New Hybrid Ethylenediurea (EDU) Derivatives and Their Phytoactivity
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chemical Synthesis
2.2. Laboratory Tests
3. Materials and Methods
3.1. Chemicals
3.2. Instruments
3.3. Laboratory Experiment
3.4. Statistic
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rezaei, E.E.; Webber, H.; Asseng, S.; Boote, K.; Durand, J.L.; Ewert, F.; Martre, P.; MacCarthy, D.S. Climate change impacts on crop yields. Nat. Rev. Earth Environ. 2023, 4, 831–846. [Google Scholar] [CrossRef]
- Kosakivsk, I.V.; Vedenicheva, N.P.; Babenko, L.M.; Voytenko, L.V.; Romanenko, K.O.; Vasyuk, V.A. Exogenous phytohormones in the regulation of growth and development of cereals under abiotic stresses. Mol. Biol. Rep. 2022, 49, 617–628. [Google Scholar] [CrossRef] [PubMed]
- Available online: https://www.futuremarketinsights.com/reports/cytokinins-market (accessed on 1 February 2021).
- Oshchepkov, M.S.; Kovalenko, L.V.; Kalistratova, A.V.; Solovieva, I.N.; Tsvetikova, M.A.; Gorunova, O.N.; Bystrova, N.A.; Kochetkov, K.A. Phytoactive Aryl Carbamates and Ureas as Cytokinin-like Analogs of EDU. Agronomy 2023, 13, 778. [Google Scholar] [CrossRef]
- Rizwan, A.; Riffat, Y.; Madiha, M.; Ambreen, A.; Mazhar, M.; Rehman, A.; Umbreen, S.; Ahmad, M. Phytohormones as Plant Growth Regulators and Safe Protectors against Biotic and Abiotic Stress. Plant Cell Rep. 2021, 40, 1301–1303. [Google Scholar] [CrossRef]
- Oshchepkov, M.S.; Kalistratova, A.V.; Savelieva, E.M.; Romanov, G.A.; Bystrova, N.A.; Kochetkov, K.A. Natural and synthetic cytokinins and their applications in biotechnology, agrochemistry and medicine. Russ. Chem. Rev. 2020, 89, 787–810. [Google Scholar] [CrossRef]
- Dewan, S.; Lakhani, A. Tropospheric ozone and its natural precursors impacted by climatic changes in emission and dynamics. Review. Front. Environ. Sci. 2022, 10, 1007942. [Google Scholar] [CrossRef]
- Gupta, S.K.; Sharma, M.; Majumder, B.; Maurya, V.K.; Farah Deeba, F.; Zhang, J.-L.; Pandey, V. Effects of ethylenediurea (EDU) on regulatory proteins in two maize (Zea mays L.) varieties under high tropospheric ozone phytotoxicity. Plant Phys. Biochem. 2020, 61, 675–688. [Google Scholar] [CrossRef]
- Singh, A.K.; Mitra, S.; Kar, G. Assessing the impact of current tropospheric ozone on yield loss and antioxidant defense of six cultivars of rice using ethylenediurea in the lower Gangetic Plains of India. Environ. Sci. Pollut. Res. Int. 2022, 29, 40146–40156. [Google Scholar] [CrossRef]
- Shang, B.; Fu, R.; Agathokleous, E.; Dai, L.; Zhang, G.; Wu, R.; Feng, Z. Ethylenediurea offers moderate protection against ozone-induced rice yield loss under high ozone pollution. Sci. Total Environ. 2022, 806 Pt 3, 151341. [Google Scholar] [CrossRef]
- Chaudhary, I.J.; Rathore, D. Assessment of dose–response relationship between ozone dose and groundnut (Arachishypogaea L.) cultivars using Open Top Chamber (OTC) and Ethylenediurea (EDU). Environ. Technol. Innov. 2021, 22, 101494. [Google Scholar] [CrossRef]
- Jabeen, F.; Ahmed, S. Ethylenediurea regulates growth and physiochemical responses of Pisumsativum to ambient O3. Int. J. Environ. Sci. Technol. 2021, 18, 3571–3580. [Google Scholar] [CrossRef]
- Nigar, S.; Nazneen, S.; Khan, S.; Neelum, A.; Tasneem, S. Response of Vignaradiata L. (Mung Bean) to Ozone Phytotoxicity Using Ethylenediurea and Magnesium Nitrate. J. Plant Growth Regul. 2023, 42, 121–133. [Google Scholar] [CrossRef]
- Jabeen, F.; Ahmed, S.; Shah, A.A. Impact of ambient ozone pollution on yield attributes of Pisumsativum L. plants by using ethylenediurea. Iran. J. Plant Phys. 2021, 11, 3789–3798. [Google Scholar]
- Surabhi, S.; Pande, V.; Pandey, V. Ethylenediurea (EDU) mediated protection from ambient ozone-induced oxidative stress in wheat (Triticumaestivum L.) under a high CO2 environment. Atmos. Pollut. Res. 2022, 13, 101503. [Google Scholar] [CrossRef]
- Kannaujia, R.; Singh, P.; Prasad, V.; Pandey, V. Evaluating impacts of biogenic silver nanoparticles and ethylenediurea on wheat (Triticumaestivum L.) against ozone-induced damages. Environ. Res. 2022, 203, 111857. [Google Scholar] [CrossRef]
- Gupta, S.K.; Sharma, M.; Maurya, V.K. Effects of ethylenediurea (EDU) on apoplast and chloroplast proteome in two wheat varieties under high ambient ozone: An approach to investigate EDU’s mode of action. Protoplasma 2021, 258, 1009–1028. [Google Scholar] [CrossRef] [PubMed]
- Maurya, V.K.; Gupta, S.K.; Sharma, M.; Majumder, B.; Deeba, F.; Pandey, N.; Pandey, V. Growth, physiological and proteomic responses in field grown wheat varieties exposed to elevated CO2 under high ambient ozone. Physiol. Mol. Biol. Plant 2020, 26, 1437–1461. [Google Scholar] [CrossRef]
- Agathokleous, E.; Kitao, M.; Wang, X. Ethylenediurea (EDU) effects on Japanese larch: An one growing season experiment with simulated regenerating communities and a four growing season application to individual saplings. J. For. Res. 2021, 32, 2047–2057. [Google Scholar] [CrossRef]
- Agathokleous, E.; Kitao, M.; Koike, T. Ethylenediurea (EDU) effects on hybrid larch saplings exposed to ambient or elevated ozone over three growing seasons. J. For. Res. 2022, 33, 117–135. [Google Scholar] [CrossRef]
- Agathokleous, E.; Kitao, M.; Shi, C.; Masui, N.; Abu-ElEla, S.; Hikino, K.; Satoh, F.; Koike, T. Ethylenediurea (EDU) spray effects on willows (Salix sachalinensis F. Schmid) grown in ambient or ozone-enriched air: Implications for renewable biomass production. J. For. Res. 2022, 33, 397–422. [Google Scholar] [CrossRef]
- Carnahan, J.E.; Jenner, E.L.; Wat, E.K.W. Prevention of Ozone Injury to Plants by a New Protectant Chemical. Phytopathology 1978, 68, 1225–1229. [Google Scholar] [CrossRef]
- Singh, A.A.; Singh, S.; Agrawal, M.; Agrawal, S.B. Assessment of Ethylene Diurea-Induced Protection in Plants Against Ozone Phytotoxicity. In Reviews of Environmental Contamination and Toxicology; Whitacre, D.M., Ed.; Springer International Publishing: Cham, Switzerland, 2015; p. 233. [Google Scholar]
- Lee, E.H.; Chen, C.M. Studies on the meclianisms of ozone tolerance: Cytokioin-like activity of N-[2-(2-oxo-l-imidazolidinyl)ethyI]-N’-plienylurea, a compound protecting against ozone injury. Physiol. Plant 1982, 56, 486–491. [Google Scholar] [CrossRef]
- Romanov, G.A.; Schmülling, T. On the biological activity of cytokinin free bases and their ribosides. Plant 2021, 255, 27–32. [Google Scholar] [CrossRef]
- Manning, W.L.; Paoletti, E.; Sandermann, H., Jr.; Ernst, D. Ethylenediurea (EDU): A research tool for assessment and verification of the effects of ground level ozone on plants under natural conditions. Environ. Pollut. 2011, 159, 3283–3293. [Google Scholar] [CrossRef]
- Kalistratova, A.V.; Kovalenko, L.V.; Oshchepkov, M.S.; Gamisoniya, A.M.; Gerasimova, T.S.; Demidov, Y.A.; Akimov, M.G. Synthesis of New Compounds in the Series of Aryl-Substituted Ureas with Cytotoxic and Antioxidant Activity. Mendeleev Commun. 2020, 30, 153–155. [Google Scholar] [CrossRef]
- Oshchepkov, M.; Kovalenko, L.; Kalistratova, A.; Ivanova, M.; Sherstyanykh, G.; Dudina, P.; Antonov, A.; Cherkasova, A.; Akimov, M. Anti-Proliferative and Cytoprotective Activity of Aryl Carbamate and Aryl Urea Derivatives with Alkyl Groups and Chlorine as Substituents. Molecules 2022, 27, 3616. [Google Scholar] [CrossRef] [PubMed]
- Nisler, J. TDZ: Mode of Action, Use and Potential in Agriculture. In Thidiazuron: From Urea Derivative to Plant Growth Regulator; Springer: Singapore, 2018; pp. 37–59. [Google Scholar] [CrossRef]
- ISTA. Chapter 1. International Rules for Seed Testing. Certificates 2023, 1, 1–14. [Google Scholar]
- Kochetkov, K.A.; Gorunova, O.N.; Bystrova, N.A. Biologically Oriented Hybrids of Indole and Hydantoin Derivatives. Molecules 2023, 28, 602. [Google Scholar] [CrossRef] [PubMed]
- Kurepa, J.; Smalle, J.A. Auxin/Cytokinin Antagonistic Control of the Shoot/Root Growth Ratio and Its Relevance for Adaptation to Drought and Nutrient Deficiency Stresses. Int. J. Mol. Sci. 2022, 23, 1933. [Google Scholar] [CrossRef] [PubMed]
- Yamoune, A.; Zdarska, M.; Depaepe, T.; Korytarova, A.; Skalak, J.; Berendzen, K.W.; Mira-Rodado, V.; Tarr, P.; Spackova, E.; Badurova, L.; et al. Cytokinins regulate spatially specific ethylene production to control root growth in Arabidopsis. BioRxiv 2023, 1–38. [Google Scholar] [CrossRef]
- Giampaoli, P.; Santos, D.; Mollo, L.; Kanashiro, S.; Tavares, A. Effect of fertilisation with urea on development in the ornamental bromeliad Aechmea fasciata. Crop Sci. Rev. 2017, 48, 657–662. [Google Scholar] [CrossRef]
- Kalistratova, A.V.; Oshchepkov, M.S.; Ivanova, M.S.; Kovalenko, L.V.; Tsvetikova, M.A.; Bystrova, N.A.; Kochetkov, R.A. Wheat (Triticum aestivum L.) Reaction to New Bifunctional Carbamate Compounds. J. Agric. Sci. 2021, 13, 36–47. [Google Scholar] [CrossRef]
- Oshchepkov, M.S.; Kalistratova, A.V.; Kovalenko, L.V.; Ivanova, M.S.; Tsvetikova, M.A.; Bystrova, N.A.; Kochetkov, K.A. Evaluation of potential and rate of the germination of wheat seeds (Triticum aestivum L.) treated with bifunctional growth regulators under water stress. Emir. J. Food Agric. 2023, 35, 1–6. [Google Scholar] [CrossRef]
- State Register of Selection Achievements Approved For Use. V.1. “Varieties of Plants” (Official Publication); FGBNU “Rosinformagrotech”: Moscow, Russia, 2023; Volume 1, p. 719.
Compounds | Gp, % | G, % | Root, cm | Shoot, cm | RWC, % |
---|---|---|---|---|---|
Control | 56.47 ± 4.19 | 84.21 ± 2.63 | 7.76 ± 1.93 | 12.63 ± 3.18 | 27.29 ± 1.16 |
I | 53.28 ± 3.05 | 92.17 ± 4.34 | 7.82 ± 1.10 | 15.04 ± 2.91 ** | 29.46 ± 2.37 |
II | 59.60 ± 1.70 * | 93.51 ± 3.41 | 8.16 ± 1.70 | 15.27 ± 1.82 * | 30.84 ± 2.95 |
III | 52.41 ± 2.01 | 92.54 ± 2.58 * | 8.71 ± 2.08 ** | 18.85 ± 3.16 ** | 33.58 ± 3.96 * |
IV | 54 ± 3.78 | 88 ± 2.51 | 8.3 ± 1.29 * | 5.4 ± 1.58 * | 35.58 ± 3.81 |
V | 51.33 ± 2.08 | 85.62 ± 2.36 | 8.27 ± 1.82 * | 14.42 ± 1.20 * | 35.02 ± 6.08 |
VI | 52.05 ± 5.5 | 88.31 ± 5.91 | 9.62 ± 1.29 ** | 13.50 ± 1.83 | 35.52 ± 6.40 |
VII | 65.39 ± 2.16 * | 94.27 ± 2.82 * | 8.96 ± 1.31 ** | 15.47 ± 1.76 * | 34.97 ± 4.12 * |
VIII | 57.45 ± 2.46 | 90.11 ± 5.56 | 9.37 ± 1.82 ** | 15.12 ± 1.67 * | 30.68 ± 3.08 |
IX | 55.61 ± 2.64 | 86.24 ± 2.16 | 8.88 ± 1.31 | 14.34 ± 1.65 | 29.73 ± 2.05 |
IM | 60.05 ± 4.32 | 86.42 ± 2.0 | 6.26 ± 1.55 | 13.50 ± 1.2 | 25.52 ± 0.89 |
KIN | 59.32 ± 6.84 * | 88.16 ± 7.79 | 8.13± 0.55 | 14.57 ± 2.4 * | 28.43 ± 0.04 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oshchepkov, M.S.; Kovalenko, L.V.; Kalistratova, A.V.; Tkachenko, S.V.; Gorunova, O.N.; Bystrova, N.A.; Kochetkov, K.A. New Hybrid Ethylenediurea (EDU) Derivatives and Their Phytoactivity. Int. J. Mol. Sci. 2024, 25, 3335. https://doi.org/10.3390/ijms25063335
Oshchepkov MS, Kovalenko LV, Kalistratova AV, Tkachenko SV, Gorunova ON, Bystrova NA, Kochetkov KA. New Hybrid Ethylenediurea (EDU) Derivatives and Their Phytoactivity. International Journal of Molecular Sciences. 2024; 25(6):3335. https://doi.org/10.3390/ijms25063335
Chicago/Turabian StyleOshchepkov, Maxim S., Leonid V. Kovalenko, Antonida V. Kalistratova, Sergey V. Tkachenko, Olga N. Gorunova, Nataliya A. Bystrova, and Konstantin A. Kochetkov. 2024. "New Hybrid Ethylenediurea (EDU) Derivatives and Their Phytoactivity" International Journal of Molecular Sciences 25, no. 6: 3335. https://doi.org/10.3390/ijms25063335
APA StyleOshchepkov, M. S., Kovalenko, L. V., Kalistratova, A. V., Tkachenko, S. V., Gorunova, O. N., Bystrova, N. A., & Kochetkov, K. A. (2024). New Hybrid Ethylenediurea (EDU) Derivatives and Their Phytoactivity. International Journal of Molecular Sciences, 25(6), 3335. https://doi.org/10.3390/ijms25063335