Identification of Genomic Signatures for Colorectal Cancer Survival Using Exploratory Data Mining
Abstract
:1. Introduction
2. Results
2.1. Unsupervised Data Mining Algorithm Enables the Stratification of CRC Patients
2.2. Assessment of Predictive Capacity for CRC Staging
2.3. Disease-Free Survival-Based-Predictions by CRC Stage
2.4. Analysis of Prognostic Capability by Sequential Combination of Genomic Signatures
2.5. Diagnostic Framework for Recurrence in CRC Stage 2 Using F1CDX Genomic Signatures
3. Discussion
4. Materials and Methods
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef]
- Osterman, E.; Hammarström, K.; Imam, I.; Osterlund, E.; Sjöblom, T.; Glimelius, B. Recurrence Risk after Radical Colorectal Cancer Surgery-Less than before, but How High Is It? Cancers 2020, 12, 3308. [Google Scholar] [CrossRef] [PubMed]
- van den Berg, I.; Coebergh van den Braak, R.R.J.; van Vugt, J.L.A.; Ijzermans, J.N.M.; Buettner, S. Actual Survival after Resection of Primary Colorectal Cancer: Results from a Prospective Multicenter Study. World J. Surg. Oncol. 2021, 19, 96. [Google Scholar] [CrossRef] [PubMed]
- National Comprehensive Cancer Network Rectal Cancer. Available online: https://www.nccn.org/professionals/physician_gls/pdf/colon.pdf (accessed on 25 August 2023).
- Kim, S.K.; Kim, S.Y.; Kim, C.W.; Roh, S.A.; Ha, Y.J.; Lee, J.L.; Heo, H.; Cho, D.H.; Lee, J.S.; Kim, Y.S.; et al. A Prognostic Index Based on an Eleven Gene Signature to Predict Systemic Recurrences in Colorectal Cancer. Exp. Mol. Med. 2019, 51, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Saso, K.; Myoshi, N.; Fujino, S.; Takenaka, Y.; Takahashi, Y.; Nishimura, J.; Yasui, M.; Ohue, M.; Tokuoka, M.; Ide, Y.; et al. A Novel Prognostic Prediction Model for Recurrence in Patients with Stage II Colon Cancer after Curative Resection. Mol. Clin. Oncol. 2018, 9, 697–701. [Google Scholar] [CrossRef]
- Tie, J.; Cohen, J.D.; Wang, Y.; Christie, M.; Simons, K.; Lee, M.; Wong, R.; Kosmider, S.; Ananda, S.; McKendrick, J.; et al. Circulating Tumor DNA Analyses as Markers of Recurrence Risk and Benefit of Adjuvant Therapy for Stage III Colon Cancer. JAMA Oncol. 2019, 5, 1710–1717. [Google Scholar] [CrossRef]
- Schell, M.J.; Yang, M.; Teer, J.K.; Lo, F.Y.; Madan, A.; Coppola, D.; Monteiro, A.N.A.; Nebozhyn, M.V.; Yue, B.; Loboda, A.; et al. A Multigene Mutation Classification of 468 Colorectal Cancers Reveals a Prognostic Role for APC. Nat. Commun. 2016, 7, 11743. [Google Scholar] [CrossRef]
- Angell, H.K.; Bruni, D.; Carl Barrett, J.; Herbst, R.; Galon, J. The Immunoscore: Colon Cancer and Beyond. Clin. Cancer Res. 2020, 26, 332–339. [Google Scholar] [CrossRef]
- Weiser, E.; Parks, P.D.; Swartz, R.K.; Van Thomme, J.; Lavin, P.T.; Limburg, P.; Berger, B.M. Cross-Sectional Adherence with the Multi-Target Stool DNA Test for Colorectal Cancer Screening: Real-World Data from a Large Cohort of Older Adults. J. Med. Screen. 2021, 28, 18–24. [Google Scholar] [CrossRef] [PubMed]
- Milbury, C.A.; Creeden, J.; Yip, W.K.; Smith, D.L.; Pattani, V.; Maxwell, K.; Sawchyn, B.; Gjoerup, O.; Meng, W.; Skoletsky, J.; et al. Clinical and Analytical Validation of FoundationOne®CDx, a Comprehensive Genomic Profiling Assay for Solid Tumors. PLoS ONE 2022, 17, e0264138. [Google Scholar] [CrossRef] [PubMed]
- Dasari, A.; Morris, V.K.; Allegra, C.J.; Atreya, C.; Benson, A.B.; Boland, P.; Chung, K.; Copur, M.S.; Corcoran, R.B.; Deming, D.A.; et al. CtDNA Applications and Integration in Colorectal Cancer: An NCI Colon and Rectal-Anal Task Forces Whitepaper. Nat. Rev. Clin. Oncol. 2020, 17, 757–770. [Google Scholar] [CrossRef]
- Centers for Medicare & Medicaid Services. Next Generation Sequencing (NGS) for Medicare Beneficiaries with Advanced Cancer [CAG-00450R]. Available online: https://www.cms.gov/medicare-coverage-database/view/ncacal-decision-memo.aspx?proposed=N&NCAId=296 (accessed on 26 September 2023).
- Rankin, A.; Klempner, S.J.; Erlich, R.; Sun, J.X.; Grothey, A.; Fakih, M.; George, T.J.; Lee, J.; Ross, J.S.; Stephens, P.J.; et al. Broad Detection of Alterations Predicted to Confer Lack of Benefit From EGFR Antibodies or Sensitivity to Targeted Therapy in Advanced Colorectal Cancer. Oncologist 2016, 21, 1306–1314. [Google Scholar] [CrossRef]
- Allen, W.L.; Dunne, P.D.; McDade, S.; Scanlon, E.; Loughrey, M.; Coleman, H.G.; McCann, C.; McLaughlin, K.; Nemeth, Z.; Syed, N.A.; et al. Transcriptional Subtyping and CD8 Immunohistochemistry Identifies Poor Prognosis Stage II/III Colorectal Cancer Patients Who Benefit from Adjuvant Chemotherapy. JCO Precis. Oncol. 2018, 2, PO.17.00241. [Google Scholar] [CrossRef] [PubMed]
- Liquet, B.; Cao, K.A.L.; Hocini, H.; Thiébaut, R. A Novel Approach for Biomarker Selection and the Integration of Repeated Measures Experiments from Two Assays. BMC Bioinform. 2012, 13, 325. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.X.; Wang, Z.X.; Zhao, Q.; Wang, F.; Xu, R.H. Designing Gene Panels for Tumor Mutational Burden Estimation: The Need to Shift from “correlation” to “Accuracy”. J. Immunother. Cancer 2019, 7, 206. [Google Scholar] [CrossRef]
- Liu, D.; Baskett, W.; Beversdorf, D.; Shyu, C.R. Exploratory Data Mining for Subgroup Cohort Discoveries and Prioritization. IEEE J. Biomed. Health Inform. 2020, 24, 1456–1468. [Google Scholar] [CrossRef]
- Schram, A.M.; Reales, D.; Galle, J.; Cambria, R.; Durany, R.; Feldman, D.; Sherman, E.; Rosenberg, J.; D’Andrea, G.; Baxi, S.; et al. Oncologist Use and Perception of Large Panel Next-Generation Tumor Sequencing. Ann. Oncol. 2017, 28, 2298–2304. [Google Scholar] [CrossRef]
- Hukku, A.; Pividori, M.; Luca, F.; Pique-Regi, R.; Im, H.K.; Wen, X. Probabilistic Colocalization of Genetic Variants from Complex and Molecular Traits: Promise and Limitations. Am. J. Hum. Genet. 2021, 108, 25–35. [Google Scholar] [CrossRef]
- Wei, B.; Zheng, X.M.; Lei, P.R.; Huang, Y.; Zheng, Z.H.; Chen, T.F.; Huang, J.L.; Fang, J.F.; Liang, C.H.; Wei, H.B. Predictive Models of Adjuvant Chemotherapy for Patients with Stage Ii Colorectal Cancer: A Retrospective Study. Chin. Med. J. 2017, 130, 2069–2075. [Google Scholar] [CrossRef]
- Sweeney, S.M.; Cerami, E.; Baras, A.; Pugh, T.J.; Schultz, N.; Stricker, T.; Lindsay, J.; Del Vecchio Fitz, C.; Kumari, P.; Micheel, C.; et al. AACR Project GENIE: Powering Precision Medicine through an International Consortium. Cancer Discov. 2017, 7, 818–831. [Google Scholar] [CrossRef]
- Rooney, P.H.; Boonsong, A.; McFadyen, M.C.E.; McLeod, H.L.; Cassidy, J.; Curran, S.; Murray, G.I. The Candidate Oncogene ZNF217 Is Frequently Amplified in Colon Cancer. J. Pathol. 2004, 204, 282–288. [Google Scholar] [CrossRef] [PubMed]
- Tsikitis, V.L.; Larson, D.W.; Huebner, M.; Lohse, C.M.; Thompson, P.A. Predictors of Recurrence Free Survival for Patients with Stage II and III Colon Cancer. BMC Cancer 2014, 14, 336. [Google Scholar] [CrossRef] [PubMed]
- Shi, C.; Tao, S.; Ren, G.; Yang, E.J.; Shu, X.; Mou, P.K.; Liu, Y.; Dang, Y.; Xu, X.; Shim, J.S. Aurora Kinase A Inhibition Induces Synthetic Lethality in SMAD4-Deficient Colorectal Cancer Cells via Spindle Assembly Checkpoint Activation. Oncogene 2022, 41, 2734–2748. [Google Scholar] [CrossRef] [PubMed]
- Shan, B.; Zhao, R.; Zhou, J.; Zhang, M.; Qi, X.; Wang, T.; Gong, J.; Wu, Y.; Zhu, Y.; Yang, W.; et al. AURKA Increase the Chemosensitivity of Colon Cancer Cells to Oxaliplatin by Inhibiting the TP53-Mediated DNA Damage Response Genes. Biomed. Res. Int. 2020, 2020, 8916729. [Google Scholar] [CrossRef] [PubMed]
- Afolabi, H.A.; Salleh, S.M.; Zakaria, Z.; Ch’ng, E.S.; Mohd Nafi, S.N.; Abdul Aziz, A.A.B.; Irekeola, A.A.; Wada, Y.; Al-Mhanna, S.B. A GNAS Gene Mutation’s Independent Expression in the Growth of Colorectal Cancer: A Systematic Review and Meta-Analysis. Cancers 2022, 14, 5480. [Google Scholar] [CrossRef] [PubMed]
- Mermel, C.H.; Schumacher, S.E.; Hill, B.; Meyerson, M.L.; Beroukhim, R.; Getz, G. GISTIC2.0 Facilitates Sensitive and Confident Localization of the Targets of Focal Somatic Copy-Number Alteration in Human Cancers. Genome Biol. 2011, 12, R41. [Google Scholar] [CrossRef] [PubMed]
- Cerami, E.; Gao, J.; Dogrusoz, U.; Gross, B.E.; Sumer, S.O.; Aksoy, B.A.; Jacobsen, A.; Byrne, C.J.; Heuer, M.L.; Larsson, E.; et al. The cBio cancer genomics portal: An open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2012, 2, 401–404. [Google Scholar] [CrossRef]
- Gao, J.; Aksoy, B.A.; Dogrusoz, U.; Dresdner, G.; Gross, B.E.; Sumer, S.O.; Sun, Y.; Jacobsen, A.; Sinha, R.; Larsson, E.; et al. Integrative Analysis of Complex Cancer Genomics and Clinical Profiles Using the cBioPortal. Sci. Signal. 2013, 6, pl1. [Google Scholar] [CrossRef]
- The Cancer Genome Atlas (TCGA) Research Network. Comprehensive molecular characterization of human colon and rectal cancer. Nature 2012, 487, 330–337. [Google Scholar] [CrossRef]
- Wickham, H.; Averick, M.; Bryan, J.; Chang, W.; McGowan, L.D.A.; François, R.; Grolemund, G.; Hayes, A.; Henry, L.; Hester, J.; et al. Welcome to the Tidyverse. J. Open Source Softw. 2019, 4, 1686. [Google Scholar] [CrossRef]
- Van Buuren, S.; Groothuis-Oudshoorn, K. mice: Multivariate Imputation by Chained Equations in R. J. Stat. Softw. 2011, 45, 1–67. [Google Scholar] [CrossRef]
- Borgan, Ø. Modeling Survival Data: Extending the Cox Model. Terry M. Therneau and Patricia M. Grambsch, Springer-Verlag, New York, 2000. No. of pages: xiii + 350. Price: $69.95. ISBN 0-387-98784-3. Stat. Med. 2001, 20, 2053–2054. [Google Scholar] [CrossRef]
- Grothendieck, G. sqldf: Manipulate R Data Frames Using SQL. Comprehensive R Archive Network (CRAN). Available online: https://cran.r-project.org/web/packages/sqldf/index.html (accessed on 4 March 2024).
- Therneau, T.M.; Lumley, T.; Atkinson, E.; Crowson, C. A Package for Survival Analysis in R. R Package Version 3.5-3. Comprehensive R Archive Network (CRAN). Available online: https://cran.r-project.org/web/packages/survival/index.html (accessed on 4 March 2024).
- Kassambara, A.; Kosinski, M.; Biecek, P.; Fabian, S. survminer: Drawing Survival Curves Using ‘ggplot2’. R Package Version 0.4.9. Comprehensive R Archive Network (CRAN). Available online: https://cran.r-project.org/web/packages/survminer/index.html (accessed on 4 March 2024).
- Sjoberg, D.D.; Baillie, M.; Fruechtenicht, C.; Haesendonckx, S.; Treis, T. ggsurvfit: Flexible Time-to-Event Figures. R package version 0.2.1. Comprehensive R Archive Network (CRAN). Available online: https://cran.r-project.org/web/packages/ggsurvfit/index.html (accessed on 4 March 2024).
- CRAN-Package ROCit. Comprehensive R Archive Network (CRAN). 2023. Available online: https://cran.r-project.org/web/packages/ROCit/index.html (accessed on 4 March 2024).
- Pardo, M.; Franco-Pereira, A. Non Parametric ROC Summary Statistics. REVSTAT-Stat. J. 2022, 15, 583–600. [Google Scholar] [CrossRef]
- Guo, K.; McGregor, B. A package for visualization and extract details. VennDetail 2023. [CrossRef]
- Ishwaran, H.; Gerds, T.A.; Kogalur, U.B.; Moore, R.D.; Gange, S.J.; Lau, B.M. Random survival forests for competing risks. Biostatistics 2014, 15, 757–773. [Google Scholar] [CrossRef] [PubMed]
- Ishwaran, H.; Kogalur, U. Fast Unified Random Forests for Survival, Regression, and Classification (RF-SRC). R Package Version 3.2.3. 2023. Available online: https://cran.r-project.org/package=randomForestSRC (accessed on 1 March 2024).
- Ishwaran, H.; Kogalur, U.B.; Blackstone, E.H.; Lauer, M.S. Random survival forests. Ann. Appl. Stat. 2008, 2, 841–860. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hummel, J.J.; Liu, D.; Tallon, E.; Snyder, J.; Warren, W.; Shyu, C.-R.; Mitchem, J.; Cortese, R. Identification of Genomic Signatures for Colorectal Cancer Survival Using Exploratory Data Mining. Int. J. Mol. Sci. 2024, 25, 3220. https://doi.org/10.3390/ijms25063220
Hummel JJ, Liu D, Tallon E, Snyder J, Warren W, Shyu C-R, Mitchem J, Cortese R. Identification of Genomic Signatures for Colorectal Cancer Survival Using Exploratory Data Mining. International Journal of Molecular Sciences. 2024; 25(6):3220. https://doi.org/10.3390/ijms25063220
Chicago/Turabian StyleHummel, Justin J., Danlu Liu, Erin Tallon, John Snyder, Wesley Warren, Chi-Ren Shyu, Jonathan Mitchem, and Rene Cortese. 2024. "Identification of Genomic Signatures for Colorectal Cancer Survival Using Exploratory Data Mining" International Journal of Molecular Sciences 25, no. 6: 3220. https://doi.org/10.3390/ijms25063220
APA StyleHummel, J. J., Liu, D., Tallon, E., Snyder, J., Warren, W., Shyu, C. -R., Mitchem, J., & Cortese, R. (2024). Identification of Genomic Signatures for Colorectal Cancer Survival Using Exploratory Data Mining. International Journal of Molecular Sciences, 25(6), 3220. https://doi.org/10.3390/ijms25063220