Brain-Region-Specific Genes Form the Major Pathways Featuring Their Basic Functional Role: Their Implication in Animal Chronic Stress Model
Abstract
:1. Introduction
2. Results
2.1. Major Neural Transmitters Glutamate vs. GABA Vesicular Transporters Expression in the Brain Regions
2.2. Selection of the Brain-Region-Specific (BRS) Genes Algorithm
2.3. Analysis of the Function (Gene Ontology) of the BRS Genes in Five Regions
2.3.1. Annotation of the BRSG Set of the Dorsal Striatum (STR)
2.3.2. BRSGs Projection against 9 STR Samples of Social Stress Model and Prkcd BRSG
2.3.3. Mitophagy Specifics in Social Stress Model
2.3.4. Connectome and GO Annotation for Hypothalamus (HPT) BRSGs Based on String-db.org Resource
2.3.5. BRSGs Projection against 9 HPT Samples of Social Stress Model
2.3.6. GO Annotation of BRSGs in Hippocampus
2.3.7. Neurogenesis in Social Stress Model Groups
2.3.8. MRN and VTA GO Annotation
2.3.9. Cellular Matrix Enhancement in VTA/MRN Axons
2.3.10. Neurofilament Enhancement in VTA/MRN Neurons
2.3.11. Myelin Sheath Enhancement in VTA/MRN Neurons
2.3.12. Note on Autoreceptor Regulation in VTA/MRN Cells and Implication of Glial Cells
2.3.13. Increased Mitochondrial Activity in VTA/MRN Regions
2.3.14. Performance of MRN/VTA in Social Conflict Model Groups Assessed Based on the BRSGs
3. Discussion
3.1. BRSGs Manifest Scaffold of Connected Genes Network in Brain Regions
3.2. Midbrain Monoaminergic Regions VTA, MRN Manifest Common BRS Gene Networks
- (1)
- STR: Dorsal Striatum is the region most abundant with BRSGs (Table 1). As 95% of STR neurons comprise Medium Spiny Neurons (MSN), Dopaminoceptive cAMP-mediated pathway is profoundly outstanding in this region by overall expression rate of more than 20 BRS genes (GO: MMU-372790: ‘Gpcr signaling’; Table S2; Figure 3). The ‘motor’ of the cAMP cycle are four phosphodiesterases Pde10a, Pde2a, Pde7b, and Pde1b, exemplifying Purine catabolic process (GO:0004115), and are hardly unique for STR, since all regions considered inherently maintain Gpcrs and hence evoke c/GMP/cAMP signaling. Still, its STR-specific performance rate is nearly an order of magnitude higher than in any other regions. This activity modulates almost all other pathways, as was shown in ref. [17] and Table S3 (AHC clustering). BRSGs also feature glutamate/dopaminceptive synapses in MSN.
- (2)
- HPT is the most evolutionary ancient region with hormonal/neuropeptide activity featuring the hypothalamic–pituitary–adrenal (HPA) axis for tackling stress response. Thus, neuropeptide/hormonal activity is its major BRSGs pathway (Figure 8). There are also HPT Gabaergic signaling pathway BRSGs (Figure 9, Table 4), and some region-specific transcriptional factors. We also report BRSG makers of arcuate nucleus neuroendocrine neurons (Ghrh, Kiss1, Pomc), paraventricular nucleus neurons (Oxt,Hcrt,Pomc), as well as histaminergic neurons (Hdc, Hcrt).
- (3)
- HPC is depleted in the density of edges due to its high functional and neuronal heterogeneity (see also Table S7). We may outline only the distinct Glutamatergic signaling pathway, implying a high share of glutamatergic neurons (12 from 21 neuron projection BRSGs), and neuron development genes (Neurod2, Fezf2, Lhx2, Foxg1), which proved to be specific for the HPC region.
- (4)
- Besides monoamine-synthesis-specific BRSGs (Dbh, Tph2), VTA/MRN regions feature enhanced axonal structure BRSGs due to heavy emission and reuptake of monoamines, accommodated by expanding its diameter given increased retro/anterograde transport along with its enhanced myelination.
- (5)
- Some of BRSGs manifest transcription/chromatin modification factors specific for brain regions while employed in the common gene pathways, implying their specific role in the corresponding process relative to the brain region it belongs to.
3.3. Application of BRSGs Set in Social Conflict Animal Model: Serotonin Hypothesis of Depression
3.4. Limitations of the Study
Restricted Brain Region Set
4. Materials and Methods
4.1. Samples
4.2. Experimental Animals
4.3. Ethical Statement
4.4. Experimental Procedures
4.4.1. Protocol for Alternative Social Experiences under Daily Agonistic Interactions in Male Mice
- (1)
- The midbrain raphe nuclei (MRN), a multifunctional region of brain containing the body of the serotonergic neurons;
- (2)
- The ventral tegmental area (VTA) containing the pericaryons of the dopaminergic neurons, which are widely implicated in brain reward circuitry and are important for motivation, cognition, drug addiction, and emotions relating to several psychiatric disorders;
- (3)
- The dorsal striatum (STR), which is a mediator of stereotypical behaviors and motor activity, also implicated in cognitive processes;
- (4)
- The hippocampus (HPC), a part of the limbic system essential for memory consolidation and storage, playing a distinct role in emotional modulation;
- (5)
- The hypothalamus (HPT), which mediates the stress response within Hypothalamic–pituitary axis (HPA), typical for our model.
4.4.2. RNA-Seq Data Collection
4.4.3. Statistical Methods
4.4.4. Availability of Data and Materials
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
BRSG | Brain region specific genes |
FPKM | Fragments per kilobase of transcript per million mapped reads |
GO | Gene Ontology |
KEGG | Kyoto Encyclopedia of Genes and Genomes Pathway Database |
PPI | Protein–protein interaction |
References
- Wang, Z.; Gerstein, M.; Snyder, M. RNA-Seq: A revolutionary tool for transcriptomics. Nat. Rev. Genet. 2009, 10, 57–63. [Google Scholar] [CrossRef] [PubMed]
- Bennett, M.L.; Bennett, F.C.; Liddelow, S.A.; Ajami, B.; Zamanian, J.L.; Fernhoff, N.B.; Mulinyawe, S.B.; Bohlen, C.J.; Adil, A.; Tucker, A.; et al. New tools for studying microglia in the mouse and human CNS. Proc. Natl. Acad. Sci. USA 2016, 113, E1738–E1746. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Chen, K.; Sloan, S.A.; Bennett, M.L.; Scholze, A.R.; O’Keeffe, S.; Phatnani, H.P.; Guarnieri, P.; Caneda, C.; Ruderisch, N.; et al. An RNA-sequencing transcriptome and splicing database of glia, neurons, and vascular cells of the cerebral cortex. J. Neurosci. 2014, 34, 11929–11947. [Google Scholar] [CrossRef] [PubMed]
- Darmanis, S.; Sloan, S.A.; Zhang, Y.; Enge, M.; Caneda, C.; Shuer, L.M.; Gephart, M.G.H.; Barres, B.A.; Quake, S.R. A survey of human brain transcriptome diversity at the single cell level. Proc. Natl. Acad. Sci. USA 2015, 112, 7285–7290. [Google Scholar] [CrossRef] [PubMed]
- Zeisel, A.; Muñoz-Manchado, A.B.; Codeluppi, S.; Lönnerberg, P.; La Manno, G.; Juréus, A.; Marques, S.; Munguba, H.; He, L.; Betsholtz, C.; et al. Brain structure. Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-seq. Science 2015, 347, 1138–1142. [Google Scholar] [CrossRef] [PubMed]
- Tasic, B.; Menon, V.; Nguyen, T.N.; Kim, T.K.; Jarsky, T.; Yao, Z.; Levi, B.; Gray, L.T.; Sorensen, S.A.; Dolbeare, T.; et al. Adult mouse cortical cell taxonomy revealed by single cell transcriptomics. Nat. Neurosci. 2016, 19, 335–346. [Google Scholar] [CrossRef] [PubMed]
- McKenzie, A.T.; Wang, M.; Hauberg, M.E.; Fullard, J.F.; Kozlenkov, A.; Keenan, A.; Hurd, Y.L.; Dracheva, S.; Casaccia, P.; Roussos, P.; et al. Brain Cell Type Specific Gene Expression and Co-expression Network Architectures. Sci. Rep. 2018, 8, 8868. [Google Scholar] [CrossRef] [PubMed]
- Hang, Y.; Aburidi, M.; Husain, B.; Hickman, A.R.; Poehlman, W.L.; Feltus, F.A. Exploration into biomarker potential of region-specific brain gene co-expression networks. Sci. Rep. 2020, 10, 17089. [Google Scholar] [CrossRef]
- Wheeler, D.W.; White, C.M.; Rees, C.L.; Komendantov, A.O.; Hamilton, D.J.; Ascoli, G.A. Hippocampome. org: A knowledgebase of neuron types in the rodent hippocampus. eLife 2015, 4, e09960. [Google Scholar] [CrossRef]
- Venkadesh, S.; Komendantov, A.O.; Listopad, S.; Scott, E.O.; De Jong, K.; Krichmar, J.L.; Ascoli, G.A. Evolving Simple Models of Diverse Intrinsic Dynamics in Hippocampal Neuron Types. Front. Neuroinform. 2018, 12, 8. [Google Scholar] [CrossRef]
- Kudryavtseva, N.N.; Smagin, D.; Kovalenko, I.L.; Vishnivetskaya, G.B. Repeated positive fighting experience in male inbred mice. Nat. Protoc. 2014, 9, 2705–2717. [Google Scholar] [CrossRef]
- Kudryavtseva, N.N. The sensory contact model for the study of aggressive and submissive behaviors in male mice. Aggress. Behav. 1991, 17, 285–291. [Google Scholar] [CrossRef]
- Babenko, V.N.; Galyamina, A.G.; Rogozin, I.B.; Smagin, D.A.; Kudryavtseva, N.N. Dopamine response gene pathways in dorsal striatum MSNs from a gene expression viewpoint: cAMP-mediated gene networks. BMC Neurosci. 2021, 21, 12. [Google Scholar] [CrossRef]
- Hosseinzadeh Sahafi, O.; Sardari, M.; Alijanpour, S.; Rezayof, A. Shared Mechanisms of GABAergic and Opioidergic Transmission Regulate Corticolimbic Reward Systems and Cognitive Aspects of Motivational Behaviors. Brain Sci. 2023, 13, 815. [Google Scholar] [CrossRef]
- Julien, P.; Brawand, D.; Soumillon, M.; Necsulea, A.; Liechti, A.; Schütz, F.; Daish, T.; Grützner, F.; Kaessmann, H. Mechanisms and evolutionary patterns of mammalian and avian dosage compensation. PLoS Biol. 2012, 10, e1001328. [Google Scholar] [CrossRef] [PubMed]
- Borgkvist, A.; Fisone, G. Psychoactive drugs and regulation of the cAMP/PKA/DARPP-32 cascade in striatal medium spiny neurons. Neurosci. Biobehav. Rev. 2007, 31, 79–88. [Google Scholar] [CrossRef] [PubMed]
- Babenko, V.; Redina, O.; Smagin, D.; Kovalenko, I.; Galyamina, A.; Babenko, R.; Kudryavtseva, N. Dorsal Striatum Transcriptome Profile Profound Shift in Repeated Aggression Mouse Model Converged to Networks of 12 Transcription Factors after Fighting Deprivation. Genes 2021, 13, 21. [Google Scholar] [CrossRef] [PubMed]
- Authement, M.E.; Shin, J.H.; Shaw, M.; Ron, D.; Cookson, M.R.; Alvarez, V.A. Leucine-rich repeat kinase 2 limits dopamine D1 receptor signaling in striatum and biases against heavy persistent alcohol drinking. Neuropsychopharmacology 2023. [Google Scholar] [CrossRef]
- Kurkinen, K.; Keinänen, R.; Li, W.; Koistinaho, J. Preconditioning with spreading depression activates specifically protein kinase Cdelta. Neuroreport 2001, 12, 269–273. [Google Scholar] [CrossRef]
- McCullough, K.M.; Morrison, F.G.; Hartmann, J.; Carlezon, W.A., Jr.; Ressler, K.J. Quantified Coexpression Analysis of Central Amygdala Subpopulations. eNeuro 2018, 5, ENEURO.0010-18.2018. [Google Scholar] [CrossRef]
- Kovner, R.; Kalin, N.H. Transcriptional Profiling of Amygdala Neurons Implicates PKCδ in Primate Anxious Temperament. Chronic Stress 2021, 5, 2470547021989329. [Google Scholar] [CrossRef]
- Kovner, R.; Souaiaia, T.; Fox, A.S.; French, D.A.; Goss, C.E.; Roseboom, P.H.; Oler, J.A.; Riedel, M.K.; Fekete, E.M.; Fudge, J.L.; et al. Transcriptional Profiling of Primate Central Nucleus of the Amygdala Neurons to Understand the Molecular Underpinnings of Early-Life Anxious Temperament. Biol. Psychiatry 2020, 88, 638–648. [Google Scholar] [CrossRef] [PubMed]
- Munson, M.J.; Mathai, B.J.; Ng, M.Y.W.; Trachsel-Moncho, L.; de la Ballina, L.R.; Schultz, S.W.; Aman, Y.; Lystad, A.H.; Singh, S.; Singh, S.; et al. GAK and PRKCD are positive regulators of PRKN-independent mitophagy. Nat. Commun. 2021, 12, 6101. [Google Scholar] [CrossRef] [PubMed]
- Munson, M.J.; Mathai, B.J.; Ng, M.Y.W.; Trachsel-Moncho, L.; de la Ballina, L.R.; Simonsen, A. GAK and PRKCD kinases regulate basal mitophagy. Autophagy 2022, 18, 467–469. [Google Scholar] [CrossRef]
- Tripathi, A.; Scaini, G.; Barichello, T.; Quevedo, J.; Pillai, A. Mitophagy in depression: Pathophysiology and treatment targets. Mitochondrion 2021, 61, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Scaini, G.; Mason, B.L.; Diaz, A.P.; Jha, M.K.; Soares, J.C.; Trivedi, M.H.; Quevedo, J. Dysregulation of mitochondrial dynamics, mitophagy and apoptosis in major depressive disorder: Does inflammation play a role? Mol. Psychiatry 2022, 27, 1095–1102. [Google Scholar] [CrossRef]
- Pandey, G.N.; Sharma, A.; Rizavi, H.S.; Ren, X. Dysregulation of Protein Kinase C in Adult Depression and Suicide: Evidence From Postmortem Brain Studies. Int. J. Neuropsychopharmacol. 2021, 24, 400–408. [Google Scholar] [CrossRef]
- Douceau, S.; Lemarchand, E.; Hommet, Y.; Lebouvier, L.; Joséphine, C.; Bemelmans, A.P.; Maubert, E.; Agin, V.; Vivien, D. PKCδ-positive GABAergic neurons in the central amygdala exhibit tissue-type plasminogen activator: Role in the control of anxiety. Mol. Psychiatry 2022, 27, 2197–2205. [Google Scholar] [CrossRef]
- Williford, K.M.; Taylor, A.; Melchior, J.R.; Yoon, H.J.; Sale, E.; Negasi, M.D.; Adank, D.N.; Brown, J.A.; Bedenbaugh, M.N.; Luchsinger, J.R.; et al. BNST PKCδ neurons are activated by specific aversive conditions to promote anxiety-like behavior. Neuropsychopharmacology 2023, 48, 1031–1041. [Google Scholar] [CrossRef]
- Ling, J.P.; Wilks, C.; Charles, R.; Leavey, P.J.; Ghosh, D.; Jiang, L.; Santiago, C.P.; Pang, B.; Venkataraman, A.; Clark, B.S.; et al. ASCOT identifies key regulators of neuronal subtype-specific splicing. Nat. Commun. 2020, 11, 137. [Google Scholar] [CrossRef]
- Su, Q.; Zhang, H.; Dang, S.; Yao, D.; Shao, S.; Zhu, Z.; Li, H. Hippocampal Protein Kinase C Gamma Signaling Mediates the Impairment of Spatial Learning and Memory in Prenatally Stressed Offspring Rats. Neuroscience 2019, 414, 186–199. [Google Scholar] [CrossRef]
- Chang, C.H.; Gean, P.W. The Ventral Hippocampus Controls Stress-Provoked Impulsive Aggression through the Ventromedial Hypothalamus in Post-Weaning Social Isolation Mice. Cell Rep. 2019, 28, 1195–1205.e3. [Google Scholar] [CrossRef]
- Liu, C.; Kaeser, P.S. Mechanisms and regulation of dopamine release. Curr. Opin. Neurobiol. 2019, 57, 46–53. [Google Scholar] [CrossRef]
- Krämer-Albers, E.M.; Werner, H.B. Mechanisms of axonal support by oligodendrocyte-derived extracellular vesicles. Nat. Rev. Neurosci. 2023, 24, 474–486. [Google Scholar] [CrossRef]
- Fader, C.M.; Colombo, M.I. Autophagy and multivesicular bodies: Two closely related partners. Cell Death Differ. 2009, 16, 70–78. [Google Scholar] [CrossRef] [PubMed]
- Zafra, F.; Ibáñez, I.; Giménez, C. Glycinergic transmission: Glycine transporter GlyT2 in neuronal pathologies. Neuronal Signal. 2016, 1, NS20160009. [Google Scholar] [CrossRef]
- Eulenburg, V.; Hülsmann, S. Synergistic Control of Transmitter Turnover at Glycinergic Synapses by GlyT1, GlyT2, and ASC-1. Int. J. Mol. Sci. 2022, 23, 2561. [Google Scholar] [CrossRef] [PubMed]
- Harvey, R.J.; Yee, B.K. Glycine transporters as novel therapeutic targets in schizophrenia, alcohol dependence and pain. Nat. Rev. Drug Discov. 2013, 12, 866–885. [Google Scholar] [CrossRef]
- Brady, S.T.; Morfini, G.A. Regulation of motor proteins, axonal transport deficits and adult-onset neurodegenerative diseases. Neurobiol. Dis. 2017, 105, 273–282. [Google Scholar] [CrossRef]
- Guillaud, L.; El-Agamy, S.E.; Otsuki, M.; Terenzio, M. Anterograde Axonal Transport in Neuronal Homeostasis and Disease. Front. Mol. Neurosci. 2020, 13, 556175. [Google Scholar] [CrossRef] [PubMed]
- Sabui, A.; Biswas, M.; Somvanshi, P.R.; Kandagiri, P.; Gorla, M.; Mohammed, F.; Tammineni, P. Decreased anterograde transport coupled with sustained retrograde transport contributes to reduced axonal mitochondrial density in tauopathy neurons. Front. Mol. Neurosci. 2022, 15, 927195. [Google Scholar] [CrossRef]
- Kruppa, A.J.; Buss, F. Motor proteins at the mitochondria-cytoskeleton interface. J. Cell Sci. 2021, 134, jcs226084. [Google Scholar] [CrossRef]
- Cercós, M.G.; De-Miguel, F.F.; Trueta, C. Real-time measurements of synaptic autoinhibition produced by serotonin release in cultured leech neurons. J. Neurophysiol. 2009, 102, 1075–1085. [Google Scholar] [CrossRef] [PubMed]
- Leon-Pinzon, C.; Cercós, M.G.; Noguez, P.; Trueta, C.; De-Miguel, F.F. Exocytosis of serotonin from the neuronal soma is sustained by a serotonin and calcium-dependent feedback loop. Front. Cell Neurosci. 2014, 8, 169. [Google Scholar] [CrossRef] [PubMed]
- Gomez, J.A.; Perkins, J.M.; Beaudoin, G.M.; Cook, N.B.; Quraishi, S.A.; Szoeke, E.A.; Thangamani, K.; Tschumi, C.W.; Wanat, M.J.; Maroof, A.M.; et al. Ventral tegmental area astrocytes orchestrate avoidance and approach behavior. Nat. Commun. 2019, 10, 1455. [Google Scholar] [CrossRef] [PubMed]
- Requie, L.M.; Gómez-Gonzalo, M.; Speggiorin, M.; Managò, F.; Melone, M.; Congiu, M.; Chiavegato, A.; Lia, A.; Zonta, M.; Losi, G.; et al. Astrocytes mediate long-lasting synaptic regulation of ventral tegmental area dopamine neurons. Nat. Neurosci. 2022, 12, 1639–1650. [Google Scholar] [CrossRef] [PubMed]
- De-Miguel, F.F.; Leon-Pinzon, C.; Torres-Platas, S.G.; Del-Pozo, V.; Hernández-Mendoza, G.A.; Aguirre-Olivas, D.; Méndez, B.; Moore, S.; Sánchez-Sugía, C.; García-Aguilera, M.A.; et al. Extrasynaptic Communication. Front. Mol. Neurosci. 2021, 14, 638858. [Google Scholar] [CrossRef] [PubMed]
- Bélanger, M.; Allaman, I.; Magistretti, P.J. Brain energy metabolism: Focus on astrocyte-neuron metabolic cooperation. Cell Metab. 2011, 14, 724–738. [Google Scholar] [CrossRef] [PubMed]
- Beard, E.; Lengacher, S.; Dias, S.; Magistretti, P.J.; Finsterwald, C. Astrocytes as Key Regulators of Brain Energy Metabolism: New Therapeutic Perspectives. Front. Physiol. 2022, 12, 825816. [Google Scholar] [CrossRef] [PubMed]
- Pizzagalli, D.A.D.A. Depression, stress, and anhedonia: Toward a synthesis and integrated model. Annu. Rev. Clin. Psychol. 2014, 10, 393–423. [Google Scholar] [CrossRef]
- Cahir, M. Expert Opinion on Pharmacotherapy. In Proceedings of the British Association for Psychopharmacology Summer Meeting, Oxford, UK, 23–26 July 2006; Volume 7, pp. 2007–2010. [Google Scholar] [CrossRef]
- Moncrieff, J.; Cooper, R.E.; Stockmann, T.; Amendola, S.; Hengartner, M.P.; Horowitz, M.A. The serotonin theory of depression: A systematic umbrella review of the evidence. Mol. Psychiatry 2023, 28, 3243–3256. [Google Scholar] [CrossRef]
- Jauhar, S.; Cowen, P.J.; Browning, M. Fifty years on: Serotonin and depression. J. Psychopharmacol. 2023, 37, 237–241. [Google Scholar] [CrossRef] [PubMed]
- Reznikov, L.R.; Fadel, J.R.; Reagan, L.P. Glutamate-mediated neuroplasticity deficits in mood disorders. In Neuroplasticity; Costa e Silva, J.A., Macher, J.P., Olié, J.P., Eds.; Springer: Tarporley, UK, 2011; pp. 13–26. [Google Scholar] [CrossRef]
- Pal, M.M. Glutamate: The Master Neurotransmitter and Its Implications in Chronic Stress and Mood Disorders. Front. Hum. Neurosci. 2021, 15, 722323. [Google Scholar] [CrossRef] [PubMed]
- Cabana-Domínguez, J.; Torrico, B.; Reif, A.; Fernàndez-Castillo, N.; Cormand, B. Comprehensive exploration of the genetic contribution of the dopaminergic and serotonergic pathways to psychiatric disorders. Transl. Psychiatry 2022, 12, 11. [Google Scholar] [CrossRef]
- Mariani, N.; Cattane, N.; Pariante, C.; Cattaneo, A. Gene expression studies in Depression development and treatment: An overview of the underlying molecular mechanisms and biological processes to identify biomarkers. Transl. Psychiatry 2021, 11, 354. [Google Scholar] [CrossRef] [PubMed]
- Cuellar-Santoyo, A.O.; Ruiz-Rodríguez, V.M.; Mares-Barbosa, T.B.; Patrón-Soberano, A.; Howe, A.G.; Portales-Pérez, D.P.; Miquelajáuregui Graf, A.; Estrada-Sánchez, A.M. Revealing the contribution of astrocytes to glutamatergic neuronal transmission. Front. Cell Neurosci. 2023, 16, 1037641. [Google Scholar] [CrossRef]
- Cepeda, C.; Levine, M.S. Where do you think you are going? The NMDA-D1 receptor trap. Sci. STKE 2006, 2006, pe20. [Google Scholar] [CrossRef]
- Zhang, J.; Saur, T.; Duke, A.N.; Grant, S.G.; Platt, D.M.; Rowlett, J.K.; Isacson, O.; Yao, W.D. Motor impairments, striatal degeneration, and altered dopamine-glutamate interplay in mice lacking PSD-95. J. Neurogenet. 2014, 28, 98–111. [Google Scholar] [CrossRef]
- Won, S.; Roche, K.W. Regulation of glutamate receptors by striatal-enriched tyrosine phosphatase 61 (STEP61). J. Physiol. 2021, 599, 443–451. [Google Scholar] [CrossRef]
- Won, S.; Incontro, S.; Nicoll, R.A.; Roche, K.W. PSD-95 stabilizes NMDA receptors by inducing the degradation of STEP61. Proc. Natl. Acad. Sci. USA 2016, 113, E4736–E4744. [Google Scholar] [CrossRef]
- Burbulla, L.F.; Song, P.; Mazzulli, J.R.; Zampese, E.; Wong, Y.C.; Jeon, S.; Santos, D.P.; Blanz, J.; Obermaier, C.D.; Strojny, C.; et al. Dopamine oxidation mediates mitochondrial and lysosomal dysfunction in Parkinson’s disease. Science 2017, 357, 1255–1261. [Google Scholar] [CrossRef] [PubMed]
- Biglari, N.; Gaziano, I.; Schumacher, J.; Radermacher, J.; Paeger, L.; Klemm, P.; Chen, W.; Corneliussen, S.; Wunderlich, C.M.; Sue, M.; et al. Functionally distinct POMC-expressing neuron subpopulations in hypothalamus revealed by intersectional targeting. Nat. Neurosci. 2021, 24, 913–929. [Google Scholar] [CrossRef]
- Cheng, L.; Liu, J.; Chen, Z. The Histaminergic System in Neuropsychiatric Disorders. Biomolecules 2021, 11, 1345. [Google Scholar] [CrossRef]
- The Allen Mouse Brain Atlas. Available online: http://mouse.brain-map.org/static/atlas (accessed on 21 April 2023).
- Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef]
- Dobin, A.; Gingeras, T.R. Mapping RNA-seq Reads with STAR. Curr. Protoc. Bioinform. 2015, 51, 11–14. [Google Scholar] [CrossRef] [PubMed]
- Trapnell, C.; Williams, B.A.; Pertea, G.; Mortazavi, A.; Kwan, G.; Van Baren, M.J.; Salzberg, S.L.; Wold, B.J.; Pachter, L. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat. Biotechnol. 2010, 28, 511–515. [Google Scholar] [CrossRef] [PubMed]
Total BRSG | >100 FPKM | >1000 FPKM | |
---|---|---|---|
VTA | 20 * | 12 ** | 6 *** |
MRN | 22 | 14 | 6 |
HPT | 46 | 13 | 0 |
HPC | 56 | 23 | 3 |
STR | 78 | 35 | 3 |
Interaction Confidence Score (String-db) | STR (78) | HPT (46) | HPC (56) | MRN/VTA (22) | Edges Enrichment p-Value |
---|---|---|---|---|---|
low (>0.150) | 838/77 | 270/43 | 378/56 | 67/21 | 1.00 × 10−16 |
medium (>0.4) | 144/52 | 82/34 | 59/32 | 18/14 | 1.00 × 10−16 |
high (>0.7) | 33/28 | 28/17 | 17/16 (2.8 × 10−15) | 9/10 | 1.00 × 10−16 |
highest (>0.9) | 9/13 (3.6 × 10−6) | 6/7 (1.2 × 10−8) | 2/4 (0.074) | 4/5 (1.6 × 10−5) | varies |
BRSGs Seed Pairs | Term ID | Term Description | Gene Count | |
---|---|---|---|---|
Dlx5–Dlx6 | GOCC:0140368 | Decoy receptor complex | 3 | |
Figure 4a | GO:0001649 | Osteoblast differentiation | 7 | |
GO:1901522 | Positive regulation of transcription from RNA polymerase II promoter involved in cellular response to chemical stimulus | 3 | ||
GO:0006357 | Regulation of transcription by RNA polymerase II | 9 | ||
Rarb–Rarg | GO:0005667 | Transcription regulator complex | 8 | |
Figure 4b | GO:0003676 | Nucleic acid binding | 10 | |
CL:4917 | NR1H2 and NR1H3-mediated signaling, and Histone deacetylase 4/5/7/9 | 8 | ||
GO:0048384 | Retinoic acid receptor signaling pathway | 6 | ||
GO:0035357 | Peroxisome-proliferator-activated receptor signaling pathway | 3 | ||
GO:0070562 | Regulation of vitamin D receptor signaling pathway | 3 | ||
Egr1–Egr3 | GO:0001228 | DNA-binding transcription activator activity, RNA polymerase II-specific | 7 | |
Figure 4c | GO:0140110 | Transcription regulator activity | 9 | |
mmu04657 | IL-17 signaling pathway | 5 | ||
mmu04668 | TNF signaling pathway | 5 | ||
GO:0002684 | Positive regulation of immune system process | 5 |
BRSGs Seed Pairs | Term ID | Term Description | Gene Count | |
---|---|---|---|---|
Gabre-Hap1 | GO:0007214 | Gamma-aminobutyric acid signaling pathway | 4 | |
Figure 9a | GO:0099536 | Synaptic signaling | 6 | |
GO:0008088 | Axo-dendritic transport | 4 | ||
Asb4-Irs4 | GOCC:0070449 | Elongin complex | 4 | |
Figure 9b | GO:0031625 | Ubiquitin protein ligase binding | 5 | |
GO:0016567 | Protein ubiquitination | 9 | ||
Nnat-Peg10 | MP:0003122 | Maternal imprinting | 4 | |
Figure 9c | CL:29119 | Mostly uncharacterized, incl. COMMD1 N-terminal domain, and Adipokinetic hormone binding | 6 |
Gene symbol | HPC_avg | HPT_avg | STR_avg | MRN_avg | VTA_avg | TSI | |
---|---|---|---|---|---|---|---|
VTA | Tlcd1 | 214.57 | 142.88 | 20.74 | 15.01 | 473.22 | 0.55 |
Loxl2 | 1.03 | 1.10 | 1.21 | 0.86 | 16.00 | 0.79 | |
Dbh | 0.29 | 0.05 | 0.01 | 3.89 | 16.42 | 0.79 | |
MRN | Crh | 0.79 | 1.99 | 0.40 | 21.17 | 4.96 | 0.72 |
Pde12 | 13.72 | 3.24 | 16.88 | 81.78 | 3.52 | 0.69 | |
Actr5 | 2.89 | 3.63 | 3.58 | 97.07 | 2.84 | 0.88 | |
Fam210a | 52.14 | 3.66 | 3.16 | 102.94 | 4.00 | 0.62 | |
Rtl1 | 2.05 | 6.46 | 4.55 | 152.14 | 3.21 | 0.90 | |
MRN/VTA | Slc6a5 | 0.03 | 0.04 | 0.03 | 84.86 | 31.97 | 1.00 |
Mab21l2 | 0.09 | 0.51 | 0.08 | 21.92 | 10.34 | 0.98 | |
Rln3 | 0.03 | 0.26 | 0.05 | 29.45 | 14.85 | 0.99 | |
Glra1 | 0.08 | 8.29 | 0.36 | 85.35 | 51.80 | 0.94 | |
Lamp5 | 12.31 | 6.15 | 37.59 | 144.49 | 53.47 | 0.78 | |
Nefh | 18.10 | 26.01 | 16.10 | 299.94 | 220.86 | 0.90 | |
Nefl | 206.83 | 145.48 | 137.48 | 820.72 | 684.99 | 0.75 | |
Nefm | 66.62 | 57.71 | 73.11 | 598.01 | 507.12 | 0.85 | |
Cplx1 | 234.47 | 113.82 | 284.92 | 778.27 | 555.21 | 0.68 | |
Fth1 | 2170.92 | 1536.80 | 2882.29 | 4405.25 | 3310.33 | 0.54 | |
Atp1a3 | 778.55 | 768.97 | 592.48 | 1293.45 | 1000.71 | 0.52 | |
Mbp | 1033.04 | 1080.91 | 2797.41 | 4590.89 | 3633.36 | 0.63 | |
Snap25 | 715.33 | 501.60 | 502.25 | 1307.61 | 1046.86 | 0.58 | |
Ckb | 505.70 | 650.24 | 1216.06 | 1329.61 | 1084.69 | 0.50 | |
Gnas | 634.95 | 1184.41 | 315.21 | 1345.01 | 1113.15 | 0.54 | |
Slc6a9 | 14.11061 | 50.1118 | 28.1854 | 110.2638 | 88.92087 | 0.68 | |
Tph2 | 0.296341 | 0.084168 | 0.20817 | 11.80536 | 16.09617 | 0.98 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Babenko, V.; Redina, O.; Smagin, D.; Kovalenko, I.; Galyamina, A.; Kudryavtseva, N. Brain-Region-Specific Genes Form the Major Pathways Featuring Their Basic Functional Role: Their Implication in Animal Chronic Stress Model. Int. J. Mol. Sci. 2024, 25, 2882. https://doi.org/10.3390/ijms25052882
Babenko V, Redina O, Smagin D, Kovalenko I, Galyamina A, Kudryavtseva N. Brain-Region-Specific Genes Form the Major Pathways Featuring Their Basic Functional Role: Their Implication in Animal Chronic Stress Model. International Journal of Molecular Sciences. 2024; 25(5):2882. https://doi.org/10.3390/ijms25052882
Chicago/Turabian StyleBabenko, Vladimir, Olga Redina, Dmitry Smagin, Irina Kovalenko, Anna Galyamina, and Natalia Kudryavtseva. 2024. "Brain-Region-Specific Genes Form the Major Pathways Featuring Their Basic Functional Role: Their Implication in Animal Chronic Stress Model" International Journal of Molecular Sciences 25, no. 5: 2882. https://doi.org/10.3390/ijms25052882
APA StyleBabenko, V., Redina, O., Smagin, D., Kovalenko, I., Galyamina, A., & Kudryavtseva, N. (2024). Brain-Region-Specific Genes Form the Major Pathways Featuring Their Basic Functional Role: Their Implication in Animal Chronic Stress Model. International Journal of Molecular Sciences, 25(5), 2882. https://doi.org/10.3390/ijms25052882