Negative Regulation of Autophagy during Macrophage Infection by Mycobacterium bovis BCG via Protein Kinase C Activation
Abstract
:1. Introduction
2. Results and Discussion
2.1. M. bovis BCG Infection Induces the Phosphorylation of Different PKC Substrates
2.2. Identification of PKC-Phosphorylated Proteins
2.3. Phosphoproteomic Analysis
2.4. String Analysis
2.5. PKC Substrates Involved in the Signaling Pathway Regulating Endocytosis
2.6. PKC Substrates Involved in the Signaling Pathway Regulating Autophagy: A Possible Alternative Pathway Induced by Mycobacteria to Promote Macrophage Infection
- ULK Complex: Comprising ULK, ATG13, FIP200, and ATG101 proteins, this complex receives signals from mTOR and AMP-activated protein kinase (AMPK) and is instrumental in autophagosome initiation;
- Class III PI3K Complex: Consisting of Vps34-Beclin1 and Atg14 proteins, this complex marks membranes for nucleation and autophagosome generation;
- Ubiquitin-Like Protein Conjugation Systems: Comprising the Atg12 protein and the LC3 protein, these systems are involved in membrane formation and elongation;
2.6.1. Sin1 as a Key Factor in PKC Pathway Activation
2.6.2. Activation of Raf-1 in Response to M. bovis Infection
2.6.3. PKC-Dependent Tsc2 Inhibition Leading to mTORC1 Activation
2.6.4. Phosphorylation of Raptor by PKC and Its Potential Effect on Autophagy Regulation
2.6.5. Phosphorylation of Sequestosome-1/p62 by PKC and Its Potential Regulation of Autophagy
2.6.6. Dephosphorylation of MAP-1B and Its Possible Regulation of Autophagosome Trafficking
2.7. Concluding Remarks
3. Material and Methods
3.1. Antibodies and Reagents
3.2. Cell Line
3.3. Cellular Differentiation and Activation
3.4. Total Cell Extract Preparation, Electrophoresis, and Immunoblotting
3.5. Trypsin Digestion
3.6. Desalting and Phosphopeptides Enrichment with TiO2
3.7. LC-MS/MS Analysis
3.8. Protein Identification
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization. Global Tuberculosis Report 2020; World Health Organization: Geneva, Switzerland, 2020; ISBN 9789240013131. [Google Scholar]
- Jayachandran, R.; BoseDasgupta, S.; Pieters, J. Surviving the Macrophage: Tools and Tricks Employed by Mycobacterium Tuberculosis. Curr. Top. Microbiol. Immunol. 2013, 374, 189–209. [Google Scholar]
- Fratazzi, C.; Manjunath, N.; Arbeit, R.D.; Carini, C.; Gerken, T.A.; Ardman, B.; Remold-O’Donnell, E.; Remold, H.G. A Macrophage Invasion Mechanism for Mycobacteria Implicating the Extracellular Domain of CD43. J. Exp. Med. 2000, 192, 183–192. [Google Scholar] [CrossRef]
- Torres-Huerta, K.C.A.; Villaseñor, T.; Flores-Alcantar, A.; Parada, C.; Alemán-Navarro, E.; Espitia, C.; Pedraza-Alva, G.; Rosenstein, Y. Interaction of the CD43 Sialomucin with the Mycobacterium Tuberculosis Cpn60.2 Chaperonin Leads to Tumor Necrosis Factor Alpha Production. Infect. Immun. 2017, 85, 10–1128. [Google Scholar] [CrossRef] [PubMed]
- Das, S.; Banerjee, S.; Majumder, S.; Paul Chowdhury, B.; Goswami, A.; Halder, K.; Chakraborty, U.; Pal, N.K.; Majumdar, S. Immune Subversion by Mycobacterium Tuberculosis through CCR5 Mediated Signaling: Involvement of IL-10. PLoS ONE 2014, 9, e92477. [Google Scholar] [CrossRef]
- Liu, C.H.; Liu, H.; Ge, B. Innate Immunity in Tuberculosis: Host Defense vs Pathogen Evasion. Cell Mol. Immunol. 2017, 14, 963–975. [Google Scholar] [CrossRef] [PubMed]
- Bhatt, K.; Salgame, P. Host Innate Immune Response to Mycobacterium Tuberculosis. J. Clin. Immunol. 2007, 27, 347–362. [Google Scholar] [CrossRef] [PubMed]
- Villaseñor, T.; Madrid-Paulino, E.; Maldonado-Bravo, R.; Urbán-Aragón, A.; Pérez-Martínez, L.; Pedraza-Alva, G. Activation of the Wnt Pathway by Mycobacterium Tuberculosis: A Wnt-Wnt Situation. Front. Immunol. 2017, 8, 50. [Google Scholar] [CrossRef] [PubMed]
- Tan, S.L.; Parker, P.J. Emerging and Diverse Roles of Protein Kinase C in Immune Cell Signalling. Biochem. J. 2003, 376, 545–552. [Google Scholar] [CrossRef] [PubMed]
- Armstrong, J.A.; Hart, D. Response of Cultured Macrophages to Mycobacterium Tuberculosis, with Observations on Fusion of Lysosomes with Phagosomes. J. Exp. Med. 1971, 134, 713–740. [Google Scholar] [CrossRef]
- Van der Wel, N.; Hava, D.; Houben, D.; Fluitsma, D.; van Zon, M.; Pierson, J.; Brenner, M.; Peters, P.J.M. Tuberculosis and M. Leprae Translocate from the Phagolysosome to the Cytosol in Myeloid Cells. Cell 2007, 129, 1287–1298. [Google Scholar] [CrossRef]
- Jayachandran, R.; Sundaramurthy, V.; Combaluzier, B.; Mueller, P.; Korf, H.; Huygen, K.; Miyazaki, T.; Albrecht, I.; Massner, J.; Pieters, J. Survival of Mycobacteria in Macrophages Is Mediated by Coronin 1-Dependent Activation of Calcineurin. Cell 2007, 130, 37–50. [Google Scholar] [CrossRef] [PubMed]
- Lerena, M.C.; Vázquez, C.L.; Colombo, M.I. Bacterial Pathogens and the Autophagic Response. Cell. Microbiol. 2010, 12, 10–18. [Google Scholar] [CrossRef] [PubMed]
- Gutierrez, M.G.; Master, S.S.; Singh, S.B.; Taylor, G.A.; Colombo, M.I.; Deretic, V. Autophagy Is a Defense Mechanism Inhibiting BCG and Mycobacterium Tuberculosis Survival in Infected Macrophages. Cell 2004, 119, 753–766. [Google Scholar] [CrossRef] [PubMed]
- Van Der Vaart, M.; Korbee, C.J.; Lamers, G.E.M.; Tengeler, A.C.; Hosseini, R.; Haks, M.C.; Ottenhoff, T.H.M.; Spaink, H.P.; Meijer, A.H. The DNA Damage-Regulated Autophagy Modulator DRAM1 Links Mycobacterial Recognition via TLP-MYD88 to Authophagic Defense. Cell Host Microbe 2014, 15, 753–767. [Google Scholar] [CrossRef] [PubMed]
- Kumar, D.; Nath, L.; Kamal, M.A.; Varshney, A.; Jain, A.; Singh, S.; Rao, K.V.S. Genome-Wide Analysis of the Host Intracellular Network That Regulates Survival of Mycobacterium Tuberculosis. Cell 2010, 140, 731–743. [Google Scholar] [CrossRef]
- Shui, W.; Petzold, C.J.; Redding, A.; Liu, J.; Pitcher, A.; Sheu, L.; Hsieh, T.Y.; Keasling, J.D.; Bertozzi, C.R. Organelle Membrane Proteomics Reveals Differential Influence of Mycobacterial Lipoglycans on Macrophage Phagosome Maturation and Autophagosome Accumulation. J. Proteome Res. 2011, 10, 339–348. [Google Scholar] [CrossRef]
- Seto, S.; Tsujimura, K.; Koide, Y. Coronin-1a Inhibits Autophagosome Formation around Mycobacterium Tuberculosis-Containing Phagosomes and Assists Mycobacterial Survival in Macrophages. Cell. Microbiol. 2012, 14, 710–727. [Google Scholar] [CrossRef]
- Vergne, I.; Gilleron, M.; Nigou, J. Manipulation of the Endocytic Pathway and Phagocyte Functions by Mycobacterium Tuberculosis Lipoarabinomannan. Front. Cell. Infect. Microbiol. 2014, 4, 187. [Google Scholar] [CrossRef]
- Wong, V.K.W.; Zeng, W.; Chen, J.; Yao, X.J.; Leung, E.L.H.; Wang, Q.Q.; Chiu, P.; Ko, B.C.B.; Law, B.Y.K. Tetrandrine, an Activator of Autophagy, Induces Autophagic Cell Death via PKC-α Inhibition and MTOR-Dependent Mechanisms. Front. Pharmacol. 2017, 8, 351. [Google Scholar] [CrossRef]
- BoseDasgupta, S.; Pieters, J. Inflammatory Stimuli Reprogram Macrophage Phagocytosis to Macropinocytosis for the Rapid Elimination of Pathogens. PLoS Pathog. 2014, 10, e1003879. [Google Scholar] [CrossRef]
- Bononi, A.; Agnoletto, C.; De Marchi, E.; Marchi, S.; Patergnani, S.; Bonora, M.; Giorgi, C.; Missiroli, S.; Poletti, F.; Rimessi, A.; et al. Protein Kinases and Phosphatases in the Control of Cell Fate. Enzym. Res. 2011, 2011, 329098. [Google Scholar] [CrossRef] [PubMed]
- Villaseñor, T.; Madrid-Paulino, E.; Maldonado-Bravo, R.; Pérez-Martínez, L.; Pedraza-Alva, G. Mycobacterium Bovis BCG Promotes IL-10 Expression by Establishing a SYK/PKCα/β Positive Autoregulatory Loop That Sustains STAT3 Activation. Pathog. Dis. 2019, 77, ftz032. [Google Scholar] [CrossRef] [PubMed]
- Fabregat, A.; Sidiropoulos, K.; Viteri, G.; Forner, O.; Marin-Garcia, P.; Arnau, V.; D’Eustachio, P.; Stein, L.; Hermjakob, H. Reactome Pathway Analysis: A High-Performance in-Memory Approach. BMC Bioinform. 2017, 18, 142. [Google Scholar] [CrossRef] [PubMed]
- Pieters, J. Mycobacterium Tuberculosis and the Macrophage: Maintaining a Balance. Cell Host Microbe 2008, 3, 399–407. [Google Scholar] [CrossRef]
- Mukherjee, S.; Ghosh, R.N.; Maxfield, F.R. Endocytosis. Physiol. Rev. 1997, 77, 759–803. [Google Scholar] [CrossRef]
- Kourtzelis, I.; Hajishengallis, G.; Chavakis, T. Phagocytosis of Apoptotic Cells in Resolution of Inflammation. Front. Immunol. 2020, 11, 553. [Google Scholar] [CrossRef]
- Von Kriegsheim, A.; Pitt, A.; Grindlay, G.J.; Kolch, W.; Dhillon, A.S. Regulation of the Raf-MEK-ERK Pathway by Protein Phosphatase 5. Nat. Cell Biol. 2006, 8, 1011–1016. [Google Scholar] [CrossRef]
- Kavanaugh, W.M.; Pot, D.A.; Chin, S.M.; Deuter-Reinhard, M.; Jefferson, A.B.; Norris, F.A.; Masiarz, F.R.; Cousens, L.S.; Majerus, P.W.; Williams, L.T. Multiple Forms of an Inositol Polyphosphate 5-Phosphatase Form Signaling Complexes with Shc and Grb2. Curr. Biol. 1996, 6, 438–445. [Google Scholar] [CrossRef]
- Kisseleva, M.V.; Wilson, M.P.; Majerus, P.W. The Isolation and Characterization of a CDNA Encoding Phospholipid- Specific Inositol Polyphosphate 5-Phosphatase. J. Biol. Chem. 2000, 275, 20110–20116. [Google Scholar] [CrossRef]
- Zhao, X.; Claude, A.; Chun, J.; Shields, D.J.; Presley, J.F.; Melançon, P. GBF1, a Cis-Golgi and VTCs-Localized ARF-GEF, Is Implicated in ER-to-Golgi Protein Traffic. J. Cell Sci. 2006, 119, 3743–3753. [Google Scholar] [CrossRef]
- Baljuls, A.; Schmitz, W.; Mueller, T.; Zahedi, R.P.; Sickmann, A.; Hekman, M.; Rapp, U.R. Positive Regulation of A-RAF by Phosphorylation of Isoform-Specific Hinge Segment and Identification of Novel Phosphorylation Sites. J. Biol. Chem. 2008, 283, 27239–27254. [Google Scholar] [CrossRef] [PubMed]
- Hekman, M.; Wiese, S.; Metz, R.; Albert, S.; Troppmair, J.; Nickel, J.; Sendtner, M.; Rapp, U.R. Dynamic Changes in C-Raf Phosphorylation and 14-3-3 Protein Binding in Response to Growth Factor Stimulation: Differential Roles of 14-3-3 Protein Binding Sites. J. Biol. Chem. 2004, 279, 14074–14086. [Google Scholar] [CrossRef] [PubMed]
- Mineo, C.; Anderson, R.G.W.; White, M.A. Physical Association with Ras Enhances Activation of Membrane-Bound Raf (RafCAAX). J. Biol. Chem. 1997, 272, 10345–10348. [Google Scholar] [CrossRef] [PubMed]
- Praefcke, G.J.K.; McMahon, H.T. The Dynamin Superfamily: Universal Membrane Tubulation and Fission Molecules? Nat. Rev. Mol. Cell Biol. 2004, 5, 133–147. [Google Scholar] [CrossRef] [PubMed]
- Robinson, P.J. Differential Stimulation of Protein Kinase C Activity by Phorbol Ester or Calcium/Phosphatidylserine in Vitro and in Intact Synaptosomes. J. Biol. Chem. 1992, 267, 21637–21644. [Google Scholar] [CrossRef] [PubMed]
- Cousin, M.A.; Robinson, P.J. The Dephosphins: Dephosphorylation by Calcineurin Triggers Synaptic Vesicle Endocytosis. Trends Neurosci. 2001, 24, 659–665. [Google Scholar] [CrossRef]
- Davis, L.C.; Morgan, A.J.; Galione, A. NAADP -regulated Two-pore Channels Drive Phagocytosis through Endo-lysosomal Ca 2+ Nanodomains, Calcineurin and Dynamin. EMBO J. 2020, 39, e104058. [Google Scholar] [CrossRef]
- Gold, E.S.; Underhill, D.M.; Morrissette, N.S.; Guo, J.; McNiven, M.A.; Aderem, A. Dynamin 2 Is Required for Phagocytosis in Macrophages. J. Exp. Med. 1999, 190, 1849–1856. [Google Scholar] [CrossRef]
- Vashi, N.; Andrabi, S.B.A.; Ghanwat, S.; Suar, M.; Kumar, D. Ca2+ -Dependent Focal Exocytosis of Golgi-Derived Vesicles Helps Phagocytic Uptake in Macrophages. J. Biol. Chem. 2017, 292, 5144–5165. [Google Scholar] [CrossRef]
- Take, H.; Watanabe, S.; Takeda, K.; Yu, Z.X.; Iwata, N.; Kajigaya, S. Cloning and Characterization of a Novel Adaptor Protein, CIN85, That Interacts with c-Cbl. Biochem. Biophys. Res. Commun. 2000, 268, 321–328. [Google Scholar] [CrossRef]
- Marois, L.; Vaillancourt, M.; Paré, G.; Gagné, V.; Fernandes, M.J.G.; Rollet-Labelle, E.; Naccache, P.H. CIN85 Modulates the Down-Regulation of FcγRIIa Expression and Function by c-Cbl in a PKC-Dependent Manner in Human Neutrophils. J. Biol. Chem. 2011, 286, 15073–15084. [Google Scholar] [CrossRef] [PubMed]
- Mizushima, N.; Yoshimori, T.; Ohsumi, Y. The Role of Atg Proteins in Autophagosome Formation. Annu. Rev. Cell Dev. Biol. 2011, 27, 107–132. [Google Scholar] [CrossRef] [PubMed]
- Levine, B.; Kroemer, G. Autophagy in the Pathogenesis of Disease. Cell 2008, 132, 27–42. [Google Scholar] [CrossRef]
- Hu, W.; Chan, H.; Lu, L.; Wong, K.T.; Wong, S.H.; Li, M.X.; Xiao, Z.G.; Cho, C.H.; Gin, T.; Chan, M.T.V.; et al. Autophagy in Intracellular Bacterial Infection. Semin. Cell Dev. Biol. 2020, 101, 41–50. [Google Scholar] [CrossRef] [PubMed]
- Seto, S.; Tsujimura, K.; Horii, T.; Koide, Y. Autophagy Adaptor Protein P62/SQSTM1 and Autophagy-Related Gene Atg5 Mediate Autophagosome Formation in Response to Mycobacterium Tuberculosis Infection in Dendritic Cells. PLoS ONE 2013, 8, e86017. [Google Scholar] [CrossRef] [PubMed]
- Gomes, L.C.; Dikic, I. Autophagy in Antimicrobial Immunity. Mol. Cell 2014, 54, 224–233. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Li, C. Xenophagy in Innate Immunity: A Battle between Host and Pathogen. Dev. Comp. Immunol. 2020, 109, 103693. [Google Scholar] [CrossRef]
- Turco, E.; Savova, A.; Gere, F.; Ferrari, L.; Romanov, J.; Schuschnig, M.; Martens, S. Reconstitution Defines the Roles of P62, NBR1 and TAX1BP1 in Ubiquitin Condensate Formation and Autophagy Initiation. Nat. Commun. 2021, 12, 5212. [Google Scholar] [CrossRef]
- Bjørkøy, G.; Lamark, T.; Brech, A.; Outzen, H.; Perander, M.; Øvervatn, A.; Stenmark, H.; Johansen, T. P62/SQSTM1 Forms Protein Aggregates Degraded by Autophagy and Has a Protective Effect on Huntingtin-Induced Cell Death. J. Cell Biol. 2005, 171, 603–614. [Google Scholar] [CrossRef]
- Schroder, W.A.; Buck, M.; Cloonan, N.; Hancock, J.F.; Suhrbier, A.; Sculley, T.; Bushell, G. Human Sin1 Contains Ras-Binding and Pleckstrin Homology Domains and Suppresses Ras Signalling. Cell Signal. 2007, 19, 1279–1289. [Google Scholar] [CrossRef]
- Yuan, Y.; Pan, B.; Sun, H.; Chen, G.; Su, B.; Huang, Y. Characterization of Sin1 Isoforms Reveals an MTOR-Dependent and Independent Function of Sin1γ. PLoS ONE 2015, 10, e0135017. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Ding, L.; Meng, X.; Potter, M.; Kearney, A.L.; Zhang, J.; Sun, J.; James, D.E.; Yang, G.; Zhou, C. Structural Insights into Ras Regulation by SIN1. Proc. Natl. Acad. Sci. USA 2022, 119, e2119990119. [Google Scholar] [CrossRef] [PubMed]
- Laplante, M.; Sabatini, D.M. MTOR Signaling in Growth Control and Disease. Cell 2012, 149, 274–293. [Google Scholar] [CrossRef]
- Guertin, D.A.; Stevens, D.M.; Thoreen, C.C.; Burds, A.A.; Kalaany, N.Y.; Moffat, J.; Brown, M.; Fitzgerald, K.J.; Sabatini, D.M. Ablation in Mice of the MTORC Components Raptor, Rictor, or MLST8 Reveals That MTORC2 Is Required for Signaling to Akt-FOXO and PKCα, but Not S6K1. Dev. Cell 2006, 11, 859–871. [Google Scholar] [CrossRef]
- Yingying, X.; Caijuan, W.; Yenan, Y.; Yuqin, T.; Xueqin, C.; Zhongming, W. The Effect of SIN1 and Microtubules on Insulin Induced PKC ζ Activation. Med. Sci. Monit. 2017, 23, 3666–3672. [Google Scholar] [CrossRef]
- Li, Y.; Inoki, K.; Guan, K.-L. Biochemical and Functional Characterizations of Small GTPase Rheb and TSC2 GAP Activity. Mol. Cell Biol. 2004, 24, 7965–7975. [Google Scholar] [CrossRef] [PubMed]
- Zhan, J.; Chitta, R.K.; Harwood, F.C.; Grosveld, G.C. Phosphorylation of TSC2 by PKC-δ Reveals a Novel Signaling Pathway That Couples Protein Synthesis to MTORC1 Activity. Mol. Cell Biochem. 2019, 45, 123–134. [Google Scholar] [CrossRef]
- Chen, D.-B.; Westfall, S.D.; Fong, H.W.; Roberson, M.S.; Davis, J.S. Prostaglandin F 2 Stimulates the Raf/MEK1/Mitogen-Activated Protein Kinase Signaling Cascade in Bovine Luteal Cells. Endocrinology 1998, 139, 3876–3885. [Google Scholar] [CrossRef]
- Miyazaki, M.; Takemasa, T. TSC2/Rheb Signaling Mediates ERK-Dependent Regulation of MTORC1 Activity in C2C12 Myoblasts. FEBS Open Bio. 2017, 7, 424–433. [Google Scholar] [CrossRef]
- Foster, K.G.; Acosta-Jaquez, H.A.; Romeo, Y.; Ekim, B.; Soliman, G.A.; Carriere, A.; Roux, P.P.; Ballif, B.A.; Fingar, D.C. Regulation of MTOR Complex 1 (MTORC1) by Raptor Ser863 and Multisite Phosphorylation. J. Biol. Chem. 2010, 285, 80–94. [Google Scholar] [CrossRef]
- Sancak, Y.; Bar-Peled, L.; Zoncu, R.; Markhard, A.L.; Nada, S.; Sabatini, D.M. Ragulator-Rag Complex Targets MTORC1 to the Lysosomal Surface and Is Necessary for Its Activation by Amino Acids. Cell 2010, 141, 290–303. [Google Scholar] [CrossRef]
- Duran, A.; Amanchy, R.; Linares, J.F.; Joshi, J.; Abu-Baker, S.; Porollo, A.; Hansen, M.; Moscat, J.; Diaz-Meco, M.T. P62 Is a Key Regulator of Nutrient Sensing in the MTORC1 Pathway. Mol. Cell 2011, 44, 134–146. [Google Scholar] [CrossRef] [PubMed]
- Sardiello, M.; Palmieri, M.; Ronza, A.D.; Medina, D.L.; Valenza, M.; Gennarino, V.A.; Di Malta, C.; Donaudy, F.; Embrione, V.; Polishchuk, R.S.; et al. A Gene Network Regulating Lysosomal Biogenesis and Function. Science 2009, 325, 473–477. [Google Scholar] [CrossRef]
- Jung, C.H.; Jun, C.B.; Ro, S.H.; Kim, Y.M.; Otto, N.M.; Cao, J.; Kundu, M.; Kim, D.H. ULK-Atg13-FIP200 Complexes Mediate MTOR Signaling to the Autophagy Machinery. Mol. Biol. Cell 2009, 20, 1992–2003. [Google Scholar] [CrossRef] [PubMed]
- Dunlop, E.A.; Hunt, D.K.; Acosta-Jaquez, H.A.; Fingar, D.C.; Tee, A.R. ULK1 Inhibits MTORC1 Signaling, Promotes Multisite Raptor Phosphorylation and Hinders Substrate Binding. Autophagy 2011, 7, 737–747. [Google Scholar] [CrossRef] [PubMed]
- Johansen, T.; Lamark, T. Selective Autophagy Mediated by Autophagic Adapter Proteins. Autophagy 2011, 7, 279–296. [Google Scholar] [CrossRef] [PubMed]
- Donohue, E.; Balgi, A.D.; Komatsu, M.; Roberge, M. Induction of Covalently Crosslinked P62 Oligomers with Reduced Binding to Polyubiquitinated Proteins by the Autophagy Inhibitor Verteporfin. PLoS ONE 2014, 9, e114964. [Google Scholar] [CrossRef]
- Cui, L.; Zheng, J.; Zhao, Q.; Chen, J.R.; Liu, H.; Peng, G.; Wu, Y.; Chen, C.; He, Q.; Shi, H.; et al. Mutations of MAP1B Encoding a Microtubule-Associated Phosphoprotein Cause Sensorineural Hearing Loss. JCI Insight 2020, 5, e136046. [Google Scholar] [CrossRef]
- Harrison, B.; Kraus, M.; Burch, L.; Stevens, C.; Craig, A.; Gordon-Weeks, P.; Hupp, T.R. DAPK-1 Binding to a Linear Peptide Motif in MAP1B Stimulates Autophagy and Membrane Blebbing. J. Biol. Chem. 2008, 283, 9999–10014. [Google Scholar] [CrossRef]
- Yue, Z. Regulation of Neuronal Autophagy in Axon: Implication of Autophagy in Axonal Function and Dysfunction/Degeneration. Autophagy 2007, 3, 139–141. [Google Scholar] [CrossRef]
- Ge, P.; Lei, Z.; Yu, Y.; Lu, Z.; Qiang, L.; Chai, Q.; Zhang, Y.; Zhao, D.; Li, B.; Pang, Y.; et al. M. Tuberculosis PknG Manipulates Host Autophagy Flux to Promote Pathogen Intracellular Survival. Autophagy 2022, 18, 576–594. [Google Scholar] [CrossRef] [PubMed]
Protein | Gene | Accession | Phosphorylated Sites |
---|---|---|---|
Sin1 | SIN1 | Q9BPZ7 | ↓ Thr 509 |
Raf-1 | RAF-1 | ↑ Thr49 | |
P04049 | ↑ Ser 257 | ||
Tsc2 | TSC2 | P49815 | ↓ Ser1365 |
↑ Ser1375 | |||
Raptor | RPTOR | Q8N122 | ↑ Ser 859 |
↑ Thr 865 | |||
Sequestosome-1 | SQSTM1 | Q13501 | ↑ Ser 275 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maldonado-Bravo, R.; Villaseñor, T.; Pedraza-Escalona, M.; Pérez-Martínez, L.; Hernández-Pando, R.; Pedraza-Alva, G. Negative Regulation of Autophagy during Macrophage Infection by Mycobacterium bovis BCG via Protein Kinase C Activation. Int. J. Mol. Sci. 2024, 25, 3145. https://doi.org/10.3390/ijms25063145
Maldonado-Bravo R, Villaseñor T, Pedraza-Escalona M, Pérez-Martínez L, Hernández-Pando R, Pedraza-Alva G. Negative Regulation of Autophagy during Macrophage Infection by Mycobacterium bovis BCG via Protein Kinase C Activation. International Journal of Molecular Sciences. 2024; 25(6):3145. https://doi.org/10.3390/ijms25063145
Chicago/Turabian StyleMaldonado-Bravo, Rafael, Tomás Villaseñor, Martha Pedraza-Escalona, Leonor Pérez-Martínez, Rogelio Hernández-Pando, and Gustavo Pedraza-Alva. 2024. "Negative Regulation of Autophagy during Macrophage Infection by Mycobacterium bovis BCG via Protein Kinase C Activation" International Journal of Molecular Sciences 25, no. 6: 3145. https://doi.org/10.3390/ijms25063145
APA StyleMaldonado-Bravo, R., Villaseñor, T., Pedraza-Escalona, M., Pérez-Martínez, L., Hernández-Pando, R., & Pedraza-Alva, G. (2024). Negative Regulation of Autophagy during Macrophage Infection by Mycobacterium bovis BCG via Protein Kinase C Activation. International Journal of Molecular Sciences, 25(6), 3145. https://doi.org/10.3390/ijms25063145