Chromatin Fiber Dynamics. Curr. Opin. Struct. Biol. 2005, 15, 188–196. [Google Scholar] [CrossRef] [PubMed]
- Cutter, A.R.; Hayes, J.J. A Brief Review of Nucleosome Structure. FEBS Lett. 2015, 589, 2914–2922. [Google Scholar] [CrossRef] [PubMed]
- Tessarz, P.; Kouzarides, T. Histone core modifications regulating nucleosome structure and dynamics. Nat. Rev. Mol. Cell Biol. 2014, 15, 703–708. [Google Scholar] [CrossRef] [PubMed]
- Bernstein, E.; Hake, S.B. The Nucleosome: A Little Variation Goes a Long way. Biochem. Cell Biol. 2006, 84, 505–507. [Google Scholar] [CrossRef]
- Marzluff, W.F.; Gongidi, P.; Woods, K.R.; Jin, J.; Maltais, L.J. The Human and Mouse Replication-Dependent Histone Genes. Genomics 2002, 80, 487–498. [Google Scholar] [CrossRef]
- Ausió, J. Histone Variants—The Structure behind the Function. Brief. Funct. Genom. 2006, 5, 228–243. [Google Scholar] [CrossRef]
- Chew, Y.C.; Camporeale, G.; Kothapalli, N.; Sarath, G.; Zempleni, J. Lysine Residues in N- and C-Terminal Regions of Human Histone H2A Are Targets for Biotinylation by Biotinidase. J. Nutr. Biochem. 2006, 17, 225–233. [Google Scholar] [CrossRef]
- Franklin, S.G.; Zweidler, A. Non-allelic variants of histones 2a, 2b and 3 in mammals. Nature 1977, 266, 273–275. [Google Scholar] [CrossRef]
- Talbert, P.B.; Henikoff, S. Histone variants–Ancient wrap artists of the epigenome. Nat. Rev. Mol. Cell Biol. 2010, 11, 264–275. [Google Scholar] [CrossRef] [PubMed]
- Ausió, J.; Abbott, D.W.; Wang, X.; Moore, S.C. Histone Variants and Histone Modifications: A Structural Perspective. Biochem. Cell Biol. Biochim. Biol. Cell. 2001, 79, 693–708. [Google Scholar] [CrossRef]
- Sarma, K.; Reinberg, D. Histone variants meet their match. Nat. Rev. Mol. Cell Biol. 2005, 6, 139–149. [Google Scholar] [CrossRef]
- Dominski, Z.; Marzluff, W.F. Formation of the 3′ End of Histone mRNA. Gene 1999, 239, 1–14. [Google Scholar] [CrossRef]
- Albig, W.; Doenecke, D. The Human Histone Gene Cluster at the D6S105 Locus. Hum. Genet. 1997, 101, 284–294. [Google Scholar] [CrossRef] [PubMed]
- Bönisch, C.; Hake, S.B. Histone H2A Variants in Nucleosomes and Chromatin: More or Less Stable? Nucleic Acids Res. 2012, 40, 10719–10741. [Google Scholar] [CrossRef] [PubMed]
- Buschbeck, M.; Hake, S.B. Variants of core histones and their roles in cell fate decisions, development and cancer. Nat. Rev. Mol. Cell Biol. 2017, 18, 299–314. [Google Scholar] [CrossRef] [PubMed]
- Vardabasso, C.; Hasson, D.; Ratnakumar, K.; Chung, C.Y.; Duarte, L.F.; Bernstein, E. Histone variants: Emerging players in cancer biology. Cell. Mol. Life Sci. 2014, 71, 379–404. [Google Scholar] [CrossRef] [PubMed]
- West, M.H.; Bonner, W.M. Histone 2A, a Heteromorphous Family of Eight Protein Species. Biochemistry 1980, 19, 3238–3245. [Google Scholar] [CrossRef] [PubMed]
- Nowakowski, A.B.; Wobig, W.J.; Petering, D.H. Native SDS-PAGE: High Resolution Electrophoretic Separation of Proteins With Retention of Native Properties Including Bound Metal Ions. Metallomics 2014, 6, 1068–1078. [Google Scholar] [CrossRef]
- Ryan, C.A.; Annunziato, A.T. Separation of Histone Variants and Post-Translationally Modified Isoforms by Triton/Acetic Acid/Urea Polyacrylamide Gel Electrophoresis. Curr. Protoc. Mol. Biol. 1999, 45, 21.2.1–21.2.10. [Google Scholar] [CrossRef]
- Karam, G.; Molaro, A. Casting Histone Variants during Mammalian Reproduction. Chromosoma 2023, 132, 153–165. [Google Scholar] [CrossRef]
- Martire, S.; Banaszynski, L.A. The Roles of Histone Variants in Fine-Tuning Chromatin Organization and Function. Nat. Rev. Mol. Cell Biol. 2020, 21, 522–541. [Google Scholar] [CrossRef]
- Horikoshi, N.; Sato, K.; Shimada, K.; Arimura, Y.; Osakabe, A.; Tachiwana, H.; Hayashi-Takanaka, Y.; Iwasaki, W.; Kagawa, W.; Harata, M.; et al. Structural Polymorphism in the L1 Loop Regions of Human H2A.Z.1 and H2A.Z.2. Acta Crystallogr. Sect. D Biol. Crystallogr. 2013, 69, 2431–2439. [Google Scholar] [CrossRef]
- Redon, C.; Pilch, D.; Rogakou, E.; Sedelnikova, O.; Newrock, K.; Bonner, W. Histone H2A Variants H2AX and H2AZ. Curr. Opin. Genet. Dev. 2002, 12, 162–169. [Google Scholar] [CrossRef] [PubMed]
- Li, A.; Eirín-López, J.M.; Ausió, J. H2AX: Tailoring Histone H2A for Chromatin-Dependent Genomic Integrity. Biochem. Cell Biol. Biochim. Biol. Cell. 2005, 83, 505–515. [Google Scholar] [CrossRef] [PubMed]
- Pinto, D.M.S.; Flaus, A. Structure and Function of Histone H2AX. In Genome Stability and Human Diseases; Nasheuer, H.-P., Ed.; Subcellular Biochemistry; Springer Netherlands: Dordrecht, The Netherlands, 2010; pp. 55–78. [Google Scholar] [CrossRef]
- Mukherjee, B.; Kessinger, C.; Kobayashi, J.; Chen, B.P.C.; Chen, D.J.; Chatterjee, A.; Burma, S. DNA-PK Phosphorylates Histone H2AX during Apoptotic DNA Fragmentation in Mammalian Cells. DNA Repair 2006, 5, 575–590. [Google Scholar] [CrossRef]
- Piquet, S.; Parc, F.L.; Bai, S.-K.; Chevallier, O.; Adam, S.; Polo, S.E. The Histone Chaperone FACT Coordinates H2A.X-Dependent Signaling and Repair of DNA Damage. Mol. Cell 2018, 72, 888–901.e7. [Google Scholar] [CrossRef] [PubMed]
- Chen, P.; Dong, L.; Hu, M.; Wang, Y.-Z.; Xiao, X.; Zhao, Z.; Yan, J.; Wang, P.-Y.; Reinberg, D.; Li, M.; et al. Functions of FACT in Breaking the Nucleosome and Maintaining Its Integrity at the Single-Nucleosome Level. Mol. Cell 2018, 71, 284–293.e4. [Google Scholar] [CrossRef] [PubMed]
- Heo, K.; Kim, H.; Choi, S.H.; Choi, J.; Kim, K.; Gu, J.; Lieber, M.R.; Yang, A.S.; An, W. FACT-Mediated Exchange of Histone Variant H2AX Regulated by Phosphorylation of H2AX and ADP-Ribosylation of Spt16. Mol. Cell 2008, 30, 86–97. [Google Scholar] [CrossRef]
- Mailand, N.; Gibbs-Seymour, I.; Bekker-Jensen, S. Regulation of PCNA–Protein Interactions for Genome Stability. Nat. Rev. Mol. Cell Biol. 2013, 14, 269–282. [Google Scholar] [CrossRef]
- Collins, P.L.; Purman, C.; Porter, S.I.; Nganga, V.; Saini, A.; Hayer, K.E.; Gurewitz, G.L.; Sleckman, B.P.; Bednarski, J.J.; Bassing, C.H.; et al. DNA Double-Strand Breaks Induce H2Ax Phosphorylation Domains in a Contact-Dependent Manner. Nat. Commun. 2020, 11, 3158. [Google Scholar] [CrossRef]
- Stucki, M.; Clapperton, J.A.; Mohammad, D.; Yaffe, M.B.; Smerdon, S.J.; Jackson, S.P. MDC1 Directly Binds Phosphorylated Histone H2AX to Regulate Cellular Responses to DNA Double-Strand Breaks. Cell 2005, 123, 1213–1226. [Google Scholar] [CrossRef] [PubMed]
- Lukas, C.; Melander, F.; Stucki, M.; Falck, J.; Bekker-Jensen, S.; Goldberg, M.; Lerenthal, Y.; Jackson, S.P.; Bartek, J.; Lukas, J. Mdc1 couples DNA double-strand break recognition by Nbs1 with its H2AX-dependent chromatin retention. EMBO J. 2004, 23, 2674–2683. [Google Scholar] [CrossRef] [PubMed]
- Cha, H.; Lowe, J.M.; Li, H.; Lee, J.-S.; Belova, G.I.; Bulavin, D.V.; Fornace, A.J. Wip1 Directly Dephosphorylates Gamma-H2AX and Attenuates the DNA Damage Response. Cancer Res. 2010, 70, 4112–4122. [Google Scholar] [CrossRef] [PubMed]
- Hatimy, A.A.; Browne, M.J.G.; Flaus, A.; Sweet, S.M.M. Histone H2AX Y142 Phosphorylation Is a Low Abundance Modification. Int. J. Mass Spectrom. 2015, 391, 139–145. [Google Scholar] [CrossRef]
- Biterge, B.; Schneider, R. Histone Variants: Key Players of Chromatin. Cell Tissue Res. 2014, 356, 457–466. [Google Scholar] [CrossRef] [PubMed]
- Cook, P.J.; Ju, B.G.; Telese, F.; Wang, X.; Glass, C.K.; Rosenfeld, M.G. Tyrosine Dephosphorylation of H2AX Modulates Apoptosis and Survival Decisions. Nature 2009, 458, 591–596. [Google Scholar] [CrossRef]
- Seo, J.; Kim, K.; Chang, D.-Y.; Kang, H.-B.; Shin, E.-C.; Kwon, J.; Choi, J.K. Genome-Wide Reorganization of Histone H2AX toward Particular Fragile Sites on Cell Activation. Nucleic Acids Res. 2014, 42, 1016–1025. [Google Scholar] [CrossRef]
- Wu, T.; Liu, Y.; Wen, D.; Tseng, Z.; Tahmasian, M.; Zhong, M.; Rafii, S.; Stadtfeld, M.; Hochedlinger, K.; Xiao, A. Histone Variant H2A.X Deposition Pattern Serves as a Functional Epigenetic Mark for Distinguishing the Developmental Potentials of iPSCs. Cell Stem Cell 2014, 15, 281–294. [Google Scholar] [CrossRef]
- Eleuteri, B.; Aranda, S.; Ernfors, P. NoRC Recruitment by H2A.X Deposition at rRNA Gene Promoter Limits Embryonic Stem Cell Proliferation. Cell Rep. 2018, 23, 1853–1866. [Google Scholar] [CrossRef]
- Celeste, A.; Petersen, S.; Romanienko, P.J.; Fernandez-Capetillo, O.; Chen, H.T.; Sedelnikova, O.A.; Reina-San-Martin, N.; Coppola, V.; Meffre, E.; Difilippantonio, M.J. Genomic Instability in Mice Lacking Histone H2AX. Science 2002, 296, 922–927. [Google Scholar] [CrossRef] [PubMed]
- Fernandez-Capetillo, O.; Mahadevaiah, S.K.; Celeste, A.; Romanienko, P.J.; Camerini-Otero, R.D.; Bonner, W.M.; Manova, K.; Burgoyne, P.; Nussenzweig, A. H2AX Is Required for Chromatin Remodeling and Inactivation of Sex Chromosomes in Male Mouse Meiosis. Dev. Cell 2003, 4, 497–508. [Google Scholar] [CrossRef] [PubMed]
- Sun, K.-Y.; Guo, S.-M.; Cheng, G.-P.; Yin, Y.; He, X.; Zhou, L.-Q. Cleavage-Embryo Genes and Transposable Elements Are Regulated by Histone Variant H2A.X. J. Reprod. Dev. 2021, 67, 307–312. [Google Scholar] [CrossRef] [PubMed]
- Orlando, L.; Tanasijevic, B.; Nakanishi, M.; Reid, J.C.; García-Rodríguez, J.L.; Chauhan, K.D.; Porras, D.P.; Aslostovar, L.; Lu, J.D.; Shapovalova, Z.; et al. Phosphorylation State of the Histone Variant H2A.X Controls Human Stem and Progenitor Cell Fate Decisions. Cell Rep. 2021, 34, 108818. [Google Scholar] [CrossRef]
- Shechter, D.; Chitta, R.K.; Xiao, A.; Shabanowitz, J.; Hunt, D.F.; Allis, C.D. A distinct H2A.X isoform is enriched in Xenopus laevis eggs and early embryos and is phosphorylated in the absence of a checkpoint. Proc. Natl. Acad. Sci. USA 2009, 106, 749–754. [Google Scholar] [CrossRef]
- Celeste, A.; Difilippantonio, S.; Difilippantonio, M.J.; Fernandez-Capetillo, O.; Pilch, D.R.; Sedelnikova, O.A.; Eckhaus, M.; Ried, T.; Bonner, W.M.; Nussenzweig, A. H2AX Haploinsufficiency Modifies Genomic Stability and Tumor Susceptibility. Cell 2003, 114, 371–383. [Google Scholar] [CrossRef] [PubMed]
- Parikh, R.A.; White, J.S.; Huang, X.; Schoppy, D.W.; Baysal, B.E.; Baskaran, R.; Bakkenist, C.J.; Saunders, W.S.; Hsu, L.-C.; Romkes, M.; et al. Loss of Distal 11q Is Associated with DNA Repair Deficiency and Reduced Sensitivity to Ionizing Radiation in Head and Neck Squamous Cell Carcinoma. Genes Chromosomes Cancer 2007, 46, 761–775. [Google Scholar] [CrossRef] [PubMed]
- Guo, Z.-F.; Kong, F.-L. Akt Regulates RSK2 to Alter Phosphorylation Level of H2A.X in Breast Cancer. Oncol. Lett. 2021, 21, 187. [Google Scholar] [CrossRef]
- Gao, X.; Bao, H.; Liu, L.; Zhu, W.; Zhang, L.; Yue, L. Systematic Analysis of Lysine Acetylome and Succinylome Reveals the Correlation between Modification of H2A.X Complexes and DNA Damage Response in Breast Cancer. Oncol. Rep. 2020, 43, 1819–1830. [Google Scholar] [CrossRef]
- Altomare, D.A.; Wang, H.Q.; Skele, K.L.; De Rienzo, A.; Klein-Szanto, A.J.; Godwin, A.K.; Testa, J.R. AKT and mTOR Phosphorylation Is Frequently Detected in Ovarian Cancer and Can Be Targeted to Disrupt Ovarian Tumor Cell Growth. Oncogene 2004, 23, 5853–5857. [Google Scholar] [CrossRef]
- Saravi, S.; Katsuta, E.; Jeyaneethi, J.; Amin, H.A.; Kaspar, M.; Takabe, K.; Pados, G.; Drenos, F.; Hall, M.; Karteris, E. H2A Histone Family Member X (H2AX) Is Upregulated in Ovarian Cancer and Demonstrates Utility as a Prognostic Biomarker in Terms of Overall Survival. J. Clin. Med. 2020, 9, 2844. [Google Scholar] [CrossRef]
- Weyemi, U.; Redon, C.E.; Choudhuri, R.; Aziz, T.; Maeda, D.; Boufraqech, M.; Parekh, P.R.; Sethi, T.K.; Kasoji, M.; Abrams, N.; et al. The Histone Variant H2A.X Is a Regulator of the Epithelial–Mesenchymal Transition. Nat. Commun. 2016, 7, 10711. [Google Scholar] [CrossRef]
- Xiao, H.; Tong, R.; Ding, C.; Lv, Z.; Du, C.; Peng, C.; Cheng, S.; Xie, H.; Zhou, L.; Wu, J.; et al. γ-H2AX Promotes Hepatocellular Carcinoma Angiogenesis via EGFR/HIF-1α/VEGF Pathways under Hypoxic Condition. Oncotarget 2015, 6, 2180–2192. [Google Scholar] [CrossRef]
- Liu, Y.; Long, Y.-H.; Wang, S.-Q.; Li, Y.-F.; Zhang, J.-H. Phosphorylation of H2A.XTyr39 Positively Regulates DNA Damage Response and Is Linked to Cancer Progression. FEBS J. 2016, 283, 4462–4473. [Google Scholar] [CrossRef]
- Kuo, L.J.; Yang, L.-X. Gamma-H2AX—A Novel Biomarker for DNA Double-Strand Breaks. In Vivo 2008, 22, 305–309. [Google Scholar]
- Pouliliou, S.; Koukourakis, M.I. Gamma Histone 2AX (γ-H2AX)as a Predictive Tool in Radiation Oncology. Biomarkers 2014, 19, 167–180. [Google Scholar] [CrossRef]
- Bonner, W.M.; Redon, C.E.; Dickey, J.S.; Nakamura, A.J.; Sedelnikova, O.A.; Solier, S.; Pommier, Y. γH2AX and Cancer. Nat. Rev. Cancer 2008, 8, 957–967. [Google Scholar] [CrossRef]
- Palla, V.-V.; Karaolanis, G.; Katafigiotis, I.; Anastasiou, I.; Patapis, P.; Dimitroulis, D.; Perrea, D. Gamma-H2AX: Can It Be Established as a Classical Cancer Prognostic Factor? Tumor Biol. 2017, 39, 1010428317695931. [Google Scholar] [CrossRef] [PubMed]
- Fernández, M.I.; Gong, Y.; Ye, Y.; Lin, J.; Chang, D.W.; Kamat, A.M.; Wu, X. γ-H2AX Level in Peripheral Blood Lymphocytes as a Risk Predictor for Bladder Cancer. Carcinogenesis 2013, 34, 2543–2547. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Chang, D.W.; Gong, Y.; Eng, C.; Wu, X. Measurement of DNA damage in peripheral blood by the γ-H2AX assay as predictor of colorectal cancer risk. DNA Repair 2017, 53, 24–30. [Google Scholar] [CrossRef] [PubMed]
- Ivashkevich, A.; Redon, C.E.; Nakamura, A.J.; Martin, R.F.; Martin, O.A. Use of the γ-H2AX Assay to Monitor DNA Damage and Repair in Translational Cancer Research. Cancer Lett. 2012, 327, 123–133. [Google Scholar] [CrossRef] [PubMed]
- Plappert-Helbig, U.; Libertini, S.; Frieauff, W.; Theil, D.; Martus, H.-J. Gamma-H2AX Immunofluorescence for the Detection of Tissue-Specific Genotoxicity in Vivo. Environ. Mol. Mutagen. 2019, 60, 4–16. [Google Scholar] [CrossRef] [PubMed]
- Faast, R.; Thonglairoam, V.; Schulz, T.C.; Beall, J.; Wells, J.R.; Taylor, H.; Matthaei, K.; Rathjen, P.D.; Tremethick, D.J.; Lyons, I. Histone Variant H2A.Z Is Required for Early Mammalian Development. Curr. Biol. 2001, 11, 1183–1187. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Zhang, J.; Zhou, J.; Bu, G.; Zhu, W.; He, H.; Sun, Q.; Yu, Z.; Xiong, W.; Wang, L.; et al. Hierarchical Accumulation of Histone Variant H2A.Z Regulates Transcriptional States and Histone Modifications in Early Mammalian Embryos. Adv. Sci. 2022, 9, e2200057. [Google Scholar] [CrossRef] [PubMed]
- Colino-Sanguino, Y.; Clark, S.J.; Valdes-Mora, F. The H2A.Z-Nucleosome Code in Mammals: Emerging Functions. Trends Genet. 2022, 38, 273–289. [Google Scholar] [CrossRef]
- Eirín-López, J.M.; González-Romero, R.; Dryhurst, D.; Ishibashi, T.; Ausió, J. The Evolutionary Differentiation of Two Histone H2A.Z Variants in Chordates (H2A.Z-1 and H2A.Z-2) Is Mediated by a Stepwise Mutation Process That Affects Three Amino Acid Residues. BMC Evol. Biol. 2009, 9, 31. [Google Scholar] [CrossRef]
- Ishibashi, T.; Dryhurst, D.; Rose, K.L.; Shabanowitz, J.; Hunt, D.F.; Ausió, J. Acetylation of Vertebrate H2A.Z and Its Effect on the Structure of the Nucleosome. Biochemistry 2009, 48, 5007–5017. [Google Scholar] [CrossRef]
- Thambirajah, A.A.; Dryhurst, D.; Ishibashi, T.; Li, A.; Maffey, A.H.; Ausió, J. H2A.Z Stabilizes Chromatin in a Way That Is Dependent on Core Histone Acetylation. J. Biol. Chem. 2006, 281, 20036–20044. [Google Scholar] [CrossRef]
- Giaimo, B.D.; Ferrante, F.; Herchenröther, A.; Hake, S.B.; Borggrefe, T. The Histone Variant H2A.Z in Gene Regulation. Epigenetics Chromatin 2019, 12, 37. [Google Scholar] [CrossRef]
- Doyon, Y.; Côté, J. The Highly Conserved and Multifunctional NuA4 HAT Complex. Curr. Opin. Genet. Dev. 2004, 14, 147–154. [Google Scholar] [CrossRef]
- Sarcinella, E.; Zuzarte, P.C.; Lau, P.N.I.; Draker, R.; Cheung, P. Monoubiquitylation of H2A.Z Distinguishes Its Association with Euchromatin or Facultative Heterochromatin. Mol. Cell. Biol. 2007, 27, 6457–6468. [Google Scholar] [CrossRef]
- Placek, B.J.; Harrison, L.N.; Villers, B.M.; Gloss, L.M. The H2A.Z/H2B dimer is unstable compared to the dimer containing the major H2A isoform. Protein Sci. 2005, 14, 514–522. [Google Scholar] [CrossRef]
- Park, Y.-J.; Dyer, P.N.; Tremethick, D.J.; Luger, K. A New Fluorescence Resonance Energy Transfer Approach Demonstrates That the Histone Variant H2AZ Stabilizes the Histone Octamer within the Nucleosome. J. Biol. Chem. 2004, 279, 24274–24282. [Google Scholar] [CrossRef]
- Phillips, E.O.N.; Gunjan, A. Histone Variants: The Unsung Guardians of the Genome. DNA Repair 2022, 112, 103301. [Google Scholar] [CrossRef]
- Abbott, D.W.; Ivanova, V.S.; Wang, X.; Bonner, W.M.; Ausió, J. Characterization of the Stability and Folding of H2A.Z Chromatin Particles: IMPLICATIONS FOR TRANSCRIPTIONAL ACTIVATION. J. Biol. Chem. 2001, 276, 41945–41949. [Google Scholar] [CrossRef]
- Li, S.; Wei, T.; Panchenko, A.R. Histone Variant H2A.Z Modulates Nucleosome Dynamics to Promote DNA Accessibility. Nat. Commun. 2023, 14, 769. [Google Scholar] [CrossRef]
- Fan, J.Y.; Gordon, F.; Luger, K.; Hansen, J.C.; Tremethick, D.J. The Essential Histone Variant H2A.Z Regulates the Equilibrium between Different Chromatin Conformational States. Nat. Struct. Biol. 2002, 9, 172–176. [Google Scholar] [CrossRef]
- Jin, C.; Felsenfeld, G. Nucleosome Stability Mediated by Histone Variants H3.3 and H2A.Z. Genes Dev. 2007, 21, 1519–1529. [Google Scholar] [CrossRef] [PubMed]
- Dryhurst, D.; Ishibashi, T.; Rose, K.L.; Eirín-López, J.M.; McDonald, D.; Silva-Moreno, B.; Veldhoen, N.; Helbing, C.C.; Hendzel, M.J.; Shabanowitz, J.; et al. Characterization of the Histone H2A.Z-1 and H2A.Z-2 Isoforms in Vertebrates. BMC Biol. 2009, 7, 86. [Google Scholar] [CrossRef] [PubMed]
- Mylonas, C.; Lee, C.; Auld, A.L.; Cisse, I.I.; Boyer, L.A. A Dual Role for H2A.Z.1 in Modulating the Dynamics of RNA Polymerase II Initiation and Elongation. Nat. Struct. Mol. Biol. 2021, 28, 435–442. [Google Scholar] [CrossRef] [PubMed]
- Bönisch, C.; Schneider, K.; Pünzeler, S.; Wiedemann, S.M.; Bielmeier, C.; Bocola, M.; Eberl, H.C.; Kuegel, W.; Neumann, J.; Kremmer, E.; et al. H2A.Z.2.2 is an alternatively spliced histone H2A.Z variant that causes severe nucleosome destabilization. Nucleic Acids Res. 2012, 40, 5951–5964. [Google Scholar] [CrossRef] [PubMed]
- Zhou, M.; Dai, L.; Li, C.; Shi, L.; Huang, Y.; Guo, Z.; Wu, F.; Zhu, P.; Zhou, Z. Structural Basis of Nucleosome Dynamics Modulation by Histone Variants H2A.B and H2A.Z.2.2. EMBO J. 2021, 40, e105907. [Google Scholar] [CrossRef]
- Rangasamy, D.; Greaves, I.; Tremethick, D.J. RNA Interference Demonstrates a Novel Role for H2A.Z in Chromosome Segregation. Nat. Struct. Mol. Biol. 2004, 11, 650–655. [Google Scholar] [CrossRef] [PubMed]
- Greaves, I.K.; Rangasamy, D.; Ridgway, P.; Tremethick, D.J. H2A.Z Contributes to the Unique 3D Structure of the Centromere. Proc. Natl. Acad. Sci. USA 2007, 104, 525–530. [Google Scholar] [CrossRef] [PubMed]
- Mao, Z.; Pan, L.; Wang, W.; Sun, J.; Shan, S.; Dong, Q.; Liang, X.; Dai, L.; Ding, X.; Chen, S.; et al. Anp32e, a Higher Eukaryotic Histone Chaperone Directs Preferential Recognition for H2A.Z. Cell Res. 2014, 24, 389–399. [Google Scholar] [CrossRef]
- Obri, A.; Ouararhni, K.; Papin, C.; Diebold, M.-L.; Padmanabhan, K.; Marek, M.; Stoll, I.; Roy, L.; Reilly, P.T.; Mak, T.W.; et al. ANP32E Is a Histone Chaperone That Removes H2A.Z from Chromatin. Nature 2014, 505, 648–653. [Google Scholar] [CrossRef]
- Gursoy-Yuzugullu, O.; Ayrapetov, M.K.; Price, B.D. Histone Chaperone Anp32e Removes H2A.Z from DNA Double-Strand Breaks and Promotes Nucleosome Reorganization and DNA Repair. Proc. Natl. Acad. Sci. USA 2015, 112, 7507–7512. [Google Scholar] [CrossRef]
- Alatwi, H.E.; Downs, J.A. Removal of H2A.Z by INO80 Promotes Homologous Recombination. EMBO Rep. 2015, 16, 986–994. [Google Scholar] [CrossRef]
- Corujo, D.; Buschbeck, M. Post-Translational Modifications of H2A Histone Variants and Their Role in Cancer. Cancers 2018, 10, 59. [Google Scholar] [CrossRef] [PubMed]
- Nishibuchi, I.; Suzuki, H.; Kinomura, A.; Sun, J.; Liu, N.-A.; Horikoshi, Y.; Shima, H.; Kusakabe, M.; Harata, M.; Fukagawa, T.; et al. Reorganization of Damaged Chromatin by the Exchange of Histone Variant H2A.Z-2. Int. J. Radiat. Oncol. 2014, 89, 736–744. [Google Scholar] [CrossRef] [PubMed]
- Narkaj, K.; Stefanelli, G.; Wahdan, M.; Azam, A.B.; Ramzan, F.; Steininger, C.F.D.; Walters, B.J.; Zovkic, I.B. Blocking H2A.Z Incorporation via Tip60 Inhibition Promotes Systems Consolidation of Fear Memory in Mice. eNeuro 2018, 5, ENEURO.0378-18.2018. [Google Scholar] [CrossRef]
- Shen, T.; Ji, F.; Wang, Y.; Lei, X.; Zhang, D.; Jiao, J. Brain-Specific Deletion of Histone Variant H2A.z Results in Cortical Neurogenesis Defects and Neurodevelopmental Disorder. Nucleic Acids Res. 2018, 46, 2290–2307. [Google Scholar] [CrossRef]
- Zovkic, I.B.; Paulukaitis, B.S.; Day, J.J.; Etikala, D.M.; Sweatt, J.D. Histone H2A.Z Subunit Exchange Controls Consolidation of Recent and Remote Memory. Nature 2014, 515, 582–586. [Google Scholar] [CrossRef] [PubMed]
- Domaschenz, R.; Kurscheid, S.; Nekrasov, M.; Han, S.; Tremethick, D.J. The Histone Variant H2A.Z Is a Master Regulator of the Epithelial-Mesenchymal Transition. Cell Rep. 2017, 21, 943–952. [Google Scholar] [CrossRef]
- Dhillon, N.; Oki, M.; Szyjka, S.J.; Aparicio, O.M.; Kamakaka, R.T. H2A.Z Functions To Regulate Progression through the Cell Cycle. Mol. Cell. Biol. 2006, 26, 489–501. [Google Scholar] [CrossRef] [PubMed]
- Cayrou, C.; Ballester, B.; Peiffer, I.; Fenouil, R.; Coulombe, P.; Andrau, J.C.; van Helden, J.; Méchali, M. The chromatin environment shapes DNA replication origin organization and defines origin classes. Genome Res. 2015, 25, 1873–1885. [Google Scholar] [CrossRef] [PubMed]
- Hu, G.; Cui, K.; Northrup, D.; Liu, C.; Wang, C.; Tang, Q.; Ge, K.; Levens, D.; Crane-Robinson, C.; Zhao, K. H2A.Z Facilitates Access of Active and Repressive Complexes to Chromatin in Embryonic Stem Cell Self-Renewal and Differentiation. Cell Stem Cell 2013, 12, 180–192. [Google Scholar] [CrossRef] [PubMed]
- Xu, M.; Yao, J.; Shi, Y.; Yi, H.; Zhao, W.; Lin, X.; Yang, Z. The SRCAP Chromatin Remodeling Complex Promotes Oxidative Metabolism during Prenatal Heart Development. Development 2021, 148, dev199026. [Google Scholar] [CrossRef] [PubMed]
- Raja, D.A.; Subramaniam, Y.; Aggarwal, A.; Gotherwal, V.; Babu, A.; Tanwar, J.; Motiani, R.K.; Sivasubbu, S.; Gokhale, R.S.; Natarajan, V.T. Histone Variant Dictates Fate Biasing of Neural Crest Cells to Melanocyte Lineage. Development 2020, 147, dev182576. [Google Scholar] [CrossRef] [PubMed]
- Law, C.; Cheung, P. Expression of Non-Acetylatable H2A.Z in Myoblast Cells Blocks Myoblast Differentiation through Disruption of MyoD Expression. J. Biol. Chem. 2015, 290, 13234–13249. [Google Scholar] [CrossRef]
- Numata, A.; Kwok, H.S.; Zhou, Q.-L.; Li, J.; Tirado-Magallanes, R.; Angarica, V.E.; Hannah, R.; Park, J.; Wang, C.Q.; Krishnan, V.; et al. Lysine Acetyltransferase Tip60 Is Required for Hematopoietic Stem Cell Maintenance. Blood 2020, 136, 1735–1747. [Google Scholar] [CrossRef]
- Rangasamy, D. Histone Variant H2A.Z Can Serve as a New Target for Breast Cancer Therapy. Curr. Med. Chem. 2010, 17, 3155–3161. [Google Scholar] [CrossRef]
- Rasmussen, L.; Christensen, I.J.; Herzog, M.; Micallef, J.; Nielsen, H.J.; Danish Collaborative Group on Early Detection of Colorectal Cancer. Circulating Cell-Free Nucleosomes as Biomarkers for Early Detection of Colorectal Cancer. Oncotarget 2018, 9, 10247–10258. [Google Scholar] [CrossRef]
- Zheng, Y.; Han, X.; Wang, T. Role of H2A.Z.1 in Epithelial-Mesenchymal Transition and Radiation Resistance of Lung Adenocarcinoma in Vitro. Biochem. Biophys. Res. Commun. 2022, 611, 118–125. [Google Scholar] [CrossRef]
- Yang, H.D.; Kim, P.-J.; Eun, J.W.; Shen, Q.; Kim, H.S.; Shin, W.C.; Ahn, Y.M.; Park, W.S.; Lee, J.Y.; Nam, S.W. Oncogenic Potential of Histone-Variant H2A.Z.1 and Its Regulatory Role in Cell Cycle and Epithelial-Mesenchymal Transition in Liver Cancer. Oncotarget 2016, 7, 11412–11423. [Google Scholar] [CrossRef]
- Dryhurst, D.; Ausió, J. Histone H2A.Z Deregulation in Prostate Cancer. Cause or Effect? Cancer Metastasis Rev. 2014, 33, 429–439. [Google Scholar] [CrossRef]
- Ávila-López, P.A.; Guerrero, G.; Nuñez-Martínez, H.N.; Peralta-Alvarez, C.A.; Hernández-Montes, G.; Álvarez-Hilario, L.G.; Herrera-Goepfert, R.; Albores-Saavedra, J.; Villegas-Sepúlveda, N.; Cedillo-Barrón, L.; et al. H2A.Z Overexpression Suppresses Senescence and Chemosensitivity in Pancreatic Ductal Adenocarcinoma. Oncogene 2021, 40, 2065–2080. [Google Scholar] [CrossRef] [PubMed]
- Vardabasso, C.; Gaspar-Maia, A.; Hasson, D.; Pünzeler, S.; Valle-Garcia, D.; Straub, T.; Keilhauer, E.C.; Strub, T.; Dong, J.; Panda, T.; et al. Histone Variant H2A.Z.2 Mediates Proliferation and Drug Sensitivity of Malignant Melanoma. Mol. Cell 2015, 59, 75–88. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.; Punj, V.; Choi, J.; Heo, K.; Kim, J.-M.; Laird, P.W.; An, W. Gene Dysregulation by Histone Variant H2A.Z in Bladder Cancer. Epigenetics Chromatin 2013, 6, 34. [Google Scholar] [CrossRef] [PubMed]
- Svotelis, A.; Gévry, N.; Grondin, G.; Gaudreau, L. H2A.Z overexpression promotes cellular proliferation of breast cancer cells. Cell Cycle 2010, 9, 364–370. [Google Scholar] [CrossRef] [PubMed]
- Miller, D.M.; Thomas, S.D.; Islam, A.; Muench, D.; Sedoris, K. C-Myc and Cancer Metabolism. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2012, 18, 5546–5553. [Google Scholar] [CrossRef]
- Hua, S.; Kallen, C.B.; Dhar, R.; Baquero, M.T.; Mason, C.E.; A Russell, B.; Shah, P.K.; Liu, J.; Khramtsov, A.; Tretiakova, M.S.; et al. Genomic analysis of estrogen cascade reveals histone variant H2A.Z associated with breast cancer progression. Mol. Syst. Biol. 2008, 4, 188. [Google Scholar] [CrossRef]
- Gévry, N.; Hardy, S.; Jacques P, É.; Laflamme, L.; Svotelis, A.; Robert, F.; Gaudreau, L. Histone H2A.Z is essential for estrogen receptor signaling. Genes Dev. 2009, 23, 1522–1533. [Google Scholar] [CrossRef]
- Yang, B.; Tong, R.; Liu, H.; Wu, J.; Chen, D.; Xue, Z.; Ding, C.; Zhou, L.; Xie, H.; Wu, J.; et al. H2A.Z Regulates Tumorigenesis, Metastasis and Sensitivity to Cisplatin in Intrahepatic Cholangiocarcinoma. Int. J. Oncol. 2018, 52, 1235–1245. [Google Scholar] [CrossRef] [PubMed]
- Tang, S.; Huang, X.; Wang, X.; Zhou, X.; Huang, H.; Qin, L.; Tao, H.; Wang, Q.; Tao, Y. Vital and Distinct Roles of H2A.Z Isoforms in Hepatocellular Carcinoma. OncoTargets Ther. 2020, 13, 4319–4337. [Google Scholar] [CrossRef] [PubMed]
- Sales-Gil, R.; Kommer, D.C.; de Castro, I.J.; Amin, H.A.; Vinciotti, V.; Sisu, C.; Vagnarelli, P. Non-Redundant Functions of H2A.Z.1 and H2A.Z.2 in Chromosome Segregation and Cell Cycle Progression. EMBO Rep. 2021, 22, e52061. [Google Scholar] [CrossRef] [PubMed]
- Vardabasso, C.; Hake, S.B.; Bernstein, E. Histone Variant H2A.Z.2: A Novel Driver of Melanoma Progression. Mol. Cell. Oncol. 2016, 3, e1073417. [Google Scholar] [CrossRef] [PubMed]
- Valdés-Mora, F.; Song, J.Z.; Statham, A.L.; Strbenac, D.; Robinson, M.D.; Nair, S.S.; Patterson, K.I.; Tremethick, D.J.; Stirzaker, C.; Clark, S.J. Acetylation of H2A.Z Is a Key Epigenetic Modification Associated with Gene Deregulation and Epigenetic Remodeling in Cancer. Genome Res. 2012, 22, 307–321. [Google Scholar] [CrossRef] [PubMed]
- Valdés-Mora, F.; Gould, C.M.; Colino-Sanguino, Y.; Qu, W.; Song, J.Z.; Taylor, K.M.; Buske, F.A.; Statham, A.L.; Nair, S.S.; Armstrong, N.J.; et al. Acetylated histone variant H2A.Z is involved in the activation of neo-enhancers in prostate cancer. Nat. Commun. 2017, 8, 1346. [Google Scholar] [CrossRef] [PubMed]
- Dong, M.; Chen, J.; Deng, Y.; Zhang, D.; Dong, L.; Sun, D. H2AFZ Is a Prognostic Biomarker Correlated to TP53 Mutation and Immune Infiltration in Hepatocellular Carcinoma. Front. Oncol. 2021, 11, 701736. [Google Scholar] [CrossRef] [PubMed]
- Pehrson, J.R.; Fried, V.A. MacroH2A, a Core Histone Containing a Large Nonhistone Region. Science 1992, 257, 1398–1400. [Google Scholar] [CrossRef]
- Monteiro, F.L.; Baptista, T.; Amado, F.; Vitorino, R.; Jerónimo, C.; Helguero, L.A. Expression and Functionality of Histone H2A Variants in Cancer. Oncotarget 2014, 5, 3428–3443. [Google Scholar] [CrossRef]
- Pehrson, J.R.; Fuji, R.N. Evolutionary Conservation of Histone macroH2A Subtypes and Domains. Nucleic Acids Res. 1998, 26, 2837–2842. [Google Scholar] [CrossRef]
- Sun, Z.; Bernstein, E. Histone Variant macroH2A: From Chromatin Deposition to Molecular Function. Essays Biochem. 2019, 63, 59–74. [Google Scholar] [CrossRef] [PubMed]
- Guberovic, I.; Farkas, M.; Corujo, D.; Buschbeck, M. Evolution, Structure and Function of Divergent macroH2A1 Splice Isoforms. Semin. Cell Dev. Biol. 2023, 135, 43–49. [Google Scholar] [CrossRef] [PubMed]
- Chakravarthy, S.; Patel, A.; Bowman, G.D. The basic linker of macroH2A stabilizes DNA at the entry/exit site of the nucleosome. Nucleic Acids Res. 2012, 40, 8285–8295. [Google Scholar] [CrossRef] [PubMed]
- Douet, J.; Corujo, D.; Malinverni, R.; Renauld, J.; Sansoni, V.; Posavec Marjanović, M.; Cantariño, N.; Valero, V.; Mongelard, F.; Bouvet, P.; et al. MacroH2A histone variants maintain nuclear organization and heterochromatin architecture. J. Cell Sci. 2017, 130, 1570–1582. [Google Scholar] [CrossRef] [PubMed]
- Fu, Y.; Lv, P.; Yan, G.; Fan, H.; Cheng, L.; Zhang, F.; Dang, Y.; Wu, H.; Wen, B. MacroH2A1 Associates with Nuclear Lamina and Maintains Chromatin Architecture in Mouse Liver Cells. Sci. Rep. 2015, 5, 17186. [Google Scholar] [CrossRef] [PubMed]
- Chadwick, B.P.; Valley, C.M.; Willard, H.F. Histone Variant macroH2A Contains Two Distinct Macrochromatin Domains Capable of Directing macroH2A to the Inactive X Chromosome. Nucleic Acids Res. 2001, 29, 2699–2705. [Google Scholar] [CrossRef] [PubMed]
- Chadwick, B.P.; Willard, H.F. Histone H2A Variants and the Inactive X Chromosome: Identification of a Second macroH2A Variant. Hum. Mol. Genet. 2001, 10, 1101–1113. [Google Scholar] [CrossRef]
- Mandemaker, I.K.; Fessler, E.; Corujo, D.; Kotthoff, C.; Wegerer, A.; Rouillon, C.; Buschbeck, M.; Jae, L.T.; Mattiroli, F.; Ladurner, A.G. The Histone Chaperone ANP32B Regulates Chromatin Incorporation of the Atypical Human Histone Variant macroH2A. Cell Rep. 2023, 42, 113300. [Google Scholar] [CrossRef]
- Pasque, V.; Gillich, A.; Garrett, N.; Gurdon, J.B. Histone Variant macroH2A Confers Resistance to Nuclear Reprogramming. EMBO J. 2011, 30, 2373–2387. [Google Scholar] [CrossRef]
- Bowerman, S.; Hickok, R.J.; Wereszczynski, J. Unique Dynamics in Asymmetric macroH2A–H2A Hybrid Nucleosomes Result in Increased Complex Stability. J. Phys. Chem. B 2019, 123, 419–427. [Google Scholar] [CrossRef]
- Chakravarthy, S.; Luger, K. The Histone Variant Macro-H2A Preferentially Forms “Hybrid Nucleosomes”*♦. J. Biol. Chem. 2006, 281, 25522–25531. [Google Scholar] [CrossRef] [PubMed]
- Boulard, M.; Storck, S.; Cong, R.; Pinto, R.; Delage, H.; Bouvet, P. Histone Variant macroH2A1 Deletion in Mice Causes Female-Specific Steatosis. Epigenetics Chromatin 2010, 3, 8. [Google Scholar] [CrossRef] [PubMed]
- Jeon, Y.; Sarma, K.; Lee, J.T. New and Xisting Regulatory Mechanisms of X Chromosome Inactivation. Curr. Opin. Genet. Dev. 2012, 22, 62–71. [Google Scholar] [CrossRef]
- Ma, Y.; Jacobs, S.B.; Jackson-Grusby, L.; Mastrangelo, M.-A.; Torres-Betancourt, J.A.; Jaenisch, R.; Rasmussen, T.P. DNA CpG Hypomethylation Induces Heterochromatin Reorganization Involving the Histone Variant macroH2A. J. Cell Sci. 2005, 118 Pt 8, 1607–1616. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Muñoz, I.; Lund, A.H.; van der Stoop, P.; Boutsma, E.; Muijrers, I.; Verhoeven, E.; Nusinow, D.A.; Panning, B.; Marahrens, Y.; van Lohuizen, M. Stable X Chromosome Inactivation Involves the PRC1 Polycomb Complex and Requires Histone MACROH2A1 and the CULLIN3/SPOP Ubiquitin E3 Ligase. Proc. Natl. Acad. Sci. USA 2005, 102, 7635–7640. [Google Scholar] [CrossRef] [PubMed]
- Choo, J.H.; Kim, J.D.; Chung, J.H.; Stubbs, L.; Kim, J. Allele-Specific Deposition of macroH2A1 in Imprinting Control Regions. Hum. Mol. Genet. 2006, 15, 717–724. [Google Scholar] [CrossRef] [PubMed]
- Changolkar, L.N.; Costanzi, C.; Leu, N.A.; Chen, D.; McLaughlin, K.J.; Pehrson, J.R. Developmental Changes in Histone macroH2A1-Mediated Gene Regulation. Mol. Cell. Biol. 2007, 27, 2758–2764. [Google Scholar] [CrossRef] [PubMed]
- Costanzi, C.; Pehrson, J.R. MACROH2A2, a New Member of the MARCOH2A Core Histone Family. J. Biol. Chem. 2001, 276, 21776–21784. [Google Scholar] [CrossRef]
- Nikolic, A.; Maule, F.; Bobyn, A.; Ellestad, K.; Paik, S.; Marhon, S.A.; Mehdipour, P.; Lun, X.; Chen, H.-M.; Mallard, C.; et al. macroH2A2 Antagonizes Epigenetic Programs of Stemness in Glioblastoma. Nat. Commun. 2023, 14, 3062. [Google Scholar] [CrossRef]
- Mermoud, J.E.; Costanzi, C.; Pehrson, J.R.; Brockdorff, N. Histone macroH2A1.2 Relocates to the Inactive X Chromosome after Initiation and Propagation of X-Inactivation. J. Cell Biol. 1999, 147, 1399–1408. [Google Scholar] [CrossRef] [PubMed]
- Nusinow, D.A.; Hernandez-Munoz, I.; Fazzio, T.G.; Shah, G.M.; Kraus, W.L.; Panning, B. Poly(ADP-ribose) polymerase 1 is inhibited by a histone H2A variant, MacroH2A, and contributes to silencing of the inactive X chromosome. J. Biol. Chem. 2007, 282, 12851–12859. [Google Scholar] [CrossRef] [PubMed]
- Xu, C.; Xu, Y.; Gursoy-Yuzugullu, O.; Price, B.D. The Histone Variant macroH2A1.1 Is Recruited to DSBs through a Mechanism Involving PARP1. FEBS Lett. 2012, 586, 3920–3925. [Google Scholar] [CrossRef] [PubMed]
- Ruiz, P.D.; Hamilton, G.A.; Park, J.W.; Gamble, M.J. MacroH2A1 Regulation of Poly(ADP-Ribose) Synthesis and Stability Prevents Necrosis and Promotes DNA Repair. Mol. Cell. Biol. 2019, 40, e00230-19. [Google Scholar] [CrossRef] [PubMed]
- Sebastian, R.; Hosogane, E.K.; Sun, E.G.; Tran, A.D.; Reinhold, W.C.; Burkett, S.; Sturgill, D.M.; Gudla, P.R.; Pommier, Y.; Aladjem, M.I.; et al. Epigenetic Regulation of DNA Repair Pathway Choice by MacroH2A1 Splice Variants Ensures Genome Stability. Mol. Cell 2020, 79, 836–845.e7. [Google Scholar] [CrossRef] [PubMed]
- Singh, G.; Stefanelli, G.; Narkaj, K.; Brimble, M.A.; Creighton, S.D.; McLean, T.A.B.; Hall, M.; Mitchnick, K.A.; Zakaria, J.; Phung, T.; et al. Histone macroH2A1 Is a Stronger Regulator of Hippocampal Transcription and Memory than macroH2A2 in Mice. Commun. Biol. 2022, 5, 482. [Google Scholar] [CrossRef]
- Hurtado-Bagès, S.; Guberovic, I.; Buschbeck, M. The MacroH2A1.1–PARP1 Axis at the Intersection Between Stress Response and Metabolism. Front. Genet. 2018, 9, 417. [Google Scholar] [CrossRef]
- Gaspar-Maia, A.; Qadeer, Z.A.; Hasson, D.; Ratnakumar, K.; Adrian Leu, N.; Leroy, G.; Liu, S.; Costanzi, C.; Valle-Garcia, D.; Schaniel, C.; et al. MacroH2A Histone Variants Act as a Barrier upon Reprogramming towards Pluripotency. Nat. Commun. 2013, 4, 1565. [Google Scholar] [CrossRef]
- Sporn, J.C.; Kustatscher, G.; Hothorn, T.; Collado, M.; Serrano, M.; Muley, T.; Schnabel, P.; Ladurner, A.G. Histone macroH2A Isoforms Predict the Risk of Lung Cancer Recurrence. Oncogene 2009, 28, 3423–3428. [Google Scholar] [CrossRef]
- Li, X.; Kuang, J.; Shen, Y.; Majer, M.M.; Nelson, C.C.; Parsawar, K.; Heichman, K.A.; Kuwada, S.K. The Atypical Histone MacroH2A1.2 Interacts with HER-2 Protein in Cancer Cells. J. Biol. Chem. 2012, 287, 23171–23183. [Google Scholar] [CrossRef]
- Kapoor, A.; Goldberg, M.S.; Cumberland, L.K.; Ratnakumar, K.; Segura, M.F.; Emanuel, P.O.; Menendez, S.; Vardabasso, C.; LeRoy, G.; Vidal, C.I.; et al. The Histone Variant macroH2A Suppresses Melanoma Progression through Regulation of CDK8. Nature 2010, 468, 1105–1109. [Google Scholar] [CrossRef] [PubMed]
- Hodge, D.Q.; Cui, J.; Gamble, M.J.; Guo, W. Histone Variant MacroH2A1 Plays an Isoform-Specific Role in Suppressing Epithelial-Mesenchymal Transition. Sci. Rep. 2018, 8, 841. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Shin, Y.; Lee, S.; Kim, M.; Punj, V.; Lu, J.F.; Shin, H.; Kim, K.; Ulmer, T.S.; Koh, J.; et al. Regulation of Breast Cancer-Induced Osteoclastogenesis by MacroH2A1.2 Involving EZH2-Mediated H3K27me3. Cell Rep. 2018, 24, 224–237. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.-M.; Shin, Y.; Lee, S.; Kim, M.Y.; Punj, V.; Shin, H.-I.; Kim, K.; Koh, J.-M.; Jeong, D.; An, W. MacroH2A1.2 Inhibits Prostate Cancer-Induced Osteoclastogenesis through Cooperation with HP1α and H1.2. Oncogene 2018, 37, 5749–5765. [Google Scholar] [CrossRef] [PubMed]
- Mohammed Ismail, W.; Mazzone, A.; Ghiraldini, F.G.; Kaur, J.; Bains, M.; Munankarmy, A.; Bagwell, M.S.; Safgren, S.L.; Moore-Weiss, J.; Buciuc, M.; et al. MacroH2A Histone Variants Modulate Enhancer Activity to Repress Oncogenic Programs and Cellular Reprogramming. Commun. Biol. 2023, 6, 215. [Google Scholar] [CrossRef] [PubMed]
- Hu, W.-H.; Miyai, K.; Sporn, J.C.; Luo, L.; Wang, J.Y.J.; Cosman, B.; Ramamoorthy, S. Loss of Histone Variant macroH2A2 Expression Associates with Progression of Anal Neoplasm. J. Clin. Pathol. 2016, 69, 627–631. [Google Scholar] [CrossRef]
- Sun, D.; Singh, D.K.; Carcamo, S.; Filipescu, D.; Khalil, B.; Huang, X.; Miles, B.A.; Westra, W.; Sproll, K.C.; Hasson, D.; et al. MacroH2A Impedes Metastatic Growth by Enforcing a Discrete Dormancy Program in Disseminated Cancer Cells. Sci. Adv. 2022, 8, eabo0876. [Google Scholar] [CrossRef]
- Lavigne, A.-C.; Castells, M.; Mermet, J.; Kocanova, S.; Dalvai, M.; Bystricky, K. Increased macroH2A1.1 Expression Correlates with Poor Survival of Triple-Negative Breast Cancer Patients. PLoS ONE 2014, 9, e98930. [Google Scholar] [CrossRef]
- Broggi, G.; Filetti, V.; Ieni, A.; Rapisarda, V.; Ledda, C.; Vitale, E.; Varricchio, S.; Russo, D.; Lombardo, C.; Tuccari, G.; et al. MacroH2A1 Immunoexpression in Breast Cancer. Front. Oncol. 2020, 10, 1519. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.; Ding, Y.; Zeng, L. The diagnostic and prognostic value of H2AFY in hepatocellular carcinoma. BMC Cancer 2021, 21, 418. [Google Scholar] [CrossRef] [PubMed]
- Rappa, F.; Greco, A.; Podrini, C.; Cappello, F.; Foti, M.; Bourgoin, L.; Peyrou, M.; Marino, A.; Scibetta, N.; Williams, R.; et al. Immunopositivity for Histone MacroH2A1 Isoforms Marks Steatosis-Associated Hepatocellular Carcinoma. PLoS ONE 2013, 8, e54458. [Google Scholar] [CrossRef]
- Jiang, X.; Soboleva, T.A.; Tremethick, D.J. Short Histone H2A Variants: Small in Stature but Not in Function. Cells 2020, 9, 867. [Google Scholar] [CrossRef]
- Osakabe, A.; Molaro, A. Histone Renegades: Unusual H2A Histone Variants in Plants and Animals. Semin. Cell Dev. Biol. 2023, 135, 35–42. [Google Scholar] [CrossRef]
- Molaro, A.; Young, J.M.; Malik, H.S. Evolutionary origins and diversification of testis-specific short histone H2A variants in mammals. Genome Res. 2018, 28, 460–473. [Google Scholar] [CrossRef]
- Bao, Y.; Konesky, K.; Park, Y.-J.; Rosu, S.; Dyer, P.N.; Rangasamy, D.; Tremethick, D.J.; Laybourn, P.J.; Luger, K. Nucleosomes containing the histone variant H2A.Bbd organize only 118 base pairs of DNA. EMBO J. 2004, 23, 3314–3324. [Google Scholar] [CrossRef]
- Chadwick, B.P.; Willard, H.F. A Novel Chromatin Protein, Distantly Related to Histone H2a, Is Largely Excluded from the Inactive X Chromosome. J. Cell Biol. 2001, 152, 375–384. [Google Scholar] [CrossRef]
- Peng, J.; Yuan, C.; Hua, X.; Zhang, Z. Molecular Mechanism of Histone Variant H2A.B on Stability and Assembly of Nucleosome and Chromatin Structures. Epigenetics Chromatin 2020, 13, 28. [Google Scholar] [CrossRef]
- González-Romero, R.; Méndez, J.; Ausió, J.; Eirín-López, J.M. Quickly Evolving Histones, Nucleosome Stability and Chromatin Folding: All about Histone H2A.Bbd. Gene 2008, 413, 1–7. [Google Scholar] [CrossRef]
- Sansoni, V.; Casas-Delucchi, C.S.; Rajan, M.; Schmidt, A.; Bönisch, C.; Thomae, A.W.; Staege, M.S.; Hake, S.B.; Cardoso, M.C.; Imhof, A. The histone variant H2A.Bbd is enriched at sites of DNA synthesis. Nucleic Acids Res. 2014, 42, 6405–6420. [Google Scholar] [CrossRef]
- Tolstorukov, M.Y.; Goldman, J.A.; Gilbert, C.; Ogryzko, V.; Kingston, R.E.; Park, P.J. Histone variant H2A.Bbd is associated with active transcription and mRNA processing in human cells. Mol. Cell 2012, 47, 596–607. [Google Scholar] [CrossRef]
- Ishibashi, T.; Li, A.; Eirín-López, J.M.; Zhao, M.; Missiaen, K.; Abbott, D.W.; Meistrich, M.; Hendzel, M.J.; Ausió, J. H2A.Bbd: An X-Chromosome-Encoded Histone Involved in Mammalian Spermiogenesis. Nucleic Acids Res. 2010, 38, 1780–1789. [Google Scholar] [CrossRef]
- Hirano, R.; Arimura, Y.; Kujirai, T.; Shibata, M.; Okuda, A.; Morishima, K.; Inoue, R.; Sugiyama, M.; Kurumizaka, H. Histone variant H2A.B-H2B dimers are spontaneously exchanged with canonical H2A-H2B in the nucleosome. Commun. Biol. 2021, 4, 191. [Google Scholar] [CrossRef] [PubMed]
- Okuwaki, M.; Kato, K.; Shimahara, H.; Tate, S.I.; Nagata, K. Assembly and disassembly of nucleosome core particles containing histone variants by human nucleosome assembly protein I. Mol. Cell. Biol. 2005, 25, 10639–10651. [Google Scholar] [CrossRef]
- Molaro, A.; Wood, A.J.; Janssens, D.; Kindelay, S.M.; Eickbush, M.T.; Wu, S.; Singh, P.; Muller, C.H.; Henikoff, S.; Malik, H.S. Biparental Contributions of the H2A.B Histone Variant Control Embryonic Development in Mice. PLoS Biol. 2020, 18, e3001001. [Google Scholar] [CrossRef]
- Wu, B.J.; Dong, F.L.; Ma, X.S.; Wang, X.G.; Lin, F.; Liu, H.L. Localization and Expression of Histone H2A Variants during Mouse Oogenesis and Preimplantation Embryo Development. Genet. Mol. Res. GMR 2014, 13, 5929–5939. [Google Scholar] [CrossRef]
- Nacev, B.A.; Feng, L.; Bagert, J.D.; Lemiesz, A.E.; Gao, J.; Soshnev, A.A.; Kundra, R.; Schultz, N.; Muir, T.W.; Allis, C.D. The Expanding Landscape of ‘Oncohistone’ Mutations in Human Cancers. Nature 2019, 567, 473–478. [Google Scholar] [CrossRef] [PubMed]
- Jiang, X.; Wen, J.; Paver, E.; Wu, Y.H.; Sun, G.; Bullman, A.; Dahlstrom, J.E.; Tremethick, D.J.; Soboleva, T.A. H2A.B is a cancer/testis factor involved in the activation of ribosome biogenesis in Hodgkin lymphoma. EMBO Rep. 2021, 22, e52462. [Google Scholar] [CrossRef] [PubMed]
- Chew, G.-L.; Bleakley, M.; Bradley, R.K.; Malik, H.S.; Henikoff, S.; Molaro, A.; Sarthy, J. Short H2A Histone Variants Are Expressed in Cancer. Nat. Commun. 2021, 12, 490. [Google Scholar] [CrossRef]
- Shaytan, A.K.; Landsman, D.; Panchenko, A.R. Nucleosome Adaptability Conferred by Sequence and Structural Variations in Histone H2A–H2B Dimers. Curr. Opin. Struct. Biol. 2015, 32, 48–57. [Google Scholar] [CrossRef] [PubMed]
- Govin, J.; Escoffier, E.; Rousseaux, S.; Kuhn, L.; Ferro, M.; Thévenon, J.; Catena, R.; Davidson, I.; Garin, J.; Khochbin, S.; et al. Pericentric Heterochromatin Reprogramming by New Histone Variants during Mouse Spermiogenesis. J. Cell Biol. 2007, 176, 283–294. [Google Scholar] [CrossRef]
- Syed, S.H.; Boulard, M.; Shukla, M.S.; Gautier, T.; Travers, A.; Bednar, J.; Faivre-Moskalenko, C.; Dimitrov, S.; Angelov, D. The incorporation of the novel histone variant H2AL2 confers unusual structural and functional properties of the nucleosome. Nucleic Acids Res. 2009, 37, 4684–4695. [Google Scholar] [CrossRef]
- Hoghoughi, N.; Barral, S.; Curtet, S.; Chuffart, F.; Charbonnier, G.; Puthier, D.; Buchou, T.; Rousseaux, S.; Khochbin, S. RNA-Guided Genomic Localization of H2A.L.2 Histone Variant. Cells 2020, 9, 474. [Google Scholar] [CrossRef] [PubMed]
- Barral, S.; Morozumi, Y.; Tanaka, H.; Montellier, E.; Govin, J.; de Dieuleveult, M.; Charbonnier, G.; Couté, Y.; Puthier, D.; Buchou, T.; et al. Histone Variant H2A.L.2 Guides Transition Protein-Dependent Protamine Assembly in Male Germ Cells. Mol. Cell 2017, 66, 89–101.e8. [Google Scholar] [CrossRef] [PubMed]
- Oliva, R.; Dixon, G.H. Vertebrate Protamine Genes and the Histone-to-Protamine Replacement Reaction. In Progress in Nucleic Acid Research and Molecular Biology; Cohn, W.E., Moldave, K., Eds.; Academic Press: Cambridge, MA, USA, 1991; Volume 40, pp. 25–94. [Google Scholar] [CrossRef]
- H2AJ H2A.J Histone [Homo Sapiens (Human)]-Gene-NCBI. Available online: https://www.ncbi.nlm.nih.gov/gene/55766 (accessed on 18 November 2023).
- Redon, C.E.; Schmal, Z.; Tewary, G.; Mangelinck, A.; Courbeyrette, R.; Thuret, J.-Y.; Aladjem, M.I.; Bonner, W.M.; Rübe, C.E.; Mann, C. Histone Variant H2A.J Is Enriched in Luminal Epithelial Gland Cells. Genes 2021, 12, 1665. [Google Scholar] [CrossRef]
- Tanaka, H.; Sato, S.; Koyama, M.; Kujirai, T.; Kurumizaka, H. Biochemical and Structural Analyses of the Nucleosome Containing Human Histone H2A.J. J. Biochem. 2020, 167, 419–427. [Google Scholar] [CrossRef]
- Isermann, A.; Mann, C.; Rübe, C.E. Histone Variant H2A.J Marks Persistent DNA Damage and Triggers the Secretory Phenotype in Radiation-Induced Senescence. Int. J. Mol. Sci. 2020, 21, 9130. [Google Scholar] [CrossRef]
- Contrepois, K.; Coudereau, C.; Benayoun, B.A.; Schuler, N.; Roux, P.F.; Bischof, O.; Courbeyrette, R.; Carvalho, C.; Thuret, J.-Y.; Ma, Z.; et al. Histone variant H2A.J accumulates in senescent cells and promotes inflammatory gene expression. Nat. Commun. 2017, 8, 14995. [Google Scholar] [CrossRef]
- Ren, J.-L.; Pan, J.-S.; Lu, Y.-P.; Sun, P.; Han, J. Inflammatory Signaling and Cellular Senescence. Cell. Signal. 2009, 21, 378–383. [Google Scholar] [CrossRef]
- Yao, J.; Weremowicz, S.; Feng, B.; Gentleman, R.C.; Marks, J.R.; Gelman, R.; Brennan, C.; Polyak, K. Combined cDNA Array Comparative Genomic Hybridization and Serial Analysis of Gene Expression Analysis of Breast Tumor Progression. Cancer Res. 2006, 66, 4065–4078. [Google Scholar] [CrossRef]
- De Wit, N.J.W.; Rijntjes, J.; Diepstra, J.H.S.; Van Kuppevelt, T.H.; Weidle, U.H.; Ruiter, D.J.; Van Muijen, G.N.P. Analysis of differential gene expression in human melanocytic tumour lesions by custom made oligonucleotide arrays. Br. J. Cancer 2005, 92, 2249–2261. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Ghareeb, W.M.; Lu, X.; Huang, Y.; Huang, S.; Chi, P. Coexpression Network Analysis Linked H2AFJ to Chemoradiation Resistance in Colorectal Cancer. J. Cell. Biochem. 2019, 120, 10351–10362. [Google Scholar] [CrossRef] [PubMed]
- Segerman, A.; Niklasson, M.; Haglund, C.; Bergström, T.; Jarvius, M.; Xie, Y.; Westermark, A.; Sönmez, D.; Hermansson, A.; Kastemar, M.; et al. Clonal Variation in Drug and Radiation Response among Glioma-Initiating Cells Is Linked to Proneural-Mesenchymal Transition. Cell Rep. 2016, 17, 2994–3009. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.-H.; Lin, C.-H.; Lin, H.-Y.; Kuei, C.-H.; Zheng, J.-Q.; Wang, Y.-H.; Lu, L.-S.; Lee, F.-P.; Hu, C.-J.; Wu, D.; et al. Histone 2A Family Member J Drives Mesenchymal Transition and Temozolomide Resistance in Glioblastoma Multiforme. Cancers 2020, 12, 98. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Qiu, W.; Shen, X.; Sun, G. Bioinformatics Analysis Revealed Hub Genes and Pathways Involved in Sorafenib Resistance in Hepatocellular Carcinoma. Math. Biosci. Eng. 2019, 16, 6319–6334. [Google Scholar] [CrossRef]
- Yu, Y.; Kovacevic, Z.; Richardson, D.R. Tuning Cell Cycle Regulation with an Iron Key. Cell Cycle 2007, 6, 1982–1994. [Google Scholar] [CrossRef] [PubMed]
- Kohno, K.; Chiba, M.; Murata, S.; Pak, S.; Nagai, K.; Yamamoto, M.; Yanagisawa, K.; Kobayashi, A.; Yasue, H.; Ohkohchi, N. Identification of Natural Antisense Transcripts Involved in Human Colorectal Cancer Development. Int. J. Oncol. 2010, 37, 1425–1432. [Google Scholar] [CrossRef]
- Dong, H.; Guo, H.; Xie, L.; Wang, G.; Zhong, X.; Khoury, T.; Tan, D.; Zhang, H. The Metastasis-Associated Gene MTA3, a Component of the Mi-2/NuRD Transcriptional Repression Complex, Predicts Prognosis of Gastroesophageal Junction Adenocarcinoma. PLoS ONE 2013, 8, e62986. [Google Scholar] [CrossRef]
- WANG, X.; LIN, Y. Tumor Necrosis Factor and Cancer, Buddies or Foes? Acta Pharmacol. Sin. 2008, 29, 1275–1288. [Google Scholar] [CrossRef]
- Rübe, C.E.; Bäumert, C.; Schuler, N.; Isermann, A.; Schmal, Z.; Glanemann, M.; Mann, C.; Scherthan, H. Human Skin Aging Is Associated with Increased Expression of the Histone Variant H2A.J in the Epidermis. npj Aging Mech. Dis. 2021, 7, 7. [Google Scholar] [CrossRef]
- Padavattan, S.; Shinagawa, T.; Hasegawa, K.; Kumasaka, T.; Ishii, S.; Kumarevel, T. Structural and Functional Analyses of Nucleosome Complexes with Mouse Histone Variants TH2a and TH2b, Involved in Reprogramming. Biochem. Biophys. Res. Commun. 2015, 464, 929–935. [Google Scholar] [CrossRef]
- Huynh, L.M.; Shinagawa, T.; Ishii, S. Two Histone Variants TH2A and TH2B Enhance Human Induced Pluripotent Stem Cell Generation. Stem Cells Dev. 2016, 25, 251–258. [Google Scholar] [CrossRef] [PubMed]
- Shinagawa, T.; Takagi, T.; Tsukamoto, D.; Tomaru, C.; Huynh, L.M.; Sivaraman, P.; Kumarevel, T.; Inoue, K.; Nakato, R.; Katou, Y.; et al. Histone Variants Enriched in Oocytes Enhance Reprogramming to Induced Pluripotent Stem Cells. Cell Stem Cell 2014, 14, 217–227. [Google Scholar] [CrossRef]
- Hada, M.; Masuda, K.; Yamaguchi, K.; Shirahige, K.; Okada, Y. Identification of a Variant-Specific Phosphorylation of TH2A during Spermiogenesis. Sci. Rep. 2017, 7, 46228. [Google Scholar] [CrossRef] [PubMed]
- Hada, M.; Kim, J.; Inoue, E.; Fukuda, Y.; Tanaka, H.; Watanabe, Y.; Okada, Y. TH2A Is Phosphorylated at Meiotic Centromere by Haspin. Chromosoma 2017, 126, 769–780. [Google Scholar] [CrossRef]
- West, M.H.P.; Bonner, W.M. Structural Comparisons of Mouse Histones 2A.X and 2A.Z with 2A.1 and 2A.2. Comp. Biochem. Physiol. Part B Comp. Biochem. 1983, 76, 455–464. [Google Scholar] [CrossRef] [PubMed]
- Khare, S.P.; Sharma, A.; Deodhar, K.K.; Gupta, S. Overexpression of Histone Variant H2A.1 and Cellular Transformation Are Related in N-Nitrosodiethylamine-Induced Sequential Hepatocarcinogenesis. Exp. Biol. Med. 2011, 236, 30–35. [Google Scholar] [CrossRef]
- Rogakou, E.P.; Sekeri–Pataryas, K.E. Histone Variants of H2A and H3 Families Are Regulated during in Vitro Aging in the Same Manner as during Differentiation. Exp. Gerontol. 1999, 34, 741–754. [Google Scholar] [CrossRef]
- Piña, B.; Suau, P. Changes in Histones H2A and H3 Variant Composition in Differentiating and Mature Rat Brain Cortical Neurons. Dev. Biol. 1987, 123, 51–58. [Google Scholar] [CrossRef]
- Piña, B.; Suau, P. Core Histone Variants and Ubiquitinated Histones 2A and 2B of Rat Cerebral Cortex Neurons. Biochem. Biophys. Res. Commun. 1985, 133, 505–510. [Google Scholar] [CrossRef] [PubMed]
- Tyagi, M.; Khade, B.; Khan, S.A.; Ingle, A.; Gupta, S. Expression of Histone Variant, H2A.1 Is Associated with the Undifferentiated State of Hepatocyte. Exp. Biol. Med. 2014, 239, 1335–1339. [Google Scholar] [CrossRef] [PubMed]
- Jackson, V.; Chalkley, R. Histone Synthesis and Deposition in the G1 and S Phases of Hepatoma Tissue Culture Cells. Biochemistry 1985, 24, 6921–6930. [Google Scholar] [CrossRef] [PubMed]
- Tyagi, M.; Reddy, D.; Gupta, S. Genomic Characterization and Dynamic Methylation of Promoter Facilitates Transcriptional Regulation of H2A Variants, H2A.1 and H2A.2 in Various Pathophysiological States of Hepatocyte. Int. J. Biochem. Cell Biol. 2017, 85, 15–24. [Google Scholar] [CrossRef] [PubMed]
- Naldi, M.; Andrisano, V.; Fiori, J.; Calonghi, N.; Pagnotta, E.; Parolin, C.; Pieraccini, G.; Masotti, L. Histone Proteins Determined in a Human Colon Cancer by High-Performance Liquid Chromatography and Mass Spectrometry. J. Chromatogr. A 2006, 1129, 73–81. [Google Scholar] [CrossRef] [PubMed]
- Ehrlich, M. DNA Hypomethylation in Cancer Cells. Epigenomics 2009, 1, 239–259. [Google Scholar] [CrossRef]
- Counts, J.L.; Goodman, J.I. Hypomethylation of DNA: A Possible Epigenetic Mechanism Involved in Tumor Promotion. Prog. Clin. Biol. Res. 1995, 391, 81–101. [Google Scholar] [CrossRef]
- Danielsson, F.; Skogs, M.; Huss, M.; Rexhepaj, E.; O’Hurley, G.; Klevebring, D.; Pontén, F.; Gad, A.K.B.; Uhlén, M.; Lundberg, E. Majority of Differentially Expressed Genes Are Down-Regulated during Malignant Transformation in a Four-Stage Model. Proc. Natl. Acad. Sci. USA 2013, 110, 6853–6858. [Google Scholar] [CrossRef]
Core Histone (Canonical Histone) | Histone Variants |
---|---|
H2A | H2A.X H2A.Z, H2A.Z.1, H2A.Z.2, H2A.Z.2.2 macroH2A: macroH2A1, macroH2A1.1, macroH2A.1.2, macroH2A2 shortH2A (sH2A): H2A.R, H2A.Bbd/H2A.B, H2A.L/H2A.L.1, H2A.P, H2A.Q H2A.L.2, H2A.L.3 H2A.22/H2A.J H2A.1, H2A.2 |
Variants’ Name | Primary Functions | Other Functions | Role and Alterations in Cancers |
---|---|---|---|
H2A.X | DNA damage repair | 1. Regulate and define mESCs proliferation 2. Immune response 3. Growth 4. Reproduction 5. Establishment of mESCs totipotency 6. Regulate fate of hPSCs and progenitor cells | Alterations’ consequences P53−/− heterozygous loss: genome instability P53−/− homozygous loss: early cancer formation, impairment of DNA repair, growth retardation, immune deficient and infertility Mutations observed in sarcomas, brain tumor, neck squamous cell carcinoma, B and T cell lymphomas Alterations in phosphorylation site of H2A.X (Tyr39) Role in cancer: Tumor suppressor Regulate cancer progression and metastasis (breast, ovarian cancers, HCC, and CRC) |
H2A.Z | Regulator of gene transcription | 1. DNA replication 2. DNA damage repair 3. Cell lineage differentiation 4. Chromosome aggregation 5. Neuronal development, cognitive function, memory processing | Alterations’ consequences H2A.Z+/− heterozygous loss: embryonic lethality in high eukaryotes, cell cycle arrest Role in cancers: Oncogenic variants Regulate cell proliferation and metastasis (ER positive breast cancer, CRC, liver, lung, prostate, metastatic melanoma, PDAC and bladder) |
H2A.Z.1 | Transcription initiation and elongation | Mouse early embryonic development | Alterations’ consequences H2A.Z.1 KO: mouse early embryonic lethality, cell cycle arrest Role in cancers: Oncogenic variants Regulate tumorigenesis and metastasis (HCC and ICC) |
H2A.Z.2 | Gene regulation | Regulate cell proliferation and apoptosis | Alterations’ consequences H2A.Z.2 KO: Reduced cell proliferation but increase apoptosis, cell cycle arrest Role in cancers: Oncogenic variants Regulate cell proliferation and metastasis (aggressive melanoma, PDAC) |
H2A.Z.2.2 | Destabilizing nucleosome | Unknown | Alterations’ consequences H2A.Z.2.2 KO: Cell cycle arrest Role in cancers: Oncogenic variants Regulate cell proliferation and metastasis (PDAC) |
MacroH2A1 | Maintainer of heterochromatin architecture | 1. Stabilizing XCI 2. Regulate memory processing and formation | Role in cancers: Tumor suppressor Regulate cell proliferation, migration, and metastasis (melanoma, breast, liver, lung, bladder, cervical, ovarian cancers, and CRC) |
MacroH2A2 | Maintainer of heterochromatin architecture and chromatin organization | 1. Stabilizing XCI 2. Reprogramming barrier in fully differentiated cells | Role in cancers: Tumor suppressor Regulate cell proliferation, metastasis, and gene expressions |
MacroH2A1.1 | Maintainer of heterochromatin architecture | 1. NAD+ metabolism 2. ADP-ribose signaling 3. DNA damage repair (NHEJ) | Role in cancers: Tumor suppressor Regulate cancer metastasis and cell proliferation |
MacroH2A1.2 | Maintainer of heterochromatin architecture | 1. Inhibit PARP-1 enzymatic activity 2. Mediating homologous repair (HR) | Role in cancers: Tumor suppressor Regulate cell proliferation, inhibit cancers induced osteoclastogenesis |
H2A.R | Spermatogenesis | Unknown | Unknown |
H2A.Bbd | Transcriptional regulation | Controlling preimplantation embryonic development | Role in cancers: Oncogenic variants Cells with shorter S phase, increased sensitivity to DNA damage Regulate gene transcription regulation and cell proliferation (HL, BLCA, UCEC, cervical squamous cell carcinomas and endocervical carcinoma) |
H2A.P | Unknown | Unknown | Role in cancers: Oncogenic variants (Unknown functions) |
H2A.Q | Unknown | Unknown | Role in cancers: Oncogenic variants (Unknown functions) |
H2A.L | Unknown | Unknown | Role in cancers: Oncogenic variants (Unknown functions) |
H2A.L.2 | Spermatogenesis, male mouse fertility | Unknown | Alterations’ consequences H2A.L.2 KO: complete mouse fertility Role in cancers: Oncogenic variants (Unknown functions) |
H2A.L.3 | Unknown | Unknown | Unknown |
H2A.22 (H2A.J) | Stimulate inflammatory signaling cascade during DNA damage | Tissues or organs specific functions regardless of aging | Role in cancers: Oncogenic variants In luminal type B breast cancer, KIRC, aggressive melanoma, brain Role in cancers: Tumor suppressor In prostate, bladder cancers and all subtypes of breast cancer excluding luminal A Regulate gene expressions (ER positive breast cancer and prostate cancer) Mediate chemoradiotherapy resistance through signaling pathways (CRC, HCC, and glioblastoma) |
H2A.1 | Spermatogenesis, iPSCs generation and early embryogenesis | Unknown | Alterations’ consequences H2A.1 KD: perturbation in genome reprogramming Role in cancers: Oncogenic variants Regulate cell proliferation (HCC, CRC) |
H2A.2 | Mice neurons differentiation, embryogenesis, and aging | Unknown | Role in cancers Hyper-methylated in HCC (Unknown functions) Varying degree of PTMs |
Variants’ Name | Location of Tissues | Chaperone and Remodeler | Clinicopathological Importance/Prognostic Value/Biomarker in Cancer Types |
---|---|---|---|
H2A.X | All tissues | FACT | High γ-H2A.X: 1. Biomarker for defect in DDR 2. Identified in cervical cancer, CRC, melanoma and OC 3. Access chemotherapy or radiotherapy effectiveness 4. Evaluate patient’s response to chemo-drug treatment and radiosensitivity 5. Predict high risk or early detection of cancers |
H2A.Z | All tissues (pericentric heterochromatin in undifferentiated cells, TSS, centromere and enhancer regions) | ANP32E SRCAP INO80 | High H2A.Z level: 1. Identified in breast cancer, CRC, liver, lung, prostate, bladder cancer, PDAC and metastatic melanoma 2. Poorer survival prediction 3. Therapeutic target for chemotherapy (cisplatin) 4. As biomarker for early PDAC and CRC detection |
H2A.Z.1 | All tissues (regulatory regions and heterochromatin) | ANP32E SRCAP INO80 P400 | High H2A.Z.1 level: 1. Identified in breast tumor, PDAC and HCC 2. Indicator for lymph node metastasis and poorer survival prediction 3. Indicator for predicting which treatments patients respond the best |
H2A.Z.2 | All tissues (regulatory regions and heterochromatin) | P400 SRCAP | High H2A.Z.2 level: 1. Identified in PDAC 2. Not known for any prognostic and biomarker value |
H2A.Z.2.2 | All tissues (but predominantly in human brain) | TIP60 P400 SRCAP | High H2A.Z.2.2 level: 1. Identified in PDAC only 2. Not known for any prognostic and biomarker value |
MacroH2A1 | All tissues (Constitutive and facultative heterochromatin) | E3 ligase Cullin3SPOP | High macroH2A1 level: 1. Indicator of worst prognosis in different breast cancer types 2. Diagnostic indicator for HCC and lung cancer recurrence 3. Indicator for poor outcome prediction in HCC |
MacroH2A2 | All tissues (Constitutive and facultative heterochromatin) | Unknown | High macroH2A2 level: 1. Indicator of worst prognosis in different breast cancer types 2. Indicator of recurrence free survival in anal neoplasm Low macroH2A2 level: 1. Indicator of high-grade and faster recurrence of anal neoplasm |
MacroH2A1.1 | All tissues (Constitutive and facultative heterochromatin) | Unknown | High macroH2A1.1 level: 1. Biomarker for TNBC 2. Indicator of poorer survival prediction of TNBC 3. Biomarker for senescent cells in tumor Low macroH2A1.1 level: 1. Diagnostic indicator for lung cancer recurrence |
MacroH2A1.2 | All tissues (Constitutive and facultative heterochromatin) | ATRX | High macroH2A1.2 level: 1. Biomarker for HER2 positive breast cancer |
H2A.R | Testis-specific | Unknown | Unknown |
H2A.Bbd | All tissues (euchromatin and testis) | NAP1 | High H2A.Bbd level: 1. Biomarker for HL, BLCA, UCEC, DLBCLs, etc. (required further research) |
H2A.P | Originated on portion of X chromosome, testis-specific | Unknown | Unknown |
H2A.Q | In testis of dogs and pigs only | Unknown | Unknown |
H2A.L | Lost in human, conserved in mouse, testis-specific | Unknown | Unknown |
H2A.L.2 | Lost in human, testis-specific | Unknown | Unknown |
H2A.L.3 | Lost in human, testis-specific | Unknown | Unknown |
H2A.22 (H2A.J) | In senescent cells’ chromatin, aging mice in tissue-specific manner and human skin | Unknown | High H2A.J level: 1. Poor prognostic marker in glioblastoma, KIRC, brain cancer and aggressive melanoma 2. Indicator for increasing survival rate in bladder, prostate and all subtypes of breast cancer 3. Biomarkers for senescent stem and aging skin cells 4. Indicator for cancer that exhibit chemotherapy resistance |
H2A.1 | X chromosome, autosomes, testis, oocytes and zygote | NPM2 | High H2A.1 level: 1. Biomarker for HCC and colon cancer detection (required further research) |
H2A.2 | Unknown | Unknown | High H2A.2 level: 1. Biomarker for colon cancer detection (required further research) |
Variants’ Name | Altered Expression Levels Function in Cancer Types | |
---|---|---|
Low Expression Levels | High Expression Levels | |
H2A.X | 1. Upregulate key EMT-related transcription factors, Slug and ZEB1 → Induction of EMT and invasiveness 2. Hypoxic dependent H2A.X reduction will boost angiogenic and EGFR/HIF-1α/VEGF signaling pathway | 1. Upregulation of PI3K/Akt/mTOR pathway → promote cell proliferation, escape apoptosis protein synthesis and extracellular matrix remodeling 2. Elevated Tyr39 phosphorylation of H2A.X → promote cell proliferation, metastasis and poorer cell differentiation |
H2A.Z | / | 1. Promote cell proliferation in ER positive breast cancer and prostate cancer; promote lymph node metastasis 2. ER positive breast cancer: upregulate ERα and c-Myc to enhance cell proliferation through increasing transcription of cell cycle genes |
H2A.Z.1 | 1. Promote EMT through TGF-β signaling pathway | 1. Suppressing cell apoptosis and negative cell cycle regulators 2. Upregulate cell cycle genes 3. Promote cell cycle progression in PDAC |
H2A.Z.2 | / | 1. Upregulate E2F target genes’ transcription activities → promote melanoma progression and metastasis 2. Hyper-acetylation of H2A.Z.2 → increase binding with BRD2 to promote cell proliferation 3. Promote cell cycle progression in PDAC |
H2A.Z.2.2 | / | / |
MacroH2A1 | 1. Promote cancer cell proliferation, migration and metastasis in melanoma | 1. Effectively inhibit EMT induction to prevent metastasis |
MacroH2A2 | 1. Promote cancer cell proliferation, migration and metastasis in melanoma | 1. Repress self-renewal genes expressions 2. Impede metastasis in DCCs by inhibiting cell cycle and oncogenic signaling programs |
MacroH2A1.1 | 1. Promote cancer cell proliferation, migration and metastasis in melanoma | 1. Effectively inhibit EMT induction and prevent further mesenchymal morphology of cancer cells |
MacroH2A1.2 | 1. Promote cancer cell proliferation, migration and metastasis in melanoma | 1. Inhibit breast cancer induced osteoclastogenesis by repressing LOX gene through raising H3K27me3 level for gene silencing 2. Inhibit prostate cancer induced osteoclastogenesis by direct interactions with HP1α and H1.2, inactivate LTβ gene |
H2A.R | / | / |
H2A.Bbd | / | 1. Cells with shorter S phase and promote cell proliferation in HL 2. Upregulate rDNA expression to promote cell proliferation |
H2A.P | / | / |
H2A.Q | / | / |
H2A.L | / | / |
H2A.L.2 | / | / |
H2A.L.3 | / | / |
H2A.22 (H2A.J) | / | 1. Modulate estrogen and metastasis-regulated genes in ER-positive breast and prostate cancers 2. Causing chemoradiotherapy resistance in CRC through regulating MAPK7, HIV Nef pathway and inflammatory pathways 3. Causing chemotherapy resistance in HCC through accelerating PI3K/Akt and JAK/STAT; TNF-α/NF-κB, EMT and IL-6/STAT3 signaling pathway to control cell proliferation, migration and anti-apoptosis response 4. Causing radiotherapy and drug resistance in glioblastoma through activating TNF-α/NF-κB pathways, contacting with IL-6/STAT3 and HDAC3 |
H2A.1 | / | 1. Enhance gene transcription in HCC to promote cell proliferation 2. Activation of malignancy related genes 3. Hepatocytes reprogramming → further promote HCC development |
H2A.2 | / | 1. Expressed in preneoplastic stages |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lai, P.M.; Chan, K.M. Roles of Histone H2A Variants in Cancer Development, Prognosis, and Treatment. Int. J. Mol. Sci. 2024, 25, 3144. https://doi.org/10.3390/ijms25063144
Lai PM, Chan KM. Roles of Histone H2A Variants in Cancer Development, Prognosis, and Treatment. International Journal of Molecular Sciences. 2024; 25(6):3144. https://doi.org/10.3390/ijms25063144
Chicago/Turabian StyleLai, Po Man, and Kui Ming Chan. 2024. "Roles of Histone H2A Variants in Cancer Development, Prognosis, and Treatment" International Journal of Molecular Sciences 25, no. 6: 3144. https://doi.org/10.3390/ijms25063144
APA StyleLai, P. M., & Chan, K. M. (2024). Roles of Histone H2A Variants in Cancer Development, Prognosis, and Treatment. International Journal of Molecular Sciences, 25(6), 3144. https://doi.org/10.3390/ijms25063144