Antioxidant Enzymes in Cancer Cells: Their Role in Photodynamic Therapy Resistance and Potential as Targets for Improved Treatment Outcomes
Abstract
:1. Introduction
2. Antioxidant Enzymes Responsible for ROS-Mediated Treatment Resistance
2.1. Superoxide Dismutase (SOD)
2.2. Catalase
2.3. Glutathione Redox Cycle
2.4. Heme Oxygenase-1 (HO-1)
Antioxidant Enzymes | Target of Action | Location | Function | Therapeutic Effects on Cancers | Ref. |
---|---|---|---|---|---|
SOD | Superoxide anion | SOD1: Cytoplasmic compartments SOD2: Mitochondria SOD3: Extracellular space | Dismutation of superoxide anion | Anticancer agents
Chemo- and radioprotectors
SOD mimetics
Therapeutic targeting SOD
| [42,56,166,167,168,169] |
Catalase | H2O2 | Peroxisomes | Dismutation of H2O2 | Catalase mimetics
Therapeutic targeting catalase
| [85,95,169] |
GCS | Glutamic acid and cysteine | Cytosol | Synthesis of glutathione | Anticancer agents
| [170,171] |
GR | GSSG | Cytosol | Conversion of GSSG to GSH | Therapeutic targeting GR
| [170] |
GPx | H2O2 | Cytosol and mitochondria | Reduction of H2O2 | Therapeutic targeting GPx
| [172] |
GST | Xenobiotics | Microsome, mitochondria, and cytosol | Conjugation of xenobiotics with GSH | Therapeutic targeting GST
| [115,120] |
HO-1 | Heme | Endoplasmic reticulum, mitochondria, the vacuole, nucleus, and plasma membrane | Metabolism of heme into biliverdin | Predictive marker
| [130,173] |
3. The Inhibitors of Antioxidant Enzymes Used to Overcome Cancer Resistance to PDT
3.1. SODs Inhibitors
3.1.1 2-Methoxyestradiol (2-ME, SOD2 Inhibitor)
3.1.2. Diethyldithiocarbamate (DDC, SOD1 Inhibitor)
3.2. Catalase Inhibitors
3-Aminotriazole (3-AT, Catalase Inhibitor)
3.3. Inhibitors Involved in Glutathione-Related Enzyme Systems
3.3.1. L-Buthionine Sulfoximine (BSO, GCS Inhibitor)
3.3.2. 1,3-Bis(2-chloroethyl)-1-nitrosourea or Carmustine (BCNU, GR Inhibitor)
3.3.3. Mercaptosuccinic Acid (MSA, GPx1 Inhibitor)
3.3.4. 9-Chloro-6-ethyl-6H[1,2,3,4,5]pentathiepino[6,7-b]indole (CEPI, GPx1 Inhibitor)
3.3.5. GST Inhibitors
Ethacrynic Acid (ECA, GSTP1-1 Inhibitor)
SX-324 (GSTP1-1 Inhibitor)
Coniferyl Ferulate (Con, GST Inhibitor)
3.4. HO-1 Inhibitor
Zn(II) Protoporphyrin IX (ZnPPIX, HO-1 Inhibitor)
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dougherty, T.J. An Update on Photodynamic Therapy Applications. J. Clin. Laser Med. Surg. 2002, 20, 3–7. [Google Scholar] [CrossRef] [PubMed]
- Kessel, D. Photodynamic Therapy: A Brief History. J. Clin. Med. 2019, 8, 1581. [Google Scholar] [CrossRef] [PubMed]
- Michalak, M.; Mazurkiewicz, S.; Szymczyk, J.; Ziental, D.; Sobotta, Ł. Photodynamic Therapy Applications—Review. J. Med. Sci. 2023, 92, e865. [Google Scholar] [CrossRef]
- Maharjan, P.S.; Bhattarai, H.K. Singlet Oxygen, Photodynamic Therapy, and Mechanisms of Cancer Cell Death. J. Oncol. 2022, 2022, 7211485. [Google Scholar] [CrossRef] [PubMed]
- Mishchenko, T.; Balalaeva, I.; Gorokhova, A.; Vedunova, M.; Krysko, D.V. Which Cell Death Modality Wins the Contest for Photodynamic Therapy of Cancer? Cell Death Dis. 2022, 13, 455. [Google Scholar] [CrossRef]
- Pola, M.; Kolarova, H.; Bajgar, R. Generation of Singlet Oxygen by Porphyrin and Phthalocyanine Derivatives Regarding the Oxygen Level. J. Med. Sci. 2022, 91, e752. [Google Scholar] [CrossRef]
- Chen, D.; Xu, Q.; Wang, W.; Shao, J.; Huang, W.; Dong, X. Type I Photosensitizers Revitalizing Photodynamic Oncotherapy. Small 2021, 17, 2006742. [Google Scholar] [CrossRef]
- Lucky, S.S.; Soo, K.C.; Zhang, Y. Nanoparticles in Photodynamic Therapy. Chem. Rev. 2015, 115, 1990–2042. [Google Scholar] [CrossRef]
- Scherer, K.M.; Bisby, R.H.; Botchway, S.W.; Parker, A.W. New Approaches to Photodynamic Therapy from Types I, II and III to Type IV Using One or More Photons. Anti-Cancer Agents Med. Chem. 2017, 17, 171–189. [Google Scholar] [CrossRef]
- Yao, Q.; Fan, J.; Long, S.; Zhao, X.; Li, H.; Du, J.; Shao, K.; Peng, X. The Concept and Examples of Type-III Photosensitizers for Cancer Photodynamic Therapy. Chem 2022, 8, 197–209. [Google Scholar] [CrossRef]
- Almeida, R.D.; Manadas, B.J.; Carvalho, A.P.; Duarte, C.B. Intracellular Signaling Mechanisms in Photodynamic Therapy. Biochim. Biophys. ActaBBA-Rev. Cancer 2004, 1704, 59–86. [Google Scholar] [CrossRef] [PubMed]
- Buytaert, E.; Dewaele, M.; Agostinis, P. Molecular Effectors of Multiple Cell Death Pathways Initiated by Photodynamic Therapy. Biochim. Biophys. Acta BBA-Rev. Cancer 2007, 1776, 86–107. [Google Scholar] [CrossRef] [PubMed]
- Yoo, J.-O.; Ha, K.-S. New Insights into the Mechanisms for Photodynamic Therapy-Induced Cancer Cell Death. In International Review of Cell and Molecular Biology; Elsevier: Amsterdam, The Netherlands, 2012; Volume 295, pp. 139–174. ISBN 978-0-12-394306-4. [Google Scholar]
- Tan, L.; Shen, X.; He, Z.; Lu, Y. The Role of Photodynamic Therapy in Triggering Cell Death and Facilitating Antitumor Immunology. Front. Oncol. 2022, 12, 863107. [Google Scholar] [CrossRef] [PubMed]
- Mokoena, D.R.; George, B.P.; Abrahamse, H. Photodynamic Therapy Induced Cell Death Mechanisms in Breast Cancer. Int. J. Mol. Sci. 2021, 22, 10506. [Google Scholar] [CrossRef]
- Evans, S.; Matthews, W.; Perry, R.; Fraker, D.; Norton, J.; Pass, H.I. Effect of Photodynamic Therapy on Tumqr Necrosis Factor Production by Murine Macrophages. J. Natl. Cancer Inst. 1990, 82, 34–39. [Google Scholar] [CrossRef]
- Polo, L.; Valduga, G.; Jori, G.; Reddi, E. Low-Density Lipoprotein Receptors in the Uptake of Tumour Photosensitizers by Human and Rat Transformed Fibroblasts. Int. J. Biochem. Cell Biol. 2002, 34, 10–23. [Google Scholar] [CrossRef]
- Casas, A.; Di Venosa, G.; Hasan, T.; Batlle, A. Mechanisms of Resistance to Photodynamic Therapy. Curr. Med. Chem. 2011, 18, 2486–2515. [Google Scholar] [CrossRef]
- Agostinis, P.; Berg, K.; Cengel, K.A.; Foster, T.H.; Girotti, A.W.; Gollnick, S.O.; Hahn, S.M.; Hamblin, M.R.; Juzeniene, A.; Kessel, D.; et al. Photodynamic Therapy of Cancer: An Update. CA A Cancer J. Clin. 2011, 61, 250–281. [Google Scholar] [CrossRef]
- Sai, D.L.; Lee, J.; Nguyen, D.L.; Kim, Y.-P. Tailoring Photosensitive ROS for Advanced Photodynamic Therapy. Exp. Mol. Med. 2021, 53, 495–504. [Google Scholar] [CrossRef]
- Yang, Y.; Cui, W.; Zhao, J. Synergistic Treatment of Doxorubicin-Resistant Breast Cancer by the Combination of Chemotherapy and Photodynamic Therapy. Colloids Surf. A Physicochem. Eng. Asp. 2022, 648, 129167. [Google Scholar] [CrossRef]
- Zuluaga, M.-F.; Lange, N. Combination of Photodynamic Therapy with Anti-Cancer Agents. Curr. Med. Chem. 2008, 15, 1655–1673. [Google Scholar] [CrossRef]
- Dougherty, T.J.; Kaufman, J.E.; Goldfarb, A.; Weishaupt, K.R.; Boyle, D.; Mittleman, A. Photoradiation Therapy for the Treatment of Malignant Tumors. Cancer Res. 1978, 38, 2628–2635. [Google Scholar]
- Brown, J.M.; Wilson, W.R. Exploiting Tumour Hypoxia in Cancer Treatment. Nat. Rev. Cancer 2004, 4, 437–447. [Google Scholar] [CrossRef]
- Zhu, T.C.; Finlay, J.C. The Role of Photodynamic Therapy (PDT) Physics: PDT Physics. Med. Phys. 2008, 35, 3127–3136. [Google Scholar] [CrossRef]
- Plaetzer, K.; Krammer, B.; Berlanda, J.; Berr, F.; Kiesslich, T. Photophysics and Photochemistry of Photodynamic Therapy: Fundamental Aspects. Lasers Med. Sci. 2009, 24, 259–268. [Google Scholar] [CrossRef]
- Heckl, C.; Aumiller, M.; Rühm, A.; Sroka, R.; Stepp, H. Fluorescence and Treatment Light Monitoring for Interstitial Photodynamic Therapy. Photochem. Photobiol. 2020, 96, 388–396. [Google Scholar] [CrossRef] [PubMed]
- de Andrade, C.T.; Nogueira, M.S.; Kanick, S.C.; Marra, K.; Gunn, J.; Andreozzi, J.; Samkoe, K.S.; Kurachi, C.; Pogue, B.W. Optical Spectroscopy of Radiotherapy and Photodynamic Therapy Responses in Normal Rat Skin Shows Vascular Breakdown Products. SPIE Proceedings 2016, 9694, 151–155. [Google Scholar] [CrossRef]
- Larsen, E.L.P.; Randeberg, L.L.; Gederaas, O.A.; Arum, C.-J.; Hjelde, A.; Zhao, C.-M.; Chen, D.; Krokan, H.E.; Svaasand, L.O. Monitoring of Hexyl 5-Aminolevulinate-Induced Photodynamic Therapy in Rat Bladder Cancer by Optical Spectroscopy. J. Biomed. Opt. 2008, 13, 044031. [Google Scholar] [CrossRef] [PubMed]
- Hamada, R.; Ogawa, E.; Arai, T. Continuous Optical Monitoring of Red Blood Cells During a Photosensitization Reaction. Photobiomodul. Photomed. Laser Surg. 2019, 37, 110–116. [Google Scholar] [CrossRef] [PubMed]
- Allison, R.R.; Sibata, C.H. Oncologic Photodynamic Therapy Photosensitizers: A Clinical Review. Photodiagn. Photodyn. Ther. 2010, 7, 61–75. [Google Scholar] [CrossRef] [PubMed]
- Henderson, B.W.; Busch, T.M.; Snyder, J.W. Fluence Rate as a Modulator of PDT Mechanisms. Lasers Surg. Med. 2006, 38, 489–493. [Google Scholar] [CrossRef] [PubMed]
- Gunaydin, G.; Gedik, M.E.; Ayan, S. Photodynamic Therapy—Current Limitations and Novel Approaches. Front. Chem. 2021, 9, 691697. [Google Scholar] [CrossRef]
- Jankun, J. A Thousand Words about the Challenges of Photodynamic Therapy: Challenges of Photodynamic Therapy. J. Med. Sci. 2019, 88, 195–199. [Google Scholar] [CrossRef]
- Rapozzi, V.; Jori, G. (Eds.) Resistance to Photodynamic Therapy in Cancer; Resistance to Targeted Anti-Cancer Therapeutics; Springer International Publishing: Cham, Switzerland, 2015; Volume 5, ISBN 978-3-319-12729-3. [Google Scholar]
- Wu, Y.; Li, Y.; Lv, G.; Bu, W. Redox Dyshomeostasis Strategy for Tumor Therapy Based on Nanomaterials Chemistry. Chem. Sci. 2022, 13, 2202–2217. [Google Scholar] [CrossRef]
- Cheng, Q.; Yu, W.; Ye, J.; Liu, M.; Liu, W.; Zhang, C.; Zhang, C.; Feng, J.; Zhang, X.-Z. Nanotherapeutics Interfere with Cellular Redox Homeostasis for Highly Improved Photodynamic Therapy. Biomaterials 2019, 224, 119500. [Google Scholar] [CrossRef]
- Liu, Y.; Li, Q.; Zhou, L.; Xie, N.; Nice, E.C.; Zhang, H.; Huang, C.; Lei, Y. Cancer Drug Resistance: Redox Resetting Renders a Way. Oncotarget 2016, 7, 42740–42761. [Google Scholar] [CrossRef] [PubMed]
- Gorrini, C.; Harris, I.S.; Mak, T.W. Modulation of Oxidative Stress as an Anticancer Strategy. Nat. Rev. Drug Discov. 2013, 12, 931–947. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, H.; Takada, K. Reactive Oxygen Species in Cancer: Current Findings and Future Directions. Cancer Sci. 2021, 112, 3945–3952. [Google Scholar] [CrossRef]
- Hamada, N.; Fujimichi, Y.; Iwasaki, T.; Fujii, N.; Furuhashi, M.; Kubo, E.; Minamino, T.; Nomura, T.; Sato, H. Emerging Issues in Radiogenic Cataracts and Cardiovascular Disease. J. Radiat. Res. 2014, 55, 831–846. [Google Scholar] [CrossRef]
- Fukai, T.; Ushio-Fukai, M. Superoxide Dismutases: Role in Redox Signaling, Vascular Function, and Diseases. Antioxid. Redox Signal. 2011, 15, 1583–1606. [Google Scholar] [CrossRef]
- Holmström, K.M.; Finkel, T. Cellular Mechanisms and Physiological Consequences of Redox-Dependent Signalling. Nat. Rev. Mol. Cell Biol. 2014, 15, 411–421. [Google Scholar] [CrossRef]
- Andrés, C.M.C.; Pérez De La Lastra, J.M.; Andrés Juan, C.; Plou, F.J.; Pérez-Lebeña, E. Superoxide Anion Chemistry—Its Role at the Core of the Innate Immunity. Int. J. Mol. Sci. 2023, 24, 1841. [Google Scholar] [CrossRef]
- Bielski, B.H.; Arudi, R.L.; Sutherland, M.W. A Study of the Reactivity of HO2/O2- with Unsaturated Fatty Acids. J. Biol. Chem. 1983, 258, 4759–4761. [Google Scholar] [CrossRef] [PubMed]
- Fridovich, I. Superoxide Anion Radical (O2−.), Superoxide Dismutases, and Related Matters. J. Biol. Chem. 1997, 272, 18515–18517. [Google Scholar] [CrossRef] [PubMed]
- Guzik, T.J.; Harrison, D.G. Vascular NADPH Oxidases as Drug Targets for Novel Antioxidant Strategies. Drug Discov. Today 2006, 11, 524–533. [Google Scholar] [CrossRef] [PubMed]
- Madamanchi, N.R.; Runge, M.S. Mitochondrial Dysfunction in Atherosclerosis. Circ. Res. 2007, 100, 460–473. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Branicky, R.; Noë, A.; Hekimi, S. Superoxide Dismutases: Dual Roles in Controlling ROS Damage and Regulating ROS Signaling. J. Cell Biol. 2018, 217, 1915–1928. [Google Scholar] [CrossRef] [PubMed]
- Abreu, I.A.; Cabelli, D.E. Superoxide Dismutases—A Review of the Metal-Associated Mechanistic Variations. Biochim. Biophys. Acta BBA-Proteins Proteom. 2010, 1804, 263–274. [Google Scholar] [CrossRef] [PubMed]
- Mumbengegwi, D.R.; Li, Q.; Li, C.; Bear, C.E.; Engelhardt, J.F. Evidence for a Superoxide Permeability Pathway in Endosomal Membranes. Mol. Cell Biol. 2008, 28, 3700–3712. [Google Scholar] [CrossRef]
- Tsang, C.K.; Liu, Y.; Thomas, J.; Zhang, Y.; Zheng, X.F.S. Superoxide Dismutase 1 Acts as a Nuclear Transcription Factor to Regulate Oxidative Stress Resistance. Nat. Commun. 2014, 5, 3446. [Google Scholar] [CrossRef]
- Becuwe, P.; Ennen, M.; Klotz, R.; Barbieux, C.; Grandemange, S. Manganese Superoxide Dismutase in Breast Cancer: From Molecular Mechanisms of Gene Regulation to Biological and Clinical Significance. Free Radic. Biol. Med. 2014, 77, 139–151. [Google Scholar] [CrossRef] [PubMed]
- Ushiofukai, M. Redox Signaling in Angiogenesis: Role of NADPH Oxidase. Cardiovasc. Res. 2006, 71, 226–235. [Google Scholar] [CrossRef]
- Zelko, I.N.; Mariani, T.J.; Folz, R.J. Superoxide Dismutase Multigene Family: A Comparison of the CuZn-SOD (SOD1), Mn-SOD (SOD2), and EC-SOD (SOD3) Gene Structures, Evolution, and Expression. Free Radic. Biol. Med. 2002, 33, 337–349. [Google Scholar] [CrossRef]
- Griess, B.; Tom, E.; Domann, F.; Teoh-Fitzgerald, M. Extracellular Superoxide Dismutase and Its Role in Cancer. Free Radic. Biol. Med. 2017, 112, 464–479. [Google Scholar] [CrossRef]
- Bauer, G. Tumor Cell-Protective Catalase as a Novel Target for Rational Therapeutic Approaches Based on Specific Intercellular ROS Signaling. Anticancer. Res. 2012, 32, 2599–2624. [Google Scholar] [PubMed]
- Behrend, L.; Henderson, G.; Zwacka, R.M. Reactive Oxygen Species in Oncogenic Transformation. Biochem. Soc. Trans. 2003, 31, 1441–1444. [Google Scholar] [CrossRef]
- Weinberg, F.; Chandel, N.S. Reactive Oxygen Species-Dependent Signaling Regulates Cancer. Cell. Mol. Life Sci. 2009, 66, 3663–3673. [Google Scholar] [CrossRef] [PubMed]
- Pottgiesser, S.J.; Heinzelmann, S.; Bauer, G. Intercellular HOCl-Mediated Apoptosis Induction in Malignant Cells: Interplay Between NOX1-Dependent Superoxide Anion Generation and DUOX-Related HOCl-Generating Peroxidase Activity. Anticancer. Res. 2015, 35, 5927–5943. [Google Scholar]
- Bauer, G. HOCl and the Control of Oncogenesis. J. Inorg. Biochem. 2018, 179, 10–23. [Google Scholar] [CrossRef]
- Bauer, G. HOCl-Dependent Singlet Oxygen and Hydroxyl Radical Generation Modulate and Induce Apoptosis of Malignant Cells. Anticancer. Res. 2013, 33, 3589–3602. [Google Scholar]
- Bauer, G. Central Signaling Elements of Intercellular Reactive Oxygen/Nitrogen Species-Dependent Induction of Apoptosis in Malignant Cells. Anticancer Res. 2017, 37, 499–514. [Google Scholar] [CrossRef]
- Heinzelmann, S.; Bauer, G. Multiple Protective Functions of Catalase against Intercellular Apoptosis-Inducing ROS Signaling of Human Tumor Cells. Biol. Chem. 2010, 391, 675–693. [Google Scholar] [CrossRef]
- Lucena, S.R.; Zamarrón, A.; Carrasco, E.; Marigil, M.A.; Mascaraque, M.; Fernández-Guarino, M.; Gilaberte, Y.; González, S.; Juarranz, A. Characterisation of Resistance Mechanisms Developed by Basal Cell Carcinoma Cells in Response to Repeated Cycles of Photodynamic Therapy. Sci. Rep. 2019, 9, 4835. [Google Scholar] [CrossRef] [PubMed]
- Scheit, K.; Bauer, G. Direct and Indirect Inactivation of Tumor Cell Protective Catalase by Salicylic Acid and Anthocyanidins Reactivates Intercellular ROS Signaling and Allows for Synergistic Effects. Carcinogenesis 2015, 36, 400–411. [Google Scholar] [CrossRef] [PubMed]
- Clark, R.A.; Klebanoff, S.J. Role of the Myeloperoxidase-H2O2-Halide System in Concanavalin A-Induced Tumor Cell Killing by Human Neutrophils. J. Immunol. 1979, 122, 2605–2610. [Google Scholar] [CrossRef] [PubMed]
- Schieven, G.L.; de Fex, H.; Stephenson, L. Hypochlorous Acid Activates Tyrosine Phosphorylation Signal Pathways Leading to Calcium Signaling and TNFα Production. Antioxid. Redox Signal. 2002, 4, 501–507. [Google Scholar] [CrossRef] [PubMed]
- Levine, A.B.; Punihaole, D.; Levine, T.B. Characterization of the Role of Nitric Oxide and Its Clinical Applications. Cardiology 2012, 122, 55–68. [Google Scholar] [CrossRef] [PubMed]
- Bauer, G. The Antitumor Effect of Singlet Oxygen. Anticancer Res. 2016, 36, 5649–5664. [Google Scholar] [CrossRef] [PubMed]
- Bauer, G. Targeting Extracellular ROS Signaling of Tumor Cells. Anticancer. Res. 2014, 34, 1467–1482. [Google Scholar]
- Sah, S.K.; Agrahari, G.; Kim, T.-Y. Insights into Superoxide Dismutase 3 in Regulating Biological and Functional Properties of Mesenchymal Stem Cells. Cell Biosci. 2020, 10, 22. [Google Scholar] [CrossRef]
- Liu, X.; Wang, A.; Muzio, L.L.; Kolokythas, A.; Sheng, S.; Rubini, C.; Ye, H.; Shi, F.; Yu, T.; Crowe, D.L.; et al. Deregulation of Manganese Superoxide Dismutase (SOD2) Expression and Lymph Node Metastasis in Tongue Squamous Cell Carcinoma. BMC Cancer 2010, 10, 365. [Google Scholar] [CrossRef]
- Ye, H.; Wang, A.; Lee, B.-S.; Yu, T.; Sheng, S.; Peng, T.; Hu, S.; Crowe, D.L.; Zhou, X. Proteomic Based Identification of Manganese Superoxide Dismutase 2 (SOD2) as a Metastasis Marker for Oral Squamous Cell Carcinoma. Cancer Genom. Proteom. 2008, 5, 85–94. [Google Scholar]
- Liu, Z.; Li, S.; Cai, Y.; Wang, A.; He, Q.; Zheng, C.; Zhao, T.; Ding, X.; Zhou, X. Manganese Superoxide Dismutase Induces Migration and Invasion of Tongue Squamous Cell Carcinoma via H2O2-Dependent Snail Signaling. Free Radic. Biol. Med. 2012, 53, 44–50. [Google Scholar] [CrossRef] [PubMed]
- Dolgachev, V.; Oberley, L.W.; Huang, T.-T.; Kraniak, J.M.; Tainsky, M.A.; Hanada, K.; Separovic, D. A Role for Manganese Superoxide Dismutase in Apoptosis after Photosensitization. Biochem. Biophys. Res. Commun. 2005, 332, 411–417. [Google Scholar] [CrossRef] [PubMed]
- Korbelik, M.; Parkins, C.S.; Shibuya, H.; Cecic, I.; Stratford, M.R.L.; Chaplin, D.J. Nitric Oxide Production by Tumour Tissue: Impact on the Response to Photodynamic Therapy. Br. J. Cancer 2000, 82, 1835–1843. [Google Scholar] [CrossRef] [PubMed]
- Soares, H.T.; Campos, J.R.S.; Gomes-da-Silva, L.C.; Schaberle, F.A.; Dabrowski, J.M.; Arnaut, L.G. Pro-Oxidant and Antioxidant Effects in Photodynamic Therapy: Cells Recognise That Not All Exogenous ROS Are Alike. ChemBioChem 2016, 17, 836–842. [Google Scholar] [CrossRef] [PubMed]
- Golab, J.; Nowis, D.; Skrzycki, M.; Czeczot, H.; Barańczyk-Kuźma, A.; Wilczyński, G.M.; Makowski, M.; Mróz, P.; Kozar, K.; Kamiński, R.; et al. Antitumor Effects of Photodynamic Therapy Are Potentiated by 2-Methoxyestradiol. J. Biol. Chem. 2003, 278, 407–414. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Jayakumar, M.K.G.; Zheng, X.; Shikha, S.; Zhang, Y.; Bansal, A.; Poon, D.J.J.; Chu, P.L.; Yeo, E.L.L.; Chua, M.L.K.; et al. Upconversion Superballs for Programmable Photoactivation of Therapeutics. Nat. Commun. 2019, 10, 4586. [Google Scholar] [CrossRef] [PubMed]
- Nandi, A.; Yan, L.-J.; Jana, C.K.; Das, N. Role of Catalase in Oxidative Stress- and Age-Associated Degenerative Diseases. Oxidative Med. Cell. Longev. 2019, 2019, 9613090. [Google Scholar] [CrossRef] [PubMed]
- Lardinois, O.M. Reactions of Bovine Liver Catalase with Superoxide Radicals and Hydrogen Peroxide. Free Radic. Res. 1995, 22, 251–274. [Google Scholar] [CrossRef]
- Deisseroth, A.; Dounce, A.L. Catalase: Physical and Chemical Properties, Mechanism of Catalysis, and Physiological Role. Physiol. Rev. 1970, 50, 319–375. [Google Scholar] [CrossRef]
- Reimer, D.L.; Bailley, J.; Singh, S.M. Complete cDNA and 5′ Genomic Sequences and Multilevel Regulation of the Mouse Catalase Gene. Genomics 1994, 21, 325–336. [Google Scholar] [CrossRef]
- Marín-García, J. Oxidative Stress and Cell Death in Cardiovascular Disease. In Post-Genomic Cardiology; Elsevier: Amsterdam, The Netherlands, 2014; pp. 471–498. ISBN 978-0-12-404599-6. [Google Scholar]
- Li, G.; Chen, Y.; Saari, J.T.; Kang, Y.J. Catalase-Overexpressing Transgenic Mouse Heart Is Resistant to Ischemia-Reperfusion Injury. Am. J. Physiol. Heart Circ. Physiol. 1997, 273, H1090–H1095. [Google Scholar] [CrossRef]
- Schriner, S.E.; Linford, N.J.; Martin, G.M.; Treuting, P.; Ogburn, C.E.; Emond, M.; Coskun, P.E.; Ladiges, W.; Wolf, N.; Van Remmen, H.; et al. Extension of Murine Life Span by Overexpression of Catalase Targeted to Mitochondria. Science 2005, 308, 1909–1911. [Google Scholar] [CrossRef]
- Hyoudou, K.; Nishikawa, M.; Kobayashi, Y.; Umeyama, Y.; Yamashita, F.; Hashida, M. PEGylated Catalase Prevents Metastatic Tumor Growth Aggravated by Tumor Removal. Free Radic. Biol. Med. 2006, 41, 1449–1458. [Google Scholar] [CrossRef]
- Goth, L.; Rass, P.; Pay, A. Catalase Enzyme Mutations and Their Association with Diseases. Mol. Diagn. 2004, 8, 141–149. [Google Scholar] [CrossRef]
- Kodydková, J.; Vávrová, L.; Kocík, M.; Žák, A. Human Catalase, Its Polymorphisms, Regulation and Changes of Its Activity in Different Diseases. Folia Biol. 2014, 60, 153–167. [Google Scholar]
- Goth, L.; Eaton, J.W. Hereditary Catalase Deficiencies and Increased Risk of Diabetes. Lancet 2000, 356, 1820–1821. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Z.; Akey, J.M.; Shi, J.; Xiong, M.; Wang, Y.; Shen, Y.; Xu, X.; Chen, H.; Wu, H.; Xiao, J.; et al. A Polymorphism in the Promoter Region of Catalase Is Associated with Blood Pressure Levels. Hum. Genet. 2001, 109, 95–98. [Google Scholar] [CrossRef] [PubMed]
- Takahara, S. Progressive Oral Gangrene Probably Due to Lack of Catalase in the Blood (Acatalasaemia). Lancet 1952, 260, 1101–1104. [Google Scholar] [CrossRef] [PubMed]
- Glorieux, C.; Zamocky, M.; Sandoval, J.M.; Verrax, J.; Calderon, P.B. Regulation of Catalase Expression in Healthy and Cancerous Cells. Free Radic. Biol. Med. 2015, 87, 84–97. [Google Scholar] [CrossRef]
- Glorieux, C.; Calderon, P.B. Catalase, a Remarkable Enzyme: Targeting the Oldest Antioxidant Enzyme to Find a New Cancer Treatment Approach. Biol. Chem. 2017, 398, 1095–1108. [Google Scholar] [CrossRef]
- Brunelli, L.; Yermilov, V.; Beckman, J.S. Modulation of Catalase Peroxidatic and Catalatic Activity by Nitric Oxide. Free Radic. Biol. Med. 2001, 30, 709–714. [Google Scholar] [CrossRef] [PubMed]
- Bauer, G. Increasing the Endogenous NO Level Causes Catalase Inactivation and Reactivation of Intercellular Apoptosis Signaling Specifically in Tumor Cells. Redox Biol. 2015, 6, 353–371. [Google Scholar] [CrossRef] [PubMed]
- Brown, G.C. Reversible Binding and Inhibition of Catalase by Nitric Oxide. Eur. J. Biochem. 1995, 232, 188–191. [Google Scholar] [CrossRef]
- Wink, D.A.; Mitchell, J.B. Chemical Biology of Nitric Oxide: Insights into Regulatory, Cytotoxic, and Cytoprotective Mechanisms of Nitric Oxide. Free Radic. Biol. Med. 1998, 25, 434–456. [Google Scholar] [CrossRef] [PubMed]
- Riethmüller, M.; Burger, N.; Bauer, G. Singlet Oxygen Treatment of Tumor Cells Triggers Extracellular Singlet Oxygen Generation, Catalase Inactivation and Reactivation of Intercellular Apoptosis-Inducing Signaling. Redox Biol. 2015, 6, 157–168. [Google Scholar] [CrossRef] [PubMed]
- Di Mascio, P.; Bechara, E.J.H.; Medeiros, M.H.G.; Briviba, K.; Sies, H. Singlet Molecular Oxygen Production in the Reaction of Peroxynitrite with Hydrogen Peroxide. FEBS Lett. 1994, 355, 287–289. [Google Scholar] [CrossRef]
- Glorieux, C.; Sandoval, J.M.; Dejeans, N.; Nonckreman, S.; Bahloula, K.; Poirel, H.A.; Calderon, P.B. Evaluation of Potential Mechanisms Controlling the Catalase Expression in Breast Cancer Cells. Oxidative Med. Cell. Longev. 2018, 2018, 5351967. [Google Scholar] [CrossRef]
- Klingelhoeffer, C.; Kämmerer, U.; Koospal, M.; Mühling, B.; Schneider, M.; Kapp, M.; Kübler, A.; Germer, C.-T.; Otto, C. Natural Resistance to Ascorbic Acid Induced Oxidative Stress Is Mainly Mediated by Catalase Activity in Human Cancer Cells and Catalase-Silencing Sensitizes to Oxidative Stress. BMC Complement. Altern. Med. 2012, 12, 61. [Google Scholar] [CrossRef]
- Smith, P.S.; Zhao, W.; Spitz, D.R.; Robbins, M.E. Inhibiting Catalase Activity Sensitizes 36B10 Rat Glioma Cells to Oxidative Stress. Free Radic. Biol. Med. 2007, 42, 787–797. [Google Scholar] [CrossRef] [PubMed]
- Kang, M.Y.; Kim, H.-B.; Piao, C.; Lee, K.H.; Hyun, J.W.; Chang, I.-Y.; You, H.J. The Critical Role of Catalase in Prooxidant and Antioxidant Function of P53. Cell Death Differ. 2013, 20, 117–129. [Google Scholar] [CrossRef] [PubMed]
- Zhao, M.-X.; Wen, J.-L.; Wang, L.; Wang, X.-P.; Chen, T.-S. Intracellular Catalase Activity Instead of Glutathione Level Dominates the Resistance of Cells to Reactive Oxygen Species. Cell Stress Chaperones 2019, 24, 609–619. [Google Scholar] [CrossRef] [PubMed]
- Glorieux, C.; Dejeans, N.; Sid, B.; Beck, R.; Calderon, P.B.; Verrax, J. Catalase Overexpression in Mammary Cancer Cells Leads to a Less Aggressive Phenotype and an Altered Response to Chemotherapy. Biochem. Pharmacol. 2011, 82, 1384–1390. [Google Scholar] [CrossRef] [PubMed]
- Kahlos, K.; Soini, Y.; Sormunen, R.; Kaarteenaho-Wiik, R.; Pääkkö, P.; Linnainmaa, K.; Kinnula, V.L. Expression and Prognostic Significance of Catalase in Malignant Mesothelioma. Cancer 2001, 91, 1349–1357. [Google Scholar] [CrossRef] [PubMed]
- Chekulayeva, L.V.; Shevchuk, I.N.; Chekulayev, V.A. Influence of Temperature on the Efficiency of Photodestruction of Ehrlich Ascites Carcinoma Cells Sensitized by Hematoporphyrin Derivative. Exp. Oncol. 2004, 26, 125–139. [Google Scholar]
- Flohé, L. The Impact of Thiol Peroxidases on Redox Regulation. Free Radic. Res. 2016, 50, 126–142. [Google Scholar] [CrossRef]
- Flohé, L.; Toppo, S.; Cozza, G.; Ursini, F. A Comparison of Thiol Peroxidase Mechanisms. Antioxid. Redox Signal. 2011, 15, 763–780. [Google Scholar] [CrossRef]
- Dickinson, D.A.; Forman, H.J. Cellular Glutathione and Thiols Metabolism. Biochem. Pharmacol. 2002, 64, 1019–1026. [Google Scholar] [CrossRef]
- Franco, R.; Cidlowski, J.A. Apoptosis and Glutathione: Beyond an Antioxidant. Cell Death Differ. 2009, 16, 1303–1314. [Google Scholar] [CrossRef]
- Sies, H.; Sharov, V.S.; Klotz, L.-O.; Briviba, K. Glutathione Peroxidase Protects against Peroxynitrite-Mediated Oxidations. J. Biol. Chem. 1997, 272, 27812–27817. [Google Scholar] [CrossRef]
- Hayes, J.D.; Flanagan, J.U.; Jowsey, I.R. Glutathione Transferases. Annu. Rev. Pharmacol. Toxicol. 2005, 45, 51–88. [Google Scholar] [CrossRef]
- Adler, V.; Yin, Z.; Fuchs, S.Y.; Benezra, M.; Rosario, L.; Tew, K.D.; Pincus, M.R.; Sardana, M.; Henderson, C.J.; Wolf, C.R.; et al. Regulation of JNK Signaling by GSTp. EMBO J. 1999, 18, 1321–1334. [Google Scholar] [CrossRef]
- Dabrowski, M.J.; Maeda, D.; Zebala, J.; Lu, W.D.; Mahajan, S.; Kavanagh, T.J.; Atkins, W.M. Glutathione S-Transferase P1-1 Expression Modulates Sensitivity of Human Kidney 293 Cells to Photodynamic Therapy with Hypericin. Arch. Biochem. Biophys. 2006, 449, 94–103. [Google Scholar] [CrossRef] [PubMed]
- Singhal, S.S.; Singh, S.P.; Singhal, P.; Horne, D.; Singhal, J.; Awasthi, S. Antioxidant Role of Glutathione S-Transferases: 4-Hydroxynonenal, a Key Molecule in Stress-Mediated Signaling. Toxicol. Appl. Pharmacol. 2015, 289, 361–370. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Ahn, Y.J.; Asmis, R. Sexual Dimorphism in Glutathione Metabolism and Glutathione-Dependent Responses. Redox Biol. 2020, 31, 101410. [Google Scholar] [CrossRef] [PubMed]
- Cooper, A.J.L.; Hanigan, M.H. Metabolism of Glutathione S-Conjugates: Multiple Pathways. In Comprehensive Toxicology; Elsevier: Amsterdam, The Netherlands, 2018; pp. 363–406. ISBN 978-0-08-100601-6. [Google Scholar]
- Townsend, D.M.; Tew, K.D. The Role of Glutathione-S-Transferase in Anti-Cancer Drug Resistance. Oncogene 2003, 22, 7369–7375. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.M.; Chung, C.-W.; Kim, C.H.; Kim, D.H.; Kwak, T.W.; Jeong, Y.-I.; Kang, D.H. Defensive Mechanism in Cholangiocarcinoma Cells against Oxidative Stress Induced by Chlorin E6-Based Photodynamic Therapy. Drug Des. Dev. Ther. 2014, 8, 1451–1462. [Google Scholar] [CrossRef]
- Lin, S.; Lei, K.; Du, W.; Yang, L.; Shi, H.; Gao, Y.; Yin, P.; Liang, X.; Liu, J. Enhancement of Oxaliplatin Sensitivity in Human Colorectal Cancer by Hypericin Mediated Photodynamic Therapy via ROS-Related Mechanism. Int. J. Biochem. Cell Biol. 2016, 71, 24–34. [Google Scholar] [CrossRef] [PubMed]
- Wang, H. Phospholipid Hydroperoxide Glutathione Peroxidase Protects against Singlet Oxygen-Induced Cell Damage of Photodynamic Therapy. Free Radic. Biol. Med. 2001, 30, 825–835. [Google Scholar] [CrossRef] [PubMed]
- Lu, W.D.; Atkins, W.M. A Novel Antioxidant Role for Ligandin Behavior of Glutathione S-Transferases: Attenuation of the Photodynamic Effects of Hypericin. Biochemistry 2004, 43, 12761–12769. [Google Scholar] [CrossRef]
- Spassov, S.G.; Donus, R.; Ihle, P.M.; Engelstaedter, H.; Hoetzel, A.; Faller, S. Hydrogen Sulfide Prevents Formation of Reactive Oxygen Species through PI3K/Akt Signaling and Limits Ventilator-Induced Lung Injury. Oxidative Med. Cell. Longev. 2017, 2017, 3715037. [Google Scholar] [CrossRef] [PubMed]
- Calvo, G.; Céspedes, M.; Casas, A.; Di Venosa, G.; Sáenz, D. Hydrogen Sulfide Decreases Photodynamic Therapy Outcome through the Modulation of the Cellular Redox State. Nitric Oxide 2022, 125–126, 57–68. [Google Scholar] [CrossRef] [PubMed]
- Wagener, F.A.D.T.G.; Volk, H.-D.; Willis, D.; Abraham, N.G.; Soares, M.P.; Adema, G.J.; Figdor, C.G. Different Faces of the Heme-Heme Oxygenase System in Inflammation. Pharmacol. Rev. 2003, 55, 551–571. [Google Scholar] [CrossRef] [PubMed]
- Abraham, N.G.; Kappas, A. Pharmacological and Clinical Aspects of Heme Oxygenase. Pharmacol. Rev. 2008, 60, 79–127. [Google Scholar] [CrossRef] [PubMed]
- Dunn, L.L.; Midwinter, R.G.; Ni, J.; Hamid, H.A.; Parish, C.R.; Stocker, R. New Insights into Intracellular Locations and Functions of Heme Oxygenase-1. Antioxid. Redox Signal. 2014, 20, 1723–1742. [Google Scholar] [CrossRef] [PubMed]
- Linnenbaum, M.; Busker, M.; Kraehling, J.R.; Behrends, S. Heme Oxygenase Isoforms Differ in Their Subcellular Trafficking during Hypoxia and Are Differentially Modulated by Cytochrome P450 Reductase. PLoS ONE 2012, 7, e35483. [Google Scholar] [CrossRef] [PubMed]
- Tenhunen, R.; Marver, H.S.; Schmid, R. Microsomal Heme Oxygenase. J. Biol. Chem. 1969, 244, 6388–6394. [Google Scholar] [CrossRef]
- Hayashi, S.; Omata, Y.; Sakamoto, H.; Higashimoto, Y.; Hara, T.; Sagara, Y.; Noguchi, M. Characterization of Rat Heme Oxygenase-3 Gene. Implication of Processed Pseudogenes Derived from Heme Oxygenase-2 Gene. Gene 2004, 336, 241–250. [Google Scholar] [CrossRef]
- Gene HMOX1—Heme Oxygenase 1 (Human). Available online: https://pubchem.ncbi.nlm.nih.gov/gene/HMOX1/human (accessed on 20 February 2023).
- HMOX2 Heme Oxygenase 2 [Homo Sapiens (Human)]-Gene-NCBI. Available online: https://www.ncbi.nlm.nih.gov/gene/3163 (accessed on 26 September 2023).
- Kutty, R.K.; Kutty, G.; Rodriguez, I.R.; Chader, G.J.; Wiggert, B. Chromosomal Localization of the Human Heme Oxygenase Genes: Heme Oxygenase-1 (HMOX1) Maps to Chromosome 22q12 and Heme Oxygenase-2 (HMOX2) Maps to Chromosome 16p13.3. Genomics 1994, 20, 513–516. [Google Scholar] [CrossRef]
- UniProtKB HMOX1—Heme Oxygenase 1—Homo Sapiens (Human). Available online: https://www.uniprot.org/uniprotkb/P09601/entry#sequences (accessed on 20 February 2023).
- Keyse, S.M.; Tyrrell, R.M. Heme Oxygenase Is the Major 32-kDa Stress Protein Induced in Human Skin Fibroblasts by UVA Radiation, Hydrogen Peroxide, and Sodium Arsenite. Proc. Natl. Acad. Sci. USA 1989, 86, 99–103. [Google Scholar] [CrossRef]
- HMOX2—Heme Oxygenase 2—Homo Sapiens (Human)|UniProtKB|UniProt. Available online: https://www.uniprot.org/uniprotkb/P30519/entry (accessed on 26 September 2023).
- Zakhary, R.; Gaine, S.P.; Dinerman, J.L.; Ruat, M.; Flavahan, N.A.; Snyder, S.H. Heme Oxygenase 2: Endothelial and Neuronal Localization and Role in Endothelium-Dependent Relaxation. Proc. Natl. Acad. Sci. USA 1996, 93, 795–798. [Google Scholar] [CrossRef]
- Wu, M.-L.; Ho, Y.-C.; Lin, C.-Y.; Yet, S.-F. Heme Oxygenase-1 in Inflammation and Cardiovascular Disease. Am. J. Cardiovasc. Dis. 2011, 1, 150–158. [Google Scholar] [PubMed]
- Nowis, D.; Legat, M.; Grzela, T.; Niderla, J.; Wilczek, E.; Wilczynski, G.M.; Głodkowska, E.; Mrówka, P.; Issat, T.; Dulak, J.; et al. Heme Oxygenase-1 Protects Tumor Cells against Photodynamic Therapy-Mediated Cytotoxicity. Oncogene 2006, 25, 3365–3374. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, T.; Suzuki, S.; Misawa, S.; Akimoto, J.; Shinoda, Y.; Fujiwara, Y. Photodynamic Therapy Using Talaporfin Sodium Induces Heme Oxygenase-1 Expression in Rat Malignant Meningioma KMY-J Cells. J. Toxicol. Sci. 2018, 43, 353–358. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, T.; Misawa, S.; Suzuki, S.; Saeki, N.; Shinoda, Y.; Tsuneoka, Y.; Akimoto, J.; Fujiwara, Y. Possible Mechanism of Heme Oxygenase-1 Expression in Rat Malignant Meningioma KMY-J Cells Subjected to Talaporfin Sodium-Mediated Photodynamic Therapy. Photodiagn. Photodyn. Ther. 2020, 32, 102009. [Google Scholar] [CrossRef] [PubMed]
- Grimm, S.; Mvondo, D.; Grune, T.; Breusing, N. The Outcome of 5-ALA-Mediated Photodynamic Treatment in Melanoma Cells Is Influenced by Vitamin C and Heme Oxygenase-1. BioFactors 2011, 37, 17–24. [Google Scholar] [CrossRef] [PubMed]
- Kocanova, S.; Buytaert, E.; Matroule, J.-Y.; Piette, J.; Golab, J.; de Witte, P.; Agostinis, P. Induction of Heme-Oxygenase 1 Requires the p38MAPK and PI3K Pathways and Suppresses Apoptotic Cell Death Following Hypericin-Mediated Photodynamic Therapy. Apoptosis 2007, 12, 731–741. [Google Scholar] [CrossRef] [PubMed]
- Medina, M.V.; Sapochnik, D.; Garcia Solá, M.; Coso, O. Regulation of the Expression of Heme Oxygenase-1: Signal Transduction, Gene Promoter Activation, and Beyond. Antioxid. Redox Signal. 2020, 32, 1033–1044. [Google Scholar] [CrossRef]
- Loboda, A.; Damulewicz, M.; Pyza, E.; Jozkowicz, A.; Dulak, J. Role of Nrf2/HO-1 System in Development, Oxidative Stress Response and Diseases: An Evolutionarily Conserved Mechanism. Cell. Mol. Life Sci. 2016, 73, 3221–3247. [Google Scholar] [CrossRef]
- PubChem Carbon Monoxide. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/281 (accessed on 20 February 2023).
- Piantadosi, C.A.; Sylvia, A.L.; Saltzman, H.A.; Jobsis-Vandervliet, F.F. Carbon Monoxide-Cytochrome Interactions in the Brain of the Fluorocarbon-Perfused Rat. J. Appl. Physiol. 1985, 58, 665–672. [Google Scholar] [CrossRef] [PubMed]
- Coceani, F.; Kelsey, L.; Seidlitz, E. Carbon Monoxide-Induced Relaxation of the Ductus Arteriosus in the Lamb: Evidence against the Prime Role of Guanylyl Cyclase. Br. J. Pharmacol. 1996, 118, 1689–1696. [Google Scholar] [CrossRef] [PubMed]
- Lancel, S.; Hassoun, S.M.; Favory, R.; Decoster, B.; Motterlini, R.; Neviere, R. Carbon Monoxide Rescues Mice from Lethal Sepsis by Supporting Mitochondrial Energetic Metabolism and Activating Mitochondrial Biogenesis. J. Pharmacol. Exp. Ther. 2009, 329, 641–648. [Google Scholar] [CrossRef] [PubMed]
- Ryter, S.W.; Otterbein, L.E. Carbon Monoxide in Biology and Medicine. Bioessays 2004, 26, 270–280. [Google Scholar] [CrossRef] [PubMed]
- Jansen, T.; Hortmann, M.; Oelze, M.; Opitz, B.; Steven, S.; Schell, R.; Knorr, M.; Karbach, S.; Schuhmacher, S.; Wenzel, P.; et al. Conversion of Biliverdin to Bilirubin by Biliverdin Reductase Contributes to Endothelial Cell Protection by Heme Oxygenase-1—Evidence for Direct and Indirect Antioxidant Actions of Bilirubin. J. Mol. Cell. Cardiol. 2010, 49, 186–195. [Google Scholar] [CrossRef] [PubMed]
- Jansen, T.; Daiber, A. Direct Antioxidant Properties of Bilirubin and Biliverdin. Is There a Role for Biliverdin Reductase? Front. Pharmacol. 2012, 3, 30. [Google Scholar] [CrossRef] [PubMed]
- Stocker, R.; Yamamoto, Y.; McDonagh, A.F.; Glazer, A.N.; Ames, B.N. Bilirubin Is an Antioxidant of Possible Physiological Importance. Science 1987, 235, 1043–1046. [Google Scholar] [CrossRef]
- Mancuso, C.; Barone, E.; Guido, P.; Miceli, F.; Di Domenico, F.; Perluigi, M.; Santangelo, R.; Preziosi, P. Inhibition of Lipid Peroxidation and Protein Oxidation by Endogenous and Exogenous Antioxidants in Rat Brain Microsomes in Vitro. Neurosci. Lett. 2012, 518, 101–105. [Google Scholar] [CrossRef]
- Minetti, M.; Mallozzi, C.; Di Stasi, A.M.M.; Pietraforte, D. Bilirubin Is an Effective Antioxidant of Peroxynitrite-Mediated Protein Oxidation in Human Blood Plasma. Arch. Biochem. Biophys. 1998, 352, 165–174. [Google Scholar] [CrossRef]
- Frank, J.; Lornejad-Schäfer, M.; Schöffl, H.; Flaccus, A.; Lambert, C.; Biesalski, H. Inhibition of Heme Oxygenase-1 Increases Responsiveness of Melanoma Cells to ALA-Based Photodynamic Therapy. Int. J. Oncol. 2007, 31, 1539–1545. [Google Scholar] [CrossRef]
- Zhong, H.; Huang, P.; Yan, P.; Chen, P.; Shi, Q.; Zhao, Z.; Chen, J.; Shu, X.; Wang, P.; Yang, B.; et al. Versatile Nanodrugs Containing Glutathione and Heme Oxygenase 1 Inhibitors Enable Suppression of Antioxidant Defense System in a Two-Pronged Manner for Enhanced Photodynamic Therapy. Adv. Healthc. Mater. 2021, 10, 2100770. [Google Scholar] [CrossRef]
- Cheng, P.-Y.; Lee, Y.-M.; Shih, N.-L.; Chen, Y.-C.; Yen, M.-H. Heme Oxygenase-1 Contributes to the Cytoprotection of Alpha-Lipoic Acid via Activation of P44/42 Mitogen-Activated Protein Kinase in Vascular Smooth Muscle Cells. Free Radic. Biol. Med. 2006, 40, 1313–1322. [Google Scholar] [CrossRef]
- Sandland, J.; Malatesti, N.; Boyle, R. Porphyrins and Related Macrocycles: Combining Photosensitization with Radio- or Optical-Imaging for next Generation Theranostic Agents. Photodiagnosis Photodyn. Ther. 2018, 23, 281–294. [Google Scholar] [CrossRef]
- Shan, Y.; Lambrecht, R.W.; Donohue, S.E.; Bonkovsky, H.L. Role of Bach1 and Nrf2 in Up-regulation of the Heme Oxygenase-1 Gene by Cobalt Protoporphyrin. FASEB J. 2006, 20, 2651–2653. [Google Scholar] [CrossRef]
- Shi, L.; Fang, J. Implication of Heme Oxygenase-1 in the Sensitivity of Nasopharyngeal Carcinomas to Radiotherapy. J. Exp. Clin. Cancer Res. 2008, 27, 13. [Google Scholar] [CrossRef] [PubMed]
- Marinissen, M.J.; Tanos, T.; Bolós, M.; de Sagarra, M.R.; Coso, O.A.; Cuadrado, A. Inhibition of Heme Oxygenase-1 Interferes with the Transforming Activity of the Kaposi Sarcoma Herpesvirusencoded G Protein-Coupled Receptor *♦. J. Biol. Chem. 2006, 281, 11332–11346. [Google Scholar] [CrossRef] [PubMed]
- Tarhini, A.A.; Belani, C.P.; Luketich, J.D.; Argiris, A.; Ramalingam, S.S.; Gooding, W.; Pennathur, A.; Petro, D.; Kane, K.; Liggitt, D.; et al. A Phase I Study of Concurrent Chemotherapy (Paclitaxel and Carboplatin) and Thoracic Radiotherapy with Swallowed Manganese Superoxide Dismutase Plasmid Liposome Protection in Patients with Locally Advanced Stage III Non-Small-Cell Lung Cancer. Hum. Gene Ther. 2011, 22, 336–342. [Google Scholar] [CrossRef] [PubMed]
- Ismy, J.; Sugandi, S.; Rachmadi, D.; Hardjowijoto, S.; Mustafa, A. The Effect of Exogenous Superoxide Dismutase (SOD) on Caspase-3 Activation and Apoptosis Induction in Pc-3 Prostate Cancer Cells. Res. Rep. Urol. 2020, 12, 503–508. [Google Scholar] [CrossRef] [PubMed]
- Spitz, D.R.; Dornfeld, K.J.; Krishnan, K.; Gius, D. (Eds.) Oxidative Stress in Cancer Biology and Therapy; Humana Press: Totowa, NJ, USA, 2012; ISBN 978-1-61779-396-7. [Google Scholar]
- Alexandre, J.; Nicco, C.; Chéreau, C.; Laurent, A.; Weill, B.; Goldwasser, F.; Batteux, F. Improvement of the Therapeutic Index of Anticancer Drugs by the Superoxide Dismutase Mimic Mangafodipir. J. Natl. Cancer Inst. 2006, 98, 236–244. [Google Scholar] [CrossRef] [PubMed]
- Blanco, A.; Blanco, G. Chapter 16—Amino Acid Metabolism. In Medical Biochemistry, 2nd ed.; Blanco, A., Blanco, G., Eds.; Academic Press: Cambridge, MA, USA, 2022; pp. 401–435. ISBN 978-0-323-91599-1. [Google Scholar]
- Villablanca, J.G.; Volchenboum, S.L.; Cho, H.; Kang, M.H.; Cohn, S.L.; Anderson, C.P.; Marachelian, A.; Groshen, S.; Tsao-Wei, D.; Matthay, K.K.; et al. A Phase I New Approaches to Neuroblastoma Therapy Study of Buthionine Sulfoximine and Melphalan With Autologous Stem Cells for Recurrent/Refractory High-Risk Neuroblastoma: Phase I BSO-Melphalan in Neuroblastoma. Pediatr. Blood Cancer 2016, 63, 1349–1356. [Google Scholar] [CrossRef] [PubMed]
- Niu, B.; Liao, K.; Zhou, Y.; Wen, T.; Quan, G.; Pan, X.; Wu, C. Application of Glutathione Depletion in Cancer Therapy: Enhanced ROS-Based Therapy, Ferroptosis, and Chemotherapy. Biomaterials 2021, 277, 121110. [Google Scholar] [CrossRef] [PubMed]
- Yuan, J.-L.; Zheng, W.-X.; Yan, F.; Xue, Q.; Wu, G.-J.; Qin, W.-J.; Wang, F.-L.; Qin, J.; Tian, C.-J. Heme Oxygenase-1 Is a Predictive Biomarker for Therapeutic Targeting of Advanced Clear Cell Renal Cell Carcinoma Treated with Sorafenib or Sunitinib. OncoTargets Ther. 2015, 8, 2081–2088. [Google Scholar] [CrossRef] [PubMed]
- Huang, P.; Feng, L.; Oldham, E.A.; Keating, M.J.; Plunkett, W. Superoxide Dismutase as a Target for the Selective Killing of Cancer Cells. Nature 2000, 407, 390–395. [Google Scholar] [CrossRef] [PubMed]
- Kimani, S.G.; Phillips, J.B.; Bruce, J.I.; MacRobert, A.J.; Golding, J.P. Antioxidant Inhibitors Potentiate the Cytotoxicity of Photodynamic Therapy. Photochem. Photobiol. 2012, 88, 175–187. [Google Scholar] [CrossRef] [PubMed]
- Saczko, J.; Choromańska, A.; Rembiałkowska, N.; Dubińska-Magiera, M.; Bednarz-Misa, I.; Bar, J.; Marcinkowska, A.; Kulbacka, J. Oxidative Modification Induced by Photodynamic Therapy with Photofrin®II and 2-Methoxyestradiol in Human Ovarian Clear Carcinoma (OvBH-1) and Human Breast Adenocarcinoma (MCF-7) Cells. Biomed. Pharmacother. 2015, 71, 30–36. [Google Scholar] [CrossRef] [PubMed]
- Kimáková, P.; Solár, P.; Fecková, B.; Sačková, V.; Solárová, Z.; Ilkovičová, L.; Kello, M. Photoactivated Hypericin Increases the Expression of SOD-2 and Makes MCF-7 Cells Resistant to Photodynamic Therapy. Biomed. Pharmacother. 2017, 85, 749–755. [Google Scholar] [CrossRef]
- Waszkiewicz, M.; Choromanska, A.; Kulbacka, J.; Saczko, J. The Photodynamic Reaction with IR-775 Cyanine Combined with 2-Methoxyestradiol in Ovarian (SKOV-3) and Human Breast Adenocarcinoma (MDA MB-231) Cell Lines. Photodiagn. Photodyn. Ther. 2022, 38, 102766. [Google Scholar] [CrossRef]
- Cocco, D.; Calabrese, L.; Rigo, A.; Argese, E.; Rotilio, G. Re-Examination of the Reaction of Diethyldithiocarbamate with the Copper of Superoxide Dismutase. J. Biol. Chem. 1981, 256, 8983–8986. [Google Scholar] [CrossRef]
- Misra, H.P. Reaction of Copper-Zinc Superoxide Dismutase with Diethyldithiocarbamate. J. Biol. Chem. 1979, 254, 11623–11628. [Google Scholar] [CrossRef] [PubMed]
- Kanno, S.; Matsukawa, E.; Miura, A.; Shouji, A.; Asou, K.; Ishikawa, M. Diethyldithiocarbamate-Induced Cytotoxicity and Apoptosis in Leukemia Cell Lines. Biol. Pharm. Bull. 2003, 26, 964–968. [Google Scholar] [CrossRef] [PubMed]
- Skrott, Z.; Cvek, B. Diethyldithiocarbamate Complex with Copper: The Mechanism of Action in Cancer Cells. Mini-Rev. Med. Chem. 2012, 12, 1184–1192. [Google Scholar] [CrossRef] [PubMed]
- Feuser, P.E.; Cordeiro, A.P.; de Bem Silveira, G.; Borges Corrêa, M.E.A.; Lock Silveira, P.C.; Sayer, C.; de Araújo, P.H.H.; Machado-de-Ávila, R.A.; Dal Bó, A.G. Co-Encapsulation of Sodium Diethyldithiocarbamate (DETC) and Zinc Phthalocyanine (ZnPc) in Liposomes Promotes Increases Phototoxic Activity against (MDA-MB 231) Human Breast Cancer Cells. Colloids Surf. B Biointerfaces 2021, 197, 111434. [Google Scholar] [CrossRef] [PubMed]
- Athar, M.; Mukhtar, H.; Elmets, C.A.; Tarif Zaim, M.; Lloyd, J.R.; Bickers, D.R. In Situ Evidence for the Involvement of Superoxide Anions in Cutaneous Porphyrin Photosensitization. Biochem. Biophys. Res. Commun. 1988, 151, 1054–1059. [Google Scholar] [CrossRef]
- Wright, K.E.; MacRobert, A.J.; Phillips, J.B. Inhibition of Specific Cellular Antioxidant Pathways Increases the Sensitivity of Neurons to Meta-Tetrahydroxyphenyl Chlorin-Mediated Photodynamic Therapy in a 3D Co-Culture Model. Photochem. Photobiol. 2012, 88, 1539–1545. [Google Scholar] [CrossRef] [PubMed]
- Noël, R.; Song, X.; Jiang, R.; Chalmers, M.J.; Griffin, P.R.; Kamenecka, T.M. Efficient Methodology for the Synthesis of 3-Amino-1,2,4-Triazoles. J. Org. Chem. 2009, 74, 7595–7597. [Google Scholar] [CrossRef] [PubMed]
- Naito, Y.; Akahoshi, F.; Takeda, S.; Okada, T.; Kajii, M.; Nishimura, H.; Sugiura, M.; Fukaya, C.; Kagitani, Y. Synthesis and Pharmacological Activity of Triazole Derivatives Inhibiting Eosinophilia. J. Med. Chem. 1996, 39, 3019–3029. [Google Scholar] [CrossRef] [PubMed]
- Hartmann, M.; Bauer, H.-J.; Wermann, K. Biocide Polymers. Polym. Bull. 1985, 13, 195–200. [Google Scholar] [CrossRef]
- Margoliash, E.; Novogrodsky, A.; Schejter, A. Irreversible Reaction of 3-Amino-1:2:4-Triazole and Related Inhibitors with the Protein of Catalase. Biochem. J. 1960, 74, 339–348. [Google Scholar] [CrossRef]
- Darr, D.; Fridovich, I. Irreversible Inactivation of Catalase by 3-Amino-1,2,4-Triazole. Biochem. Pharmacol. 1986, 35, 3642. [Google Scholar] [CrossRef]
- Mariño-Ocampo, N.; Dibona-Villanueva, L.; Escobar-Álvarez, E.; Guerra-Díaz, D.; Zúñiga-Núñez, D.; Fuentealba, D.; Robinson-Duggon, J. Recent Photosensitizer Developments, Delivery Strategies and Combination-based Approaches for Photodynamic Therapy. Photochem. Photobiol. 2023, 99, 469–497. [Google Scholar] [CrossRef]
- Yao, M.; Gu, C.; Doyle, F.J.; Zhu, H.; Redmond, R.W.; Kochevar, I.E. Why Is Rose Bengal More Phototoxic to Fibroblasts In Vitro Than In Vivo? Photochem. Photobiol. 2014, 90, 297–305. [Google Scholar] [CrossRef] [PubMed]
- Price, M.; Terlecky, S.R.; Kessel, D. A Role for Hydrogen Peroxide in the Pro-Apoptotic Effects of Photodynamic Therapy. Photochem. Photobiol. 2009, 85, 1491–1496. [Google Scholar] [CrossRef]
- Griffith, O.W.; Meister, A. Potent and Specific Inhibition of Glutathione Synthesis by Buthionine Sulfoximine (S-n-Butyl Homocysteine Sulfoximine). J. Biol. Chem. 1979, 254, 7558–7560. [Google Scholar] [CrossRef]
- Kiesslich, T.; Plaetzer, K.; Oberdanner, C.B.; Berlanda, J.; Obermair, F.J.; Krammer, B. Differential Effects of Glucose Deprivation on the Cellular Sensitivity towards Photodynamic Treatment-Based Production of Reactive Oxygen Species and Apoptosis-Induction. FEBS Lett. 2005, 579, 185–190. [Google Scholar] [CrossRef] [PubMed]
- Miller, A.C.; Henderson, B.W. The Influence of Cellular Glutathione Content on Cell Survival Following Photodynamic Treatment in Vitro. Radiat. Res. 1986, 107, 83. [Google Scholar] [CrossRef] [PubMed]
- Thomas, J.P.; Girotti, A.W. Role of Lipid Peroxidation in Hematoporphyrin Derivative-Sensitized Photokilling of Tumor Cells: Protective Effects of Glutathione Peroxidase. Cancer Res. 1989, 49, 1682–1686. [Google Scholar]
- Bachor, R.; Scholz, M.; Shea, C.R. Mechanism of Photosensitization by Microsphere-Bound Chlorin e 6 in Human Bladder Carcinoma Cells. Cancer Res. 1991, 51, 4410–4414. [Google Scholar]
- Theodossiou, T.A.; Olsen, C.E.; Jonsson, M.; Kubin, A.; Hothersall, J.S.; Berg, K. The Diverse Roles of Glutathione-Associated Cell Resistance against Hypericin Photodynamic Therapy. Redox Biol. 2017, 12, 191–197. [Google Scholar] [CrossRef]
- Lee, H.M.; Kim, D.H.; Lee, H.L.; Cha, B.; Kang, D.H.; Jeong, Y.-I. Synergistic Effect of Buthionine Sulfoximine on the Chlorin E6-Based Photodynamic Treatment of Cancer Cells. Arch. Pharm. Res. 2019, 42, 990–999. [Google Scholar] [CrossRef]
- Jiang, F.; Robin, A.M.; Katakowski, M.; Tong, L.; Espiritu, M.; Singh, G.; Chopp, M. Photodynamic Therapy with Photofrin in Combination with Buthionine Sulfoximine (BSO) of Human Glioma in the Nude Rat. Lasers Med. Sci. 2003, 18, 128–133. [Google Scholar] [CrossRef]
- Jiang, F.; Lilge, L.; Belcuig, M.; Singh, G.; Grenier, J.; Li, Y.; Chopp, M. Photodynamic Therapy Using Photofrin in Combination with Buthionine Sulfoximine (BSO) to Treat 9L Gliosarcoma in Rat Brain. Lasers Surg. Med. 1998, 23, 161–166. [Google Scholar] [CrossRef]
- Yoo, J.; Jang, S.; Park, C.; Lee, D.; Kwon, S.; Koo, H. Lowering Glutathione Level by Buthionine Sulfoximine Enhances in Vivo Photodynamic Therapy Using Chlorin E6-Loaded Nanoparticles. Dye. Pigment. 2020, 176, 108207. [Google Scholar] [CrossRef]
- Sun, H.; Feng, M.; Chen, S.; Wang, R.; Luo, Y.; Yin, B.; Li, J.; Wang, X. Near-Infrared Photothermal Liposomal Nanoantagonists for Amplified Cancer Photodynamic Therapy. J. Mater. Chem. B 2020, 8, 7149–7159. [Google Scholar] [CrossRef]
- Snyder, N.A.; Silva, G.M. Deubiquitinating Enzymes (DUBs): Regulation, Homeostasis, and Oxidative Stress Response. J. Biol. Chem. 2021, 297, 101077. [Google Scholar] [CrossRef] [PubMed]
- Harris, I.S.; Endress, J.E.; Coloff, J.L.; Selfors, L.M.; McBrayer, S.K.; Rosenbluth, J.M.; Takahashi, N.; Dhakal, S.; Koduri, V.; Oser, M.G.; et al. Deubiquitinases Maintain Protein Homeostasis and Survival of Cancer Cells upon Glutathione Depletion. Cell Metab. 2019, 29, 1166–1181.e6. [Google Scholar] [CrossRef] [PubMed]
- Puppa, A.D.; Lombardi, G.; Rossetto, M.; Rustemi, O.; Berti, F.; Cecchin, D.; Gardiman, M.P.; Rolma, G.; Persano, L.; Zagonel, V.; et al. Outcome of Patients Affected by Newly Diagnosed Glioblastoma Undergoing Surgery Assisted by 5-Aminolevulinic Acid Guided Resection Followed by BCNU Wafers Implantation: A 3-Year Follow-Up. J. Neurooncol. 2017, 131, 331–340. [Google Scholar] [CrossRef] [PubMed]
- Nathan, C.; Arrick, B.; Murray, H.; DeSantis, N.; Cohm, Z. Tumor Cell Anti-Oxidant Defenses. Inhibition of the Glutathione Redox Cycle Enhances Macrophage-Mediated Cytolysis. J. Exp. Med. 1981, 153, 766–782. [Google Scholar] [CrossRef]
- Watts, C.; Ashkan, K.; Jenkinson, M.D.; Price, S.J.; Santarius, T.; Matys, T.; Zhang, T.T.; Finch, A.; Collins, P.; Allinson, K.; et al. An Evaluation of the Tolerability and Feasibility of Combining 5-Amino-Levulinic Acid (5-ALA) with BCNU Wafers in the Surgical Management of Primary Glioblastoma. Cancers 2021, 13, 3241. [Google Scholar] [CrossRef] [PubMed]
- Westphal, M.; Hilt, D.C.; Bortey, E.; Delavault, P.; Olivares, R.; Warnke, P.C.; Whittle, I.R.; Jääskeläinen, J.; Ram, Z. A Phase 3 Trial of Local Chemotherapy with Biodegradable Carmustine (BCNU) Wafers (Gliadel Wafers) in Patients with Primary Malignant Glioma1,2. Neuro Oncol. 2003, 5, 79–88. [Google Scholar] [CrossRef]
- Oberdanner, C.B.; Plaetzer, K.; Kiesslich, T.; Krammer, B. Photodynamic Treatment with Fractionated Light Decreases Production of Reactive Oxygen Species and Cytotoxicity In Vitro via Regeneration of Glutathione. Photochem. Photobiol. 2005, 81, 609–613. [Google Scholar] [CrossRef]
- Sun, W.G.; Weydert, C.J.; Zhang, Y.; Yu, L.; Liu, J.; Spitz, D.R.; Cullen, J.J.; Oberley, L.W. Superoxide Enhances the Antitumor Combination of AdMnSOD Plus BCNU in Breast Cancer. Cancers 2010, 2, 68–87. [Google Scholar] [CrossRef]
- Chekulayeva, L.; Chekulayeva, I.; Chekulayev, V. On the Mechanism of the Phototoxic Action of Haematoporphyrin Derivative towards Tumour Cells. Proc. Est. Acad. Sci. Biology. Ecol. 2005, 54, 83. [Google Scholar] [CrossRef]
- Chekulayeva, L.V.; Chekulayev, V.A.; Shevchuk, I.N. Active Oxygen Intermediates in the Degradation of Hematoporphyrin Derivative in Tumor Cells Subjected to Photodynamic Therapy. J. Photochem. Photobiol. B Biol. 2008, 93, 94–107. [Google Scholar] [CrossRef]
- Chaudiere, J.; Wilhelmsen, E.C.; Tappel, A.L. Mechanism of Selenium-Glutathione Peroxidase and Its Inhibition by Mercaptocarboxylic Acids and Other Mercaptans. J. Biol. Chem. 1984, 259, 1043–1050. [Google Scholar] [CrossRef]
- Lubos, E.; Loscalzo, J.; Handy, D.E. Glutathione Peroxidase-1 in Health and Disease: From Molecular Mechanisms to Therapeutic Opportunities. Antioxid. Redox Signal. 2011, 15, 1957–1997. [Google Scholar] [CrossRef]
- Lange, C.; Bednarski, P.J. In Vitro Assessment of Synergistic Effects in Combinations of a Temoporfin-Based Photodynamic Therapy with Glutathione Peroxidase 1 Inhibitors. Photodiagn. Photodyn. Ther. 2021, 36, 102478. [Google Scholar] [CrossRef]
- Behnisch-Cornwell, S.; Bandaru, S.S.M.; Napierkowski, M.; Wolff, L.; Zubair, M.; Urbainsky, C.; Lillig, C.; Schulzke, C.; Bednarski, P.J. Pentathiepins: A Novel Class of Glutathione Peroxidase 1 Inhibitors That Induce Oxidative Stress, Loss of Mitochondrial Membrane Potential and Apoptosis in Human Cancer Cells. ChemMedChem 2020, 15, 1515–1528. [Google Scholar] [CrossRef] [PubMed]
- Musdal, Y.; Hegazy, U.M.; Aksoy, Y.; Mannervik, B. FDA-Approved Drugs and Other Compounds Tested as Inhibitors of Human Glutathione Transferase P1-1. Chem.-Biol. Interact. 2013, 205, 53–62. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Seebacher, N.; Shi, H.; Kan, Q.; Duan, Z. Novel Strategies to Prevent the Development of Multidrug Resistance (MDR) in Cancer. Oncotarget 2017, 8, 84559–84571. [Google Scholar] [CrossRef] [PubMed]
- Khil, M.S.; Kim, S.H.; Pinto, J.T.; Kim, J.H. Ethacrynic Acid: A Novel Radiation Enhancer in Human Carcinoma Cells. Int. J. Radiat. Oncol. *Biol. *Phys. 1996, 34, 375–380. [Google Scholar] [CrossRef] [PubMed]
- Awasthi, S.; Srivastava, S.K.; Ahmad, F.; Ahmad, H.; Ansari, G.A.S. Interactions of Glutathione S-Transferase-π with Ethacrynic Acid and Its Glutathione Conjugate. Biochim. Biophys. Acta BBA-Protein Struct. Mol. Enzymol. 1993, 1164, 173–178. [Google Scholar] [CrossRef]
- Yu, L.; Lee, H.; Rho, S.B.; Park, M.K.; Lee, C.H. Ethacrynic Acid: A Promising Candidate for Drug Repurposing as an Anticancer Agent. Int. J. Mol. Sci. 2023, 24, 6712. [Google Scholar] [CrossRef]
- Yutaka, S.; Shinya, F.; Yasuhiko, F.; Toshio, K. Antiproliferative Effects of Glutathione S -Transferase Inhibitors on the K562 Cell Line. Biochem. Pharmacol. 1990, 39, 1263–1266. [Google Scholar] [CrossRef]
- Won, M.; Koo, S.; Li, H.; Sessler, J.L.; Lee, J.Y.; Sharma, A.; Kim, J.S. An Ethacrynic Acid-Brominated BODIPY Photosensitizer (EA-BPS) Construct Enhances the Lethality of Reactive Oxygen Species in Hypoxic Tumor-Targeted Photodynamic Therapy. Angew. Chem. Int. Ed. 2021, 60, 3196–3204. [Google Scholar] [CrossRef]
- Lyon, R.P.; Hill, J.J.; Atkins, W.M. Novel Class of Bivalent Glutathione S -Transferase Inhibitors. Biochemistry 2003, 42, 10418–10428. [Google Scholar] [CrossRef] [PubMed]
- Oakley, A.J.; Bello, M.L.; Battistoni, A.; Ricci, G.; Rossjohn, J.; Villar, H.O.; Parker, M.W. The Structures of Human Glutathione Transferase P1-1 in Complex with Glutathione and Various Inhibitors at High Resolution. J. Mol. Biol. 1997, 274, 84–100. [Google Scholar] [CrossRef]
- Chen, C.; Wu, C.; Lu, X.; Yan, Z.; Gao, J.; Zhao, H.; Li, S. Coniferyl Ferulate, a Strong Inhibitor of Glutathione S-Transferase Isolated from Radix Angelicae Sinensis, Reverses Multidrug Resistance and Downregulates P-Glycoprotein. Evid.-Based Complement. Altern. Med. 2013, 2013, 639083. [Google Scholar] [CrossRef]
- Li, X.; Kong, R.; Li, Y.; Huang, J.; Zhou, X.; Li, S.; Cheng, H. Carrier-Free Nanomedicine for Enhanced Photodynamic Tumor Therapy through Glutathione S-Transferase Inhibition. Chem. Commun. 2022, 58, 3917–3920. [Google Scholar] [CrossRef] [PubMed]
- Drummond, G.S.; Kappas, A. Prevention of Neonatal Hyperbilirubinemia by Tin Protoporphyrin IX, a Potent Competitive Inhibitor of Heme Oxidation. Proc. Natl. Acad. Sci. USA 1981, 78, 6466–6470. [Google Scholar] [CrossRef]
- Fang, J.; Sawa, T.; Akaike, T.; Akuta, T.; Sahoo, S.K.; Khaled, G.; Hamada, A.; Maeda, H. In Vivo Antitumor Activity of Pegylated Zinc Protoporphyrin: Targeted Inhibition of Heme Oxygenase in Solid Tumor. Cancer Res. 2003, 63, 3567–3574. [Google Scholar] [PubMed]
- Maines, M.D. Zinc · Protoporphyrin Is a Selective Inhibitor of Heme Oxygenase Activity in the Neonatal Rat. Biochim. Biophys. Acta BBA-Gen. Subj. 1981, 673, 339–350. [Google Scholar] [CrossRef] [PubMed]
- Nowis, D.; Bugajski, M.; Winiarska, M.; Bil, J.; Szokalska, A.; Salwa, P.; Issat, T.; Was, H.; Jozkowicz, A.; Dulak, J.; et al. Zinc Protoporphyrin IX, a Heme Oxygenase-1 Inhibitor, Demonstrates Potent Antitumor Effects but Is Unable to Potentiate Antitumor Effects of Chemotherapeutics in Mice. BMC Cancer 2008, 8, 197. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Wang, F.; Shi, L.; Lu, M.; Lee, K.-J.; Ditty, M.M.; Xing, Y.; He, H.-Z.; Ren, X.; Zheng, S.-Y. Nanoscale Coordination Polymers Enabling Antioxidants Inhibition for Enhanced Chemodynamic Therapy. J. Control. Release 2023, 354, 196–206. [Google Scholar] [CrossRef] [PubMed]
- Fang, J.; Liao, L.; Yin, H.; Nakamura, H.; Subr, V.; Ulbrich, K.; Maeda, H. Photodynamic Therapy and Imaging Based on Tumor-Targeted Nanoprobe, Polymer-Conjugated Zinc Protoporphyrin. Future Sci. OA 2015, 1, fso.15.2. [Google Scholar] [CrossRef]
Enzyme Inhibitor | Dose of Enzyme Inhibitor | PDT Base | Test Condition | Incubation Time (hr.) | Effectiveness of enzyme inhibitor | Ref. | ||
---|---|---|---|---|---|---|---|---|
Name | Target | In Vitro | In Vivo | |||||
2-methoxy estradiol (2-ME) | SOD2 | 50 mM | Photofrin | Human ovarian clear carcinoma OvBh-1 cells | 18 | - Cell shrinkage - Actin and microtubule disruption | [176] | |
Human breast adenocarcinoma MCF-7 cells | ||||||||
10 μM | Hypericin | Human breast adenocarcinoma MCF-7 cells | 16 | - 87.5% clonogenic ability * | [177] | |||
50 μM | Cyanine IR-775 | Human breast adenocarcinoma MDA-MB-231 cells | 24 | + 350% PDT cytotoxicity after 24 hr of irradiation* + 73.3% PDT cytotoxicity after 72 hr of irradiation * | [178] | |||
Human ovary adenocarcinoma SKOV-3 cells | + 300% PDT cytotoxicity after 24 hr of irradiation * + 57.1% PDT cytotoxicity after 72 hr of irradiation * | |||||||
3 μM | Redaporfin | Human lung adenocarcinoma A549 cells | 24 | + 45.4% PDT cytotoxicity * | [78] | |||
0.25–10 μM | Photofrin | Murine colon adenocarcinoma C-26 cells | 48 | - 77.6% SOD activity after 48 hr incubation (0.5 μM) * - 87.4% SOD activity after 48 hr incubation (1 μM) * + 200% PDT cytotoxicity at 6 KJ/m2 (0.5 μM) * | [79] | |||
0.25–10 μM | Murine Lewis lung carcinoma (LLC) cells | + 500% PDT cytotoxicity at 6 KJ/m2 (0.5 μM) * | ||||||
0.06–10 μM | Murine macrophage-derived chemokine (MDC) cells | + 1,000% PDT cytotoxicity at 5 KJ/m2 (0.25 μM) * | ||||||
0.06–10 μM | Human breast cancer T47-D cells | + 250% PDT cytotoxicity at 5 KJ/m2 (0.12 μM) * | ||||||
0.25–10 μM | Human pancreatic cancer PANC-1 cells | + 250% PDT cytotoxicity at 6 KJ/m2 (0.5 μM) * | ||||||
0.06–10 μM | Human pancreatic cancer HPAF-II cells | + 200% PDT cytotoxicity at 6 KJ/m2 (0.25 μM) * | ||||||
0.25–10 μM | Human pancreatic cancer HPAC cells | + 167% PDT cytotoxicity at 6 KJ/m2 (0.5 μM) * | ||||||
0.06–10 μM | Human bladder cancer T24 cells | + 300% PDT cytotoxicity at 6 KJ/m2 (0.25 μM) * | ||||||
100 mg/Kg body weight | Murine lewis lung carcinoma (LLC) implanted into B6D2F1 mice | 6 days | - 60.0% tumor volume * + Survival time | |||||
Murine C-26 adenocarcinoma implanted into Balb/c mice | - >90.0% tumor volume * + Survival time (60.0% cure rate) | |||||||
Diethyldithiocarbamate (DDC) | SOD1 | 2–16 μg/mL | Zinc phthalocyanine | Murine embryo fibroblast NIH3T3 cells | 24 | - 50.0% IC50 of the PDT | [183] | |
Human breast adenocarcinoma MDA-MB-231 cells | - 50.0% IC50 of the PDT | |||||||
50 μM | Meta-tetrahydroxyphenyl chlorin | Murine dorsal root ganglia; neuron cells | 1.5 | + 318% PDT cytotoxicity * | [185] | |||
0.4 mM/Kg body weight | Photofrin II | C3H mice | 2 | + 30% potentiation of ear swelling response * | [184] | |||
0.1 mM | Hematoporphyrin | Murine Ehrlich ascites carcinoma (EAC) implanted into mongrel mice | 20mins | - 56.6% SOD1 activity - 25.5% LD50 of the PDT | [109] | |||
3-aminotriazole (3-AT) | Catalase | 30 mM | Benzoporphyrin | Murine leukaemia P388 cells | 0.5 | - 83.3% catalase activity - 23.0% LD50 of the PDT | [193] | |
10 mM | Redaporfin | Human lung adenocarcinoma A549 cells | 24 | + 20.0% PDT cytotoxicity * | [78] | |||
10 mM | Rose Bengal | Primary human skin fibroblasts (FB) grown in collagen gels | 2 | + 16.7% PDT cytotoxicity at 150 J/cm2 * | [192] | |||
25 mM | Hematoporphyrin | Murine Ehrlich ascites carcinoma (EAC) implanted into mongrel mice | 1 | - 38.1% catalase activity - 21.8% LD50 of the PDT | [109] | |||
0.7 mM/Kgbody weight | Photofrin II | C3H mice | 2 | + 50% potentiation of ear swelling response * | [184] | |||
L-buthionine-sulfoximine (BSO) | GCS | 0.002–10 mM | Photofrin II | Chinese hamster ovary CHO cells | 1–24 | - 29.0% to undetected GSH level + PDT cytotoxicity | [196] | |
Chinese hamster lung V-79 cells | - 13.0% to undetected GSH level + PDT cytotoxicity | |||||||
Murine breast carcinoma EMT-6 cells | - 19.0% to undetected GSH level + PDT cytotoxicity | |||||||
Murine fibrosarcoma RIF-1 cells | - 12.0% to undetected GSH level + PDT cytotoxicity | |||||||
1 mM | Hematoporphyrin | Murine leukemia L1210 cells | 12 | + 3-fold log kill at 0.75 μg/mL hematoporphyrin | [197] | |||
1 mM | Chlorin e6 conjugated with polystyrene microsphere | Human bladder carcinoma MGH-U1 cells | 18 | + 36.1% PDT cytotoxicity at 10 J/cm2 | [198] | |||
600 μM | Redaporfin | Human lung adenocarcinoma A549 cells | 24 | + 18.0% PDT cytotoxicity * | [78] | |||
100 μM | Hypericin | Human breast adenocarcinoma MCF-7 cells | Overnight | - 80.0% total GSH level | [199] | |||
Human breast adenocarcinoma MDA-MB-231 cells | - 80.0% total GSH level + 38.5% PDT cytotoxicity * | |||||||
300 μM | Disulphonated aluminum phthalocyanine (AlPcS2) | Human breast adenocarcinoma MCF-7 cells | 24 | + 34.3% PDT cytotoxicity | [175] | |||
500 μM | Meta-tetrahydroxyphenyl chlorin | Murine dorsal root ganglia; neuron cells | 24 | + 535% PDT cytotoxicity * | [185] | |||
Murine satellite glia cells | + 30.0% PDT cytotoxicity | |||||||
0.001–10 mM | Chlorin e6 | Human colorectal carcinoma HCT116 cells | 24 | - 78.0% GSH level at 10 μM BSO * + 45.0% PDT cytotoxicity at 0.5 μg/mL Ce6 with 10 mM BSO * | [200] | |||
Human ampulla vater carcinoma SNU478 cells | - 66.7% GSH level (10 μM BSO) + 72.7% PDT cytotoxicity at 0.5 μg/mL Ce6 with 10 mM BSO * | |||||||
3 mM | Aluminum (III) phthalocyanine tetrasulfonate (AlPcS4) | Human epidermoid carcinoma A431 cells | 18 | - 83.3% GSH level + 144% PDT cytotoxicity at 2 J/cm2 * | [195] | |||
0.5–1000 μg/mL | Photofrin | Human glioma U87 cells: and U251n cells | 24 | + 70.0% PDT cytotoxicity at 5 μg/mL Photofrin with 0.5 μg/mL * | [201] | |||
Human glioma U251n cells | + 60.0% PDT cytotoxicity at 5 μg/mL Photofrin with 0.5 μg/mL * | |||||||
440 mg/Kg body weight | Human U87 glioblastoma implanted into rats | + Superficial tumor damage + 114.3% lesion volume at 70 J/cm2 | ||||||
440 mg/Kg body weight | Photofrin | Murine 9L gliosarcoma implanted into Fischer rats | 24 | - 67.1% GSH level + 111.1% lesion volume | [202] | |||
10 mM | Chlorin e6-loaded poly(ethylene glycol)-block-poly(D,L lactide) nanoparticles | Murine carcinoma SCC-7 cells | 28 | - 75.6% GSH level + 50.0% PDT cytotoxicity at 2 μg/mL Ce6 * | [203] | |||
3 mmol/Kg body weight | Murine carcinoma SCC-7 into implanted mice | 12 | - 75% tumor size after 14 days * + Apoptosis and tissue damage | |||||
N/A | Indocyanine green in near-infrared (NIR) photothermal liposomal nanoantagonists | Murine breast cancer 4T1 cells | 24 | - 26.4% GSH level + 90.9% PDT cytotoxicity + 1.5-fold ROS level | [204] | |||
Murine breast cancer 4T1 implanted into BALB/c mice | 18–24 | - 2.9-fold GSH level - 2.0-fold tumor weight | ||||||
4 mM/Kg body weight | Hematoporphyrin | Murine Ehrlich ascites carcinoma (EAC) implanted into mongrel mice | 14 | - 68.2% GSH level - 63.6% total glutathione level - 21.5% LD50 of the PDT | [109] | |||
0.2–4 μM | Protoporphyrin IX | Murine breast cancer 4T1 cells | 8 | - 28.0% GSH level at 4 μM BSO - GCS expression at 4 μM BSO + 50.0% PDT cytotoxicity at 0.8 μM BSO | [160] | |||
100 μL of 2 mM | Murine breast cancer 4T1 implanted into BALB/c mice | 4 | - 50.0% tumor volume after 12 days * - 62.5% tumor weight after 12 days * | |||||
1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU) | GR | 500 μM | Aluminum (III) phthalocyanine tetrasulfonate (AlPcS4) | Human epidermoid carcinoma A431 cells | 1 | + 23.4% ROS level at 1.8 J/cm2 continuous light * + 146% PDT cytotoxicity at 2.25 J/cm2 continuous light * | [211] | |
Hypericin | + 23.5% ROS level at 0.162 J/cm2 continuous light * + 38.5% PDT cytotoxicity at 0.2 J/cm2 continuous light * | |||||||
500 μM | Aluminum (III) phthalocyanine tetrasulfonate (AlPcS4) | Human epidermoid carcinoma A431 cells | 1 | + 35.3% PDT cytotoxicity at 2 J/cm2 * | [195] | |||
50 μM | Photofrin | AdMnSOD transfected human breast carcinoma ZR-75-1 cells | 1 | + 120% PDT cytotoxicity | [212] | |||
100 μM | Hypericin | Human breast adenocarcinoma MCF-7 cells | Overnight | + 100% PDT cytotoxicity in combination with 100 μM BSO * | [199] | |||
0.1 mM | Hematoporphyrin | Murine Ehrlich ascites carcinoma (EAC) implanted into mongrel mice | 25 mins | - 64.2% GR activity - 21.8% LD50 of the PDT | [109] | |||
Mercaptosuccinic acid (MSA) | GPx1 | 1.5 mM | Rose Bengal | Primary human skin fibroblasts (FB) grown in collagen gels | 2 | + 33.3% PDT cytotoxicity at 150 J/cm2 * | [192] | |
10 mM | Chlorin e6 | Human extrahepatic cholangiocarcinoma SNU1196 cells | 0.5 | - 58.1% GPx activity * + 60.0% ROS level * + 60.0% PDT cytotoxicity * | [122] | |||
1–700 μmol/L | meta-tetrahydroxyphenyl chlorin | Human lung carcinoma A-427 cells | 24 | + Synergistic effect (CI < 1) | [217] | |||
Human oral carcinoma BHY cells | ||||||||
Human esophageal carcinoma KYSE-70 cells | ||||||||
Human urinary bladder carcinoma RT-4 cells | ||||||||
9-chloro-6-ethyl-6H[1,2,3,4,5]pentathiepino[6,7-b]indole (CEPI) | GPx1 | 0.01–50 μmol/L | meta-tetrahydroxyphenyl chlorin | Human esophageal carcinoma KYSE-70 cells | 24 | + Synergistic effect (CI < 1) | [217] | |
4.0–15.9 μmol/L | Human urinary bladder carcinoma RT-4 cells | |||||||
Ethacrynic acid (ECA) | GSTP1-1 | 5 μM | Ethacrynic acid-conjugated brominated BODIPY | Human breast adenocarcinoma MCF-7 cells | 12 | + 50.0% PDT cytotoxicity * | [225] | |
Human breast adenocarcinoma MDA-MB-231 cells | + 133% PDT cytotoxicity* + 36.4% ROS level* + 7.14% Singlet oxygen level * + 13.1% Superoxide anion level * + 243% Hydroxyl radical and peroxynitrite anion level* - 15% GSH level without irradiation* - 730% GSH level with irradiation * | |||||||
5 mg/Kg body weight | Human breast adenocarcinoma MDA-MB-231 implanted into immunodeficient nude mice | 6 | - 56.9% tumor volume * | |||||
SX-324 | GSTP1-1 | 1 μM | Hypericin | GSTP1-1- overexpressed human kidney fibroblast K293 cells | 1 | + 87.2% PDT cytotoxicity | [117] | |
Coniferyl ferulate (Con) | GST | 0.2–2.7 mg/L | Drug self-delivery systems of chlorin e6 and coniferyl ferulate | Human lung adenocarcinoma A549 cells | 20 | + 250% ROS level* + 200% PDT cytotoxicity at 2.7 mg/mL * | [229] | |
Zn(II) protoporphyrin IX (ZnPPIX) | HO-1 | 400 μM | 5-aminolevulinic acid | Human melanoma WM451Lu cells | 16 | + 499% PDT cytotoxicity + 641% PDT cytotoxicity (combined with HO-1 siRNA) | [159] | |
5 μM | 5-aminolevulinic acid | Human melanoma WM451Lu cells | 16 | + 100% PDT cytotoxicity * | [145] | |||
1.25–2.5 μM | Photofrin | Murine colon adenocarcinoma C-26 cells | 24 | + 77.5% PDT cytotoxicity at 4.5 KJ/m2 | [142] | |||
Human ovarian carcinoma MDAH2774 cells | + >42.8% PDT cytotoxicity at 4.5 KJ/m2 | |||||||
1 μM | Talaporfin sodium | Murine meningioma KMY-J cells | 4 | + 900% PDT cytotoxicity at 19.2 μM talaporfin sodium * + Morphological cell damage | [143] | |||
2 μM | Protoporphyrin IX | Murine breast cancer 4T1 cells | 8 | - HO-1 expression | [160] | |||
2.81 mg/Kg body weight | Murine breast cancer 4T1 implanted intoBALB/c mice | 4 | - 70.0% tumor volume after 12 days * - 41.8% tumor weight after 12 days * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Udomsak, W.; Kucinska, M.; Pospieszna, J.; Dams-Kozlowska, H.; Chatuphonprasert, W.; Murias, M. Antioxidant Enzymes in Cancer Cells: Their Role in Photodynamic Therapy Resistance and Potential as Targets for Improved Treatment Outcomes. Int. J. Mol. Sci. 2024, 25, 3164. https://doi.org/10.3390/ijms25063164
Udomsak W, Kucinska M, Pospieszna J, Dams-Kozlowska H, Chatuphonprasert W, Murias M. Antioxidant Enzymes in Cancer Cells: Their Role in Photodynamic Therapy Resistance and Potential as Targets for Improved Treatment Outcomes. International Journal of Molecular Sciences. 2024; 25(6):3164. https://doi.org/10.3390/ijms25063164
Chicago/Turabian StyleUdomsak, Wachirawit, Malgorzata Kucinska, Julia Pospieszna, Hanna Dams-Kozlowska, Waranya Chatuphonprasert, and Marek Murias. 2024. "Antioxidant Enzymes in Cancer Cells: Their Role in Photodynamic Therapy Resistance and Potential as Targets for Improved Treatment Outcomes" International Journal of Molecular Sciences 25, no. 6: 3164. https://doi.org/10.3390/ijms25063164
APA StyleUdomsak, W., Kucinska, M., Pospieszna, J., Dams-Kozlowska, H., Chatuphonprasert, W., & Murias, M. (2024). Antioxidant Enzymes in Cancer Cells: Their Role in Photodynamic Therapy Resistance and Potential as Targets for Improved Treatment Outcomes. International Journal of Molecular Sciences, 25(6), 3164. https://doi.org/10.3390/ijms25063164