Enhancing Clinical Utility: Utilization of International Standards and Guidelines for Metagenomic Sequencing in Infectious Disease Diagnosis
Abstract
:1. Introduction
2. Understanding the Role of ISO Standards in Workflow Standardization and Different mNGS Approaches
2.1. Understanding the Current mNGS Strategies and Challenges for Infectious Disease
2.1.1. RNA Sequencing
2.1.2. Long-Read Sequencing
2.1.3. Short-Read Sequencing
3. Idea of Metagenomics Sequencing Assay Implementation Workflow
4. Assay Description
4.1. Deciding on Laboratory Space Organization and the Arrangement of Equipment
4.2. Defining the Scope of Pathogens
4.3. Defining the mNGS Strategies
4.4. Defining the Test Methodology
4.5. Defining the Possible Risk/Errors in the Whole Workflow
5M1E Methodology
4.6. Defining the Quality Control Metrics
5. Assay Integration and Optimization
5.1. Choice of Sample Type
5.2. Sample Preparation
5.3. DNA/RNA Extraction
5.4. Fragmentation
5.5. Library Preparation
5.6. Sequencing Platform
Bioinformatics Analysis for Metagenomics
5.7. The Choice of Reference Database
5.8. Reporting
6. Assay Validation
6.1. Reference Materials
6.2. Proficiency Testing and External Quality Assessment (EQA)
6.3. Enhancement of Data Analysis
6.4. Performance Characteristics
6.4.1. Precision Reproducibility and Repeatability
6.4.2. Analytic Sensitivity and Analytical Specificity
6.4.3. Limit of Detection
7. Future Perspectives and Challenges for Implementing mNGS in Infectious Disease Diagnosis
7.1. Turnaround Time and Costs
7.2. Standardization and Quality Control
7.3. Bioinformatics and Data Analysis
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wu, J.; Cai, K.; Feng, Q. The Application of Metagenomic Approaches in the Management of Infectious Diseases. Trop. Med. Surg. 2015, 3, 196. [Google Scholar] [CrossRef]
- Yu, X.; Jiang, W.; Shi, Y.; Ye, H.; Lin, J.-H. Applications of Sequencing Technology in Clinical Microbial Infection. J. Cell. Mol. Med. 2019, 23, 7143–7150. [Google Scholar] [CrossRef]
- Markin, R.S. Manifestations of Epstein-Barr Virus-Associated Disorders in Liver. Liver Int. 2008, 14, 1–13. [Google Scholar] [CrossRef]
- Maiden, M.C.J.; Rensburg, M.J.J.V.; Bray, J.E.; Earle, S.G.; Ford, S.A.; Jolley, K.A.; McCarthy, N.D. MLST Revisited: The Gene-by-Gene Approach to Bacterial Genomics. Nat. Rev. Microbiol. 2013, 11, 728–736. [Google Scholar] [CrossRef] [PubMed]
- Hatherell, H.-A.; Colijn, C.; Stagg, H.R.; Jackson, C.; Winter, J.R.; Abubakar, I. Interpreting whole genome sequencing for investigating tuberculosis transmission: A systematic review. BMC Med. 2016, 14, 21. [Google Scholar] [CrossRef] [PubMed]
- Russo, T.A.; Marr, C.M. Hypervirulent klebsiella pneumoniae. Clin. Microbiol. Rev. 2019, 32, e00001-19. [Google Scholar] [CrossRef] [PubMed]
- Jo, Y.; Choi, H.; Kim, S.-M.; Kim, S.-L.; Lee, B.C.; Cho, W.K. The Pepper Virome: Natural Co-Infection of Diverse Viruses and Their Quasispecies. BMC Genom. 2017, 18, 453. [Google Scholar] [CrossRef] [PubMed]
- Nasheri, N.; Petronella, N.; Ronholm, J.; Bidawid, S.; Corneau, N. Characterization of the Genomic Diversity of Norovirus in Linked Patients Using a Metagenomic Deep Sequencing Approach. Front. Microbiol. 2017, 8, 73. [Google Scholar] [CrossRef] [PubMed]
- Charre, C.; Regue, H.; Dény, P.; Josset, L.; Chemin, I.; Zoulim, F.; Scholtes, C. Improved hepatitis delta virus genome characterization by single molecule full-length genome sequencing combined with VIRiONT pipeline. J. Med. Virol. 2023, 95, e28634. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Xiao, X.; Chen, S.; Huang, C.; Zhou, J.; Dai, E.; Li, Y.; Liu, L.; Huang, X.; Gao, Z.; et al. The Impact of HBV Quasispecies Features on Immune Status in HBsAg+/HBsAb+ Patients With HBV Genotype C Using Next-Generation Sequencing. Front. Immunol. 2021, 12, 775461. [Google Scholar] [CrossRef]
- Tonkin-Hill, G.; Martincorena, I.; Amato, R.; Lawson, A.; Gerstung, M.; Johnston, I.; Jackson, D.; Park, N.; Lensing, S.; Quail, M.A.; et al. Patterns of Within-Host Genetic Diversity in SARS-CoV-2. eLife 2021, 10, e66857. [Google Scholar] [CrossRef]
- Butler, D.; Mozsary, C.; Meydan, C.; Foox, J.; Rosiene, J.; Shaiber, A.; Danko, D.; Afshinnekoo, E.; MacKay, M.; Sedlazeck, F.J.; et al. Shotgun Transcriptome, Spatial Omics, and Isothermal Profiling of SARS-CoV-2 Infection Reveals Unique Host Responses, Viral Diversification, and Drug Interactions. Nat. Commun. 2021, 12, 1660. [Google Scholar] [CrossRef]
- Robinson, E.R.; Walker, T.M.; Pallen, M.J. Genomics and outbreak investigation: From sequence to consequence. Genome Med. 2013, 5, 36. [Google Scholar] [CrossRef]
- Besser, J.M.; Carleton, H.A.; Trees, E.; Stroika, S.G.; Hise, K.; Wise, M.; Gerner-Smidt, P. Interpretation of Whole-Genome Sequencing for Enteric Disease Surveillance and Outbreak Investigation. Foodborne Pathog. Dis. 2019, 16, 504–512. [Google Scholar] [CrossRef]
- Harris, S.R.; Cartwright, E.J.P.; Török, M.E.; Holden, M.T.G.; Brown, N.M.; Ogilvy-Stuart, A.L.; Ellington, M.J.; Quail, M.A.; Bentley, S.D.; Parkhill, J.; et al. Whole-genome sequencing for analysis of an outbreak of meticillin-resistant Staphylococcus aureus: A descriptive study. Lancet Infect. Dis. 2013, 13, 130–136. [Google Scholar] [CrossRef] [PubMed]
- Besser, J.; Carleton, H.A.; Gerner-Smidt, P.; Lindsey, R.L.; Trees, E. Next-generation sequencing technologies and their application to the study and control of bacterial infections. Clin. Microbiol. Infect. 2018, 24, 335–341. [Google Scholar] [CrossRef] [PubMed]
- Jackson, B.R.; Tarr, C.; Strain, E.; Jackson, K.A.; Conrad, A.; Carleton, H.; Katz, L.S.; Stroika, S.; Gould, L.H.; Mody, R.K.; et al. Implementation of Nationwide Real-time Whole-genome Sequencing to Enhance Listeriosis Outbreak Detection and Investigation. Clin. Infect. Dis. 2016, 63, 380–386. [Google Scholar] [CrossRef] [PubMed]
- Walker, T.M.; Ip, C.L.C.; Harrell, R.H.; Evans, J.D.; Kapatai, G.; Dedicoat, M.; Eyre, D.W.; Wilson, D.J.; Hawkey, P.M.; Crook, D.W.; et al. Whole-Genome Sequencing to Delineate Mycobacterium Tuberculosis Outbreaks: A Retrospective Observational Study. Lancet Infect. Dis. 2013, 13, 137–146. [Google Scholar] [CrossRef] [PubMed]
- Ladner, J.T.; Grubaugh, N.D.; Pybus, O.G.; Andersen, K.G. Precision epidemiology for infectious disease control. Nat. Med. 2019, 25, 206–211. [Google Scholar] [CrossRef]
- James, S.E.; Ngcapu, S.; Kanzi, A.M.; Tegally, H.; Fonseca, V.; Giandhari, J.; Wilkinson, E.; Chimukangara, B.; Pillay, S.; Singh, L.; et al. High Resolution analysis of Transmission Dynamics of Sars-Cov-2 in Two Major Hospital Outbreaks in South Africa Leveraging Intrahost Diversity. medRxiv 2020, 7, veab041. [Google Scholar] [CrossRef]
- Gu, W.; Miller, S.; Chiu, C.Y. Clinical Metagenomic Next-Generation Sequencing for Pathogen Detection. Annu. Rev. Pathol. Mech. Dis. 2019, 14, 319–338. [Google Scholar] [CrossRef] [PubMed]
- Campbell, F.; Strang, C.; Ferguson, N.; Cori, A.; Jombart, T. When are pathogen genome sequences informative of transmission events? PLoS Pathog. 2018, 14, e1006885. [Google Scholar] [CrossRef]
- Hirabayashi, A.; Kajihara, T.; Yahara, K.; Shibayama, K.; Sugai, M. Impact of the COVID-19 Pandemic on the Surveillance of Antimicrobial Resistance. J. Hosp. Infect. 2021, 117, 147–156. [Google Scholar] [CrossRef] [PubMed]
- Veepanattu, P.; Singh, S.; Mendelson, M.; Nampoothiri, V.; Edathadatil, F.; Surendran, S.; Bonaconsa, C.; Mbamalu, O.; Ahuja, S.; Birgand, G.; et al. Building Resilient and Responsive Research Collaborations to Tackle Antimicrobial Resistance—Lessons Learnt From India, South Africa, and UK. Int. J. Infect. Dis. 2020, 100, 278–282. [Google Scholar] [CrossRef]
- Wilson, M.R.; Sample, H.; Zorn, K.C.; Arevalo, S.; Yu, G.; Neuhaus, J.; Federman, S.; Stryke, D.; Briggs, B.; Langelier, C.; et al. Clinical Metagenomic Sequencing for Diagnosis of Meningitis and Encephalitis. N. Engl. J. Med. 2019, 380, 2327–2340. [Google Scholar] [CrossRef] [PubMed]
- Fan, X.; Wang, Q.; Li, P.; Ai, B.; Song, Y.; Peng, Q.; Wang, H. The Diagnostic Value of Metagenomic Next-Generation Sequencing in Angiostrongylus Cantonensis Encephalitis/Meningitis. J. Behav. Brain Sci. 2021, 11, 216–226. [Google Scholar] [CrossRef]
- Wang, S.; Chen, Y.; Wang, D.; Wu, Y.; Zhao, D.; Zhang, J.; Xie, H.; Gong, Y.; Sun, R.; Nie, X.; et al. The Feasibility of Metagenomic Next-Generation Sequencing to Identify Pathogens Causing Tuberculous Meningitis in Cerebrospinal Fluid. Front. Microbiol. 2019, 10, 1993. [Google Scholar] [CrossRef]
- Liang, X.; Wang, Q.; Liu, J.; Ma, J.; Zhang, Y.; Wang, M.; Yu, Y.; Wang, L. Coinfection of SARS-CoV-2 and Influenza a (H3N2) Detected in Bronchoalveolar Lavage Fluid of a Patient With Long COVID Using Metagenomic Next−generation Sequencing: A Case Report. Front. Cell. Infect. Microbiol. 2023, 13, 1224794. [Google Scholar] [CrossRef]
- Xie, Y.; Dai, B.; Zhou, X.; Liu, H.; Wu, W.; Yu, F.R.; Zhu, B. Diagnostic Value of Metagenomic Next-Generation Sequencing for Multi-Pathogenic Pneumonia in HIV-Infected Patients. Infect. Drug Resist. 2023, 16, 607–618. [Google Scholar] [CrossRef]
- Chiu, C.Y.; Miller, S.A. Clinical Metagenomics. Nat. Rev. Genet. 2019, 20, 341–355. [Google Scholar] [CrossRef]
- Tulloch, R.L.; Kim, K.; Sikazwe, C.; Michie, A.; Burrell, R.A.; Holmes, E.C.; Dwyer, D.E.; Britton, P.N.; Kok, J.; Eden, J.S. RAPIDprep: A Simple, Fast Protocol for RNA Metagenomic Sequencing of Clinical Samples. Viruses 2023, 15, 1006. [Google Scholar] [CrossRef]
- Hoopen, P.T.; Finn, R.D.; Bongo, L.A.; Corre, E.; Fosso, B.; Meyer, F.; Mitchell, A.; Pelletier, E.; Pesole, G.; Santamaria, M.; et al. The Metagenomic Data Life-Cycle: Standards and Best Practices. GigaScience 2017, 6, gix047. [Google Scholar] [CrossRef]
- Sala, C.; Mordhorst, H.; Grützke, J.; Brinkmann, A.; Petersen, T.N.; Poulsen, C.S.; Cotter, P.D.; Crispie, F.; Ellis, R.J.; Castellani, G.; et al. Metagenomics-Based Proficiency Test of Smoked Salmon Spiked With a Mock Community. Microorganisms 2020, 8, 1861. [Google Scholar] [CrossRef]
- Brumfield, K.D.; Huq, A.; Colwell, R.R.; Olds, J.L.; Leddy, M.B. Microbial Resolution of Whole Genome Shotgun and 16S Amplicon Metagenomic Sequencing Using Publicly Available NEON Data. PLoS ONE 2020, 15, e0228899. [Google Scholar] [CrossRef]
- Imanian, B.; Donaghy, J.; Jackson, T.; Gummalla, S.; Ganesan, B.; Baker, R.C.; Henderson, M.; Butler, E.K.; Hong, Y.; Ring, B.; et al. The power, potential, benefits, and challenges of implementing high-throughput sequencing in food safety systems. npj Sci. Food 2022, 6, 35. [Google Scholar] [CrossRef] [PubMed]
- Govender, K.; Eyre, D.W. Benchmarking Taxonomic Classifiers with Illumina and Nanopore Sequence Data for Clinical Metagenomic Diagnostic Applications. Microb. Genom. 2022, 8, 000886. [Google Scholar] [CrossRef] [PubMed]
- López-Labrador, F.X.; Brown, J.R.; Fischer, N.; Harvala, H.; Van Boheemen, S.; Cinek, O.; Sayiner, A.; Madsen, T.V.; Auvinen, E.; Kufner, V.; et al. Recommendations for the introduction of metagenomic high-throughput sequencing in clinical virology, part I: Wet lab procedure. J. Clin. Virol. 2021, 134, 104691. [Google Scholar] [CrossRef] [PubMed]
- Parker, K.; Wood, H.; Russell, J.A.; Yarmosh, D.; Shteyman, A.; Bagnoli, J.; Knight, B.; Aspinwall, J.R.; Jacobs, J.L.; Werking, K.; et al. Development and Optimization of an Unbiased, Metagenomics-Based Pathogen Detection Workflow for Infectious Disease and Biosurveillance Applications. Trop. Med. Infect. Dis. 2023, 8, 121. [Google Scholar] [CrossRef] [PubMed]
- Damme, R.V.; Hölzer, M.; Viehweger, A.; Müller, B.; Bongcam-Rudloff, E.; Brandt, C. Metagenomics Workflow for Hybrid Assembly, Differential Coverage Binning, Metatranscriptomics and Pathway Analysis (MUFFIN). PLoS Comput. Biol. 2021, 17, e1008716. [Google Scholar] [CrossRef]
- Churcheward, B.; Millet, M.; Bihouée, A.; Fertin, G.; Chaffron, S. MAGNETO: An Automated Workflow for Genome-Resolved Metagenomics. mSystems 2022, 7, e0043222. [Google Scholar] [CrossRef] [PubMed]
- Werbin, Z.R.; Hackos, B.; Dietze, M.C.; Bhatnagar, J. The National Ecological Observatory Network’s Soil Metagenomes: Assembly and Basic Analysis. F1000Research 2021, 10, 299. [Google Scholar] [CrossRef] [PubMed]
- ISO/TS 24420:2023; Parallel DNA Sequencing—General Requirements for Data Processing of Shotgun Metagenomic Sequences. International Organization for Standardization: Geneva, Switzerland, 2023.
- ISO 20397-1:2021; Biotechnology—Massively Parallel Sequencing—Part 1: Nucleic Acid and Library Preparation. International Organization for Standardization: Geneva, Switzerland, 2022.
- ISO 20397-2:2021; Biotechnology Massively Parallel Sequencing—Part 2: Quality Evaluation of Sequencing Data. International Organization for Standardization: Geneva, Switzerland, 2022.
- Burd, E.M. Validation of Laboratory-Developed Molecular Assays for Infectious Diseases. Clin. Microbiol. Rev. 2010, 23, 550–576. [Google Scholar] [CrossRef] [PubMed]
- Maschietto, C.; Otto, G.; Rouzè, P.; Debortoli, N.; Bihin, B.; Nyinkeu, L.; Denis, O.; Huang, T.-D.; Mullier, F.; Bogaerts, P.; et al. Minimal Requirements for ISO15189 Validation and Accreditation of Three Next Generation Sequencing Procedures for SARS-CoV-2 Surveillance in Clinical Setting. Sci. Rep. 2023, 13, 6934. [Google Scholar] [CrossRef] [PubMed]
- ISO 15189:2022; Medical Laboratories Requirements for Quality and Competence. International Organization for Standardization: Geneva, Switzerland, 2022.
- Schlaberg, R.; Chiu, C.Y.; Miller, S.; Procop, G.W.; Weinstock, G.; the Professional Practice Committee and Committee on Laboratory Practices of the American Society for Microbiology; the Microbiology Resource Committee of the College of American Pathologists. Validation of Metagenomic Next-Generation Sequencing Tests for Universal Pathogen Detection. Arch. Pathol. Lab. Med. 2017, 141, 776–786. [Google Scholar] [CrossRef] [PubMed]
- Infectious Disease Next Generation Sequencing Based Diagnostic Devices: Microbial Identification and Detection of Antimicrobial Resistance and Virulence Markers; Draft Guidance for Industry and Food and Drug Administration Staff. Available online: https://www.federalregister.gov/d/2016-11237 (accessed on 13 May 2016).
- Ojala, T.; Kankuri, E.; Kankainen, M. Understanding human health through metatranscriptomics. Trends Mol. Med. 2023, 29, 376–389. [Google Scholar] [CrossRef]
- Zampieri, G.; Campanaro, S.; Angione, C.; Treu, L. Metatranscriptomics-guided genome-scale metabolic modeling of microbial communities. Cell Rep. Methods 2023, 3, 100383. [Google Scholar] [CrossRef]
- Fuentes-Trillo, A.; Monzó, C.; Manzano, I.; Santiso-Bellón, C.; Andrade, J.d.S.R.d.; Gozalbo-Rovira, R.; García-García, A.-B.; Rodríguez-Díaz, J.; Chaves, F.J. Benchmarking Different Approaches for Norovirus Genome Assembly in Metagenome Samples. BMC Genom. 2021, 22, 849. [Google Scholar] [CrossRef]
- Shi, H.; Zhou, Y.; Jia, E.; Pan, M.; Bai, Y.; Ge, Q. Bias in RNA-seq Library Preparation: Current Challenges and Solutions. BioMed Res. Int. 2021, 2021, 6647597. [Google Scholar] [CrossRef]
- Gatcliffe, C.; Rao, A.; Brigger, M.T.; Dimmock, D.; Hansen, C.H.; Montgomery, J.; Salais, R.; Coufal, N.G.; Farnaes, L. Metagenomic Sequencing and Evaluation of the Host Response in the Pediatric Aerodigestive Population. Pediatr. Pulmonol. 2020, 56, 516–524. [Google Scholar] [CrossRef] [PubMed]
- Kolmogorov, M.; Bickhart, D.M.; Behsaz, B.; Gurevich, A.; Rayko, M.; Shin, S.B.; Kuhn, K.L.; Yuan, J.; Polevikov, E.; Smith, T.P.L.; et al. metaFlye: Scalable Long-Read Metagenome Assembly Using Repeat Graphs. Nat. Chem. Biol. 2020, 17, 1103–1110. [Google Scholar] [CrossRef] [PubMed]
- Nicholls, S.M.; Quick, J.; Tang, S.W.; Loman, N.J. Ultra-Deep, Long-Read Nanopore Sequencing of Mock Microbial Community Standards. GigaScience 2019, 8, giz043. [Google Scholar] [CrossRef]
- Ong, C.T.; Ross, E.M.; Boe-Hansen, G.; Turni, C.; Hayes, B.J.; Lew-Tabor, A.E. Technical Note: Overcoming Host Contamination in Bovine Vaginal Metagenomic Samples With Nanopore Adaptive Sequencing. J. Anim. Sci. 2021, 100, skab344. [Google Scholar] [CrossRef]
- Sim, M.; Lee, J.; Wy, S.; Park, N.; Lee, D.; Kwon, D.; Kim, J. Generation and Application of Pseudo–long Reads for Metagenome Assembly. GigaScience 2022, 11, giac044. [Google Scholar] [CrossRef]
- Meslier, V.; Quinquis, B.; Silva, K.D.; Oñate, F.P.; Pons, N.; Roume, H.; Podar, M.; Almeida, M. Benchmarking Second and Third-Generation Sequencing Platforms for Microbial Metagenomics. Sci. Data 2022, 9, 694. [Google Scholar] [CrossRef]
- An, N.; Wang, C.; Dou, X.; Liu, X.; Wu, J.; Chen, Y. Comparison of 16S rDNA Amplicon Sequencing With the Culture Method for Diagnosing Causative Pathogens in Bacterial Corneal Infections. Transl. Vis. Sci. Technol. 2022, 11, 29. [Google Scholar] [CrossRef]
- Szoboszlay, M.; Schramm, L.; Pinzauti, D.; Scerri, J.; Sandionigi, A.; Biazzo, M. Nanopore Is Preferable Over Illumina for 16S Amplicon Sequencing of the Gut Microbiota When Species-Level Taxonomic Classification, Accurate Estimation of Richness, or Focus on Rare Taxa Is Required. Microorganisms 2023, 11, 804. [Google Scholar] [CrossRef] [PubMed]
- Shay, J.; Haniford, L.S.E.; Cooper, A.; Carrillo, C.D.; Blais, B.W.; Lau, C.H.-F. Exploiting a Targeted Resistome Sequencing Approach in Assessing Antimicrobial Resistance in Retail Foods. Environ. Microbiome 2023, 18, 25. [Google Scholar] [CrossRef]
- Siljanen, H.; Manoharan, L.; Hilts, A.S.; Bagnoud, A.; Alves, R.; Jones, C.M.; Sousa, F.L.; Hallin, S.; Biasi, C.; Schleper, C. Targeted Metagenomics Using Probe Capture Detect a Larger Diversity of Nitrogen and Methane Cycling Genes in Complex Microbial Communities Than Traditional Metagenomics. bioRxiv 2022. [Google Scholar] [CrossRef]
- Hoang, M.T.V.; Irinyi, L.; Meyer, W. Long-Read Sequencing in Fungal Identification. Microbiol. Aust. 2022, 43, 14–18. [Google Scholar] [CrossRef]
- Pei, X.M.; Yeung, M.H.Y.; Wong, A.N.N.; Tsang, H.F.; Yu, A.C.S.; Yim, A.K.Y.; Wong, S.C.C. Targeted Sequencing Approach and Its Clinical Applications for the Molecular Diagnosis of Human Diseases. Cells 2023, 12, 493. [Google Scholar] [CrossRef] [PubMed]
- Kim, C.; Pongpanich, M.; Porntaveetus, T. Unraveling metagenomics through long-read sequencing: A comprehensive review. J. Transl. Med. 2024, 22, 111. [Google Scholar] [CrossRef] [PubMed]
- Benoit, G.; Raguideau, S.; James, R.; Phillippy, A.M.; Chikhi, R.; Quince, C. High-quality metagenome assembly from long accurate reads with metaMDBG. Nat. Biotechnol. 2024, 1–6. [Google Scholar] [CrossRef]
- Mastrorosa, F.K.; Miller, D.E.; Eichler, E.E. Applications of long-read sequencing to Mendelian genetics. Genome Med. 2023, 15, 42. [Google Scholar] [CrossRef]
- Silverman, J.D.; Bloom, R.J.; Jiang, S.; Durand, H.K.; Dallow, E.; Mukherjee, S.; David, L.A. Measuring and mitigating PCR bias in microbiota datasets. PLoS Comput. Biol. 2021, 17, e1009113. [Google Scholar] [CrossRef] [PubMed]
- Gargis, A.S.; Kalman, L.V.; Lubin, I.M. Assuring the Quality of Next-Generation Sequencing in Clinical Microbiology and Public Health Laboratories. J. Clin. Microbiol. 2016, 54, 2857–2865. [Google Scholar] [CrossRef]
- Zhong, Y.; Xu, F.; Wu, J.; Schubert, J.; Li, M.M. Application of Next Generation Sequencing in Laboratory Medicine. Ann. Lab. Med. 2021, 41, 25–43. [Google Scholar] [CrossRef]
- Мурашкo, Л.А.; Муха, Т.І.; Humenyuk, O.; Kіrіlenko, V.; Novytska, N.V. The Level of Intensity of Soft Winter Wheat Varieties Infection by Fusarium Link Pathogens and Their Identification on Grain. Plant Soil Sci. 2022, 13, 35–45. [Google Scholar] [CrossRef]
- Ambrose, M.; Aj, K.; Formenty, P.; Muyembe-Tamfum, J.J.; Aw, R.; Lloyd-Smith, J.O. Quantifying Transmission of Emerging Zoonoses: Using Mathematical Models to Maximize the Value of Surveillance Data. bioRxiv 2019. [Google Scholar] [CrossRef]
- Jones, K.E.; Patel, N.; Levy, M.J.; Storeygard, A.; Balk, D.; Gittleman, J.L.; Daszak, P. Global Trends in Emerging Infectious Diseases. Nature 2008, 451, 990–993. [Google Scholar] [CrossRef]
- Plowright, R.K.; Parrish, C.R.; McCallum, H.; Hudson, P.J.; Ko, A.I.; Graham, A.L.; Lloyd-Smith, J.O. Pathways to Zoonotic Spillover. Nat. Rev. Microbiol. 2017, 15, 502–510. [Google Scholar] [CrossRef]
- Rizzoli, A.; Tagliapietra, V.; Cagnacci, F.; Marini, G.; Arnoldi, D.; Rosso, F.; Rosà, R. Parasites and Wildlife in a Changing World: The Vector-Host- Pathogen Interaction as a Learning Case. Int. J. Parasitol. Parasites Wildl. 2019, 9, 394–401. [Google Scholar] [CrossRef]
- Wu, L.; Wu, Z.C.; Тoдoсійчук, Т.С.; Korneva, O. Nosocomial Infections: Pathogenicity, Resistance and Novel Antimicrobials. Innov. Biosyst. Bioeng. 2021, 5, 73–78. [Google Scholar] [CrossRef]
- Heesterbeek, J.A.P.; Anderson, R.M.; Andreasen, V.; Bansal, S.; Angelis, D.D.; Dye, C.; Eames, K.T.D.; Edmunds, W.J.; Frost, S.D.W.; Funk, S.; et al. Modeling Infectious Disease Dynamics in the Complex Landscape of Global Health. Science 2015, 347, aaa4339. [Google Scholar] [CrossRef]
- Salipante, S.J.; Kawashima, T.; Rosenthal, C.; Hoogestraat, D.R.; Cummings, L.A.; Sengupta, D.J.; Harkins, T.T.; Cookson, B.T.; Hoffman, N.G. Performance comparison of Illumina and ion torrent next-generation sequencing platforms for 16S rRNA-based bacterial community profiling. Appl. Environ. Microbiol. 2014, 80, 7583–7591. [Google Scholar] [CrossRef]
- Weyrich, L.S.; Farrer, A.G.; Eisenhofer, R.; Arriola, L.A.; Young, J.M.; Selway, C.A.; Handsley-Davis, M.; Adler, C.; Breen, J.; Cooper, A. Laboratory Contamination Over Time During Low-biomass Sample Analysis. Mol. Ecol. Resour. 2019, 19, 982–996. [Google Scholar] [CrossRef]
- Shi, Y.; Wang, G.; Lau, H.C.-H.; Yu, J. Metagenomic Sequencing for Microbial DNA in Human Samples: Emerging Technological Advances. Int. J. Mol. Sci. 2022, 23, 2181. [Google Scholar] [CrossRef]
- Gu, W.; Crawford, E.D.; O’Donovan, B.; Wilson, M.R.; Chow, E.D.; Retallack, H.; DeRisi, J.L. Depletion of Abundant Sequences by Hybridization (DASH): Using Cas9 to remove unwanted high-abundance species in sequencing libraries and molecular counting applications. Genome Biol. 2016, 17, 41. [Google Scholar] [CrossRef] [PubMed]
- Ong, C.T.; Boe-Hansen, G.; Ross, E.M.; Blackall, P.J.; Hayes, B.J.; Lew-Tabor, A.E. Evaluation of Host Depletion and Extraction Methods for Shotgun Metagenomic Analysis of Bovine Vaginal Samples. Microbiol. Spectr. 2022, 10, e0041221. [Google Scholar] [CrossRef] [PubMed]
- Gan, M.; Wu, B.; Yan, G.; Li, G.; Sun, L.; Li, G.; Zhou, W. Combined Nanopore Adaptive Sequencing and Enzyme-Based Host Depletion Efficiently Enriched Microbial Sequences and Identified Missing Respiratory Pathogens. BMC Genom. 2021, 22, 732. [Google Scholar] [CrossRef]
- Jin, N.; Kan, C.-M.; Pei, X.M.; Cheung, W.L.; Ng, S.S.M.; Wong, H.T.; Cheng, H.Y.-L.; Leung, W.W.; Wong, Y.N.; Tsang, H.F.; et al. Cell-free circulating tumor RNAs in plasma as the potential prognostic biomarkers in colorectal cancer. Front. Oncol. 2023, 13, 1134445. [Google Scholar] [CrossRef] [PubMed]
- Aja-Macaya, P.; Rumbo-Feal, S.; Poza, M.; Cañizares, A.; Vallejo, J.A.; Bou, G. A new and efficient enrichment method for metagenomic sequencing of Monkeypox virus. BMC Genom. 2023, 24, 29. [Google Scholar] [CrossRef]
- Barzon, L.; Lavezzo, E.; Costanzi, G.; Franchin, E.; Toppo, S.; Palù, G. Next-Generation Sequencing Technologies in Diagnostic Virology. J. Clin. Virol. 2013, 58, 346–350. [Google Scholar] [CrossRef]
- Gwinn, M.; MacCannell, D.; Armstrong, G.L. Next-Generation Sequencing of Infectious Pathogens. JAMA 2019, 321, 893–894. [Google Scholar] [CrossRef]
- Poulsen, C.S.; Kaas, R.S.; Aarestrup, F.M.; Pamp, S.J. Standard Sample Storage Conditions Have an Impact on Inferred Microbiome Composition and Antimicrobial Resistance Patterns. Microbiol. Spectr. 2021, 9, e01387-21. [Google Scholar] [CrossRef]
- Bundgaard-Nielsen, C.; Hagstrøm, S.; Sørensen, S. Interpersonal Variations in Gut Microbiota Profiles Supersedes the Effects of Differing Fecal Storage Conditions. Sci. Rep. 2018, 8, 17367. [Google Scholar] [CrossRef]
- Salter, S.J.; Cox, M.J.; Turek, E.; Calus, S.T.; Cookson, W.; Moffatt, M.F.; Turner, P.; Parkhill, J.; Loman, N.J.; Walker, A.W. Reagent and Laboratory Contamination Can Critically Impact Sequence-Based Microbiome Analyses. BMC Biol. 2014, 12, 87. [Google Scholar] [CrossRef]
- Marchukov, D.; Li, J.; Juillerat, P.; Misselwitz, B.; Yılmaz, B. Benchmarking Microbial DNA Enrichment Protocols From Human Intestinal Biopsies. Front. Genet. 2023, 14, 1184473. [Google Scholar] [CrossRef]
- Bicalho, M.L.S.; Machado, V.S.; Higgins, C.H.; Lima, F.S.; Bicalho, R.C. Genetic and Functional Analysis of the Bovine Uterine Microbiota. Part I: Metritis Versus Healthy Cows. J. Dairy Sci. 2017, 100, 3850–3862. [Google Scholar] [CrossRef] [PubMed]
- Votrubová, J.; Saskova, L.; Dalihodová, S.; Vaněk, D. DNA Extraction From Forensic Samples Using MagCore HF 16 Plus Automated Nucleic Acid Extractor—A Preliminary Study. Forensic Sci. Int. Genet. Suppl. Ser. 2017, 6, e150–e152. [Google Scholar] [CrossRef]
- Yu, Z.; Morrison, M. Improved Extraction of PCR-quality Community DNA From Digesta and Fecal Samples. Biotechniques 2004, 36, 808–812. [Google Scholar] [CrossRef] [PubMed]
- Oñate, F.P.; Batto, J.-M.; Juste, C.; Fadlallah, J.; Fougeroux, C.; Gouas, D.; Pons, N.; Kennedy, S.; Levenez, F.; Doré, J.; et al. Quality Control of Microbiota Metagenomics by K-Mer Analysis. BMC Genom. 2015, 16, 183. [Google Scholar] [CrossRef]
- Riemann, K.; Adamzik, M.; Frauenrath, S.; Egensperger, R.; Schmid, K.W.; Brockmeyer, N.H.; Siffert, W. Comparison of Manual and Automated Nucleic Acid Extraction From Whole-blood Samples. J. Clin. Lab. Anal. 2007, 21, 244–248. [Google Scholar] [CrossRef]
- Babadi, Z.K.; Narmani, A.; Ebrahimipour, G.; Wink, J. Combination and Improvement of Conventional DNA Extraction Methods in Actinobacteria to Obtain High-Quantity and High-Quality DNA. Iran. J. Microbiol. 2022, 14, 186–193. [Google Scholar] [CrossRef]
- Bachmann, N.L.; Rockett, R.; Timms, V.J.; Sintchenko, V. Advances in Clinical Sample Preparation for Identification and Characterization of Bacterial Pathogens Using Metagenomics. Front. Public Health 2018, 6, 363. [Google Scholar] [CrossRef]
- Zhang, L.; Chen, T.; Wang, Y.; Zhang, S.; Lv, Q.; Kong, D.; Jiang, H.; Zheng, Y.; Ren, Y.; Huang, W.; et al. Comparison Analysis of Different DNA Extraction Methods on Suitability for Long-Read Metagenomic Nanopore Sequencing. Front. Cell. Infect. Microbiol. 2022, 12, 919903. [Google Scholar] [CrossRef]
- Bowers, R.M.; Clum, A.; Tice, H.; Lim, J.; Singh, K.P.; Ciobanu, D.; Ngan, C.Y.; Cheng, J.F.; Tringe, S.G.; Woyke, T. Impact of Library Preparation Protocols and Template Quantity on the Metagenomic Reconstruction of a Mock Microbial Community. BMC Genom. 2015, 16, 856. [Google Scholar] [CrossRef]
- Sedláčková, T.; Repiská, G.; Celec, P.; Szemes, T.; Minárik, G. Fragmentation of DNA Affects the Accuracy of the DNA Quantitation by the Commonly Used Methods. Biol. Proced. Online 2013, 15, 5. [Google Scholar] [CrossRef] [PubMed]
- Francesconi, A.; Kasai, M.; Harrington, S.M.; Beveridge, M.; Petraitienė, R.; Petraitis, V.; Schaufele, R.L.; Walsh, T.J. Automated and Manual Methods of DNA Extraction For Aspergillus fumigatus and Rhizopus oryzae Analyzed by Quantitative Real-Time PCR. J. Clin. Microbiol. 2008, 46, 1978–1984. [Google Scholar] [CrossRef] [PubMed]
- Miller, D.N.; Bryant, J.; Madsen, E.L.; Ghiorse, W.C. Evaluation and Optimization of DNA Extraction and Purification Procedures for Soil and Sediment Samples. Appl. Environ. Microbiol. 1999, 65, 4715–4724. [Google Scholar] [CrossRef] [PubMed]
- Trivedi, C.B.; Keuschnig, C.; Larose, C.; Rissi, D.V.; Mourot, R.; Bradley, J.A.; Winkel, M.; Benning, L.G. DNA/RNA Preservation in Glacial Snow and Ice Samples. Front. Microbiol. 2022, 13, 894893. [Google Scholar] [CrossRef] [PubMed]
- Ojwang, R.A.; Adan, A.A.; Nyaboga, E.N.; Muge, E.K.; Mbatia, B.N.; Ogoyi, D.O. Optimised Germination Protocol for Jackfruit Seeds and Evaluation of Methods for Extraction of DNA Suitable for Genetic Analysis. Afr. Crop Sci. J. 2022, 30, 271–281. [Google Scholar] [CrossRef]
- Jia, Y.; Zhao, S.; Guo, W.; Peng, L.; Zhao, F.; Wang, L.; Fan, G.; Zhu, Y.; Xu, D.; Liu, G.; et al. Sequencing introduced false positive rare taxa lead to biased microbial community diversity, assembly, and interaction interpretation in amplicon studies. Environ. Microbiome 2022, 17, 43. [Google Scholar] [CrossRef] [PubMed]
- Larin, A.K.; Klimina, K.M.; Veselovsky, V.A.; Olekhnovich, E.I.; Morozov, M.D.; Boldyreva, D.I.; Yunes, R.A.; Manolov, A.I.; Fedorov, D.E.; Pavlenko, A.V.; et al. An improved and extended dual-index multiplexed 16S rRNA sequencing for the Illumina HiSeq and MiSeq platform. BMC Genom. Data 2024, 25, 8. [Google Scholar] [CrossRef] [PubMed]
- Gomez-Alvarez, V.; Teal, T.K.; Schmidt, T.M. Systematic Artifacts in Metagenomes from Complex Microbial Communities. ISME J. 2009, 3, 1314–1317. [Google Scholar] [CrossRef] [PubMed]
- Hoff, K.J. The effect of sequencing errors on metagenomic gene prediction. BMC Genom. 2009, 10, 520. [Google Scholar] [CrossRef] [PubMed]
- Jia, B.; Liu, X.; Cai, K.; Hu, Z.; Ma, L.; Wei, C. NeSSM: A Next-Generation Sequencing Simulator for Metagenomics. PLoS ONE 2013, 8, e75448. [Google Scholar] [CrossRef]
- An, L.; Pookhao, N.; Jiang, H.; Xu, J. Statistical Approach of Functional Profiling for a Microbial Community. PLoS ONE 2014, 9, e106588. [Google Scholar] [CrossRef]
- Walsh, A.M.; Crispie, F.; O’Sullivan, Ó.; Finnegan, L.; Claesson, M.J.; Cotter, P.D. Species Classifier Choice Is a Key Consideration When Analysing Low-Complexity Food Microbiome Data. Microbiome 2018, 6, 50. [Google Scholar] [CrossRef]
- Zehrh, I.; Habiba, U.; Picco, M.R.; Bashir, S.H.; Rehman, U.A.; Haider, O.; Khoso, S. Metagenomics and Machine Learning-Based Precision Medicine Approaches for Autoimmune Diseases. Preprints 2023, 2023040209. [Google Scholar] [CrossRef]
- Sharpton, T.J. An introduction to the analysis of shotgun metagenomic data. Front. Plant Sci. 2014, 5, 209. [Google Scholar] [CrossRef]
- Sedlář, K.; Kupkova, K.; Provazník, I. Bioinformatics Strategies for Taxonomy Independent Binning and Visualization of Sequences in Shotgun Metagenomics. Comput. Struct. Biotechnol. J. 2017, 15, 48–55. [Google Scholar] [CrossRef] [PubMed]
- Mas-Lloret, J.; Obón-Santacana, M.; Ibáñez-Sanz, G.; Guinó, E.; Pato, M.L.; Rodríguez-Moranta, F.; Mata, A.; García-Rodríguez, A.; Pimenoff, V.N. Gut Microbiome Diversity Detected by High-Coverage 16S and Shotgun Sequencing of Matched Stool and Colon Biopsy Samples. bioRxiv 2019, 742635. [Google Scholar] [CrossRef]
- Bonin, N.; Doster, E.; Worley, H.; Pinnell, L.J.; Bravo, J.E.; Ferm, P.; Marini, S.; Prosperi, M.; Noyes, N.; Morley, P.S.; et al. MEGARes and AMR++, v3.0: An Updated Comprehensive Database of Antimicrobial Resistance Determinants and an Improved Software Pipeline for Classification Using High-Throughput Sequencing. Nucleic Acids Res. 2022, 51, D744–D752. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, A.L.; Scheremetjew, M.; Denise, H.; Potter, S.; Tarkowska, A.; Qureshi, M.; Salazar, G.; Pesseat, S.; Boland, M.; Hunter, F.; et al. EBI Metagenomics in 2017: Enriching the Analysis of Microbial Communities, From Sequence Reads to Assemblies. Nucleic Acids Res. 2017, 46, D726–D735. [Google Scholar] [CrossRef] [PubMed]
- Queyrel, M.; Prifti, E.; Templier, A.; Zucker, J.-D. Towards End-to-End Disease Prediction From Raw Metagenomic Data. bioRxiv 2020. [Google Scholar] [CrossRef]
- Oec, N.; Bono, H. Rapid Metagenomic Workflow Using Annotated 16S RNA Dataset. BioHackrXiv 2021. [Google Scholar] [CrossRef]
- Yang, C.; Chowdhury, D.; Zhang, Z.; Cheung, W.K.; Lu, A.; Bian, Z.; Zhang, L. A review of computational tools for generating metagenome-assembled genomes from metagenomic sequencing data. Comput. Struct. Biotechnol. J. 2021, 19, 6301–6314. [Google Scholar] [CrossRef]
- Xia, Y. Statistical normalization methods in microbiome data with application to microbiome cancer research. Gut Microbes 2023, 15, 2244139. [Google Scholar] [CrossRef]
- Jennings, L.J.; Arcila, M.E.; Corless, C.; Kamel-Reid, S.; Lubin, I.M.; Pfeifer, J.; Temple-Smolkin, R.L.; Voelkerding, K.V.; Nikiforova, M.N. Guidelines for Validation of Next-Generation Sequencing-Based Oncology Panels: A Joint Consensus Recommendation of the Association for Molecular Pathology and College of American Pathologists. J. Mol. Diagn. 2017, 19, 341–365. [Google Scholar] [CrossRef]
- Shamim, K.; Sharma, J.; Dubey, S.K. Rapid and Efficient Method to Extract Metagenomic DNA From Estuarine Sediments. 3 Biotech. 2017. [Google Scholar] [CrossRef]
- Ruocco, N.; Costantini, S.; Zupo, V.; Romano, G.; Ianora, A.; Fontana, A.; Costantini, M. High-Quality RNA Extraction From the Sea Urchin Paracentrotus Lividus Embryos. PLoS ONE 2017. [Google Scholar] [CrossRef]
- Crofts, T.S.; McFarland, A.; Hartmann, E.M. Mosaic Ends Tagmentation (METa) Assembly for Extremely Efficient Construction of Functional Metagenomic Libraries. Msystems 2021. [Google Scholar] [CrossRef] [PubMed]
- Peng, Z.; Zhu, X.; Wang, Z.; Yan, X.; Wang, G.; Meifang, T.; Jiang, A.; Kristiansen, K. Comparative Analysis of Sample Extraction and Library Construction for Shotgun Metagenomics. Bioinform. Biol. Insights 2020. [Google Scholar] [CrossRef] [PubMed]
- Palomares, M.-A.; Dalmasso, C.; Bonnet, E.; Derbois, C.; Brohard, S.; Ambroise, C.; Battail, C.; Deleuze, J.F.; Olaso, R. Comprehensive Analysis of RNA-seq Kits for Standard, Low and Ultra-Low Quantity Samples. bioRxiv 2019. [Google Scholar] [CrossRef]
- Hon, T.; Mars, K.; Young, G.; Tsai, Y.-C.; Karalius, J.W.; Landolin, J.M.; Maurer, N.; Kudrna, D.; Hardigan, M.A.; Steiner, C.C.; et al. Highly accurate long-read HiFi sequencing data for five complex genomes. Sci. Data 2020, 7, 399. [Google Scholar] [CrossRef] [PubMed]
- Amarasinghe, S.L.; Su, S.; Dong, X.; Zappia, L.; Ritchie, M.E.; Gouil, Q. Opportunities and challenges in long-read sequencing data analysis. Genome Biol. 2020, 21, 30. [Google Scholar] [CrossRef]
- Orellana, L.H.; Krüger, K.; Sidhu, C.; Amann, R. Comparing Genomes Recovered From Time-Series Metagenomes Using Long- And Short-Read Sequencing Technologies. Microbiome 2023. [Google Scholar] [CrossRef]
- Browne, P.D.; Nielsen, T.K.; Kot, W.; Aggerholm, A.; Gilbert, M.T.P.; Puetz, L.; Rasmussen, M.; Zervas, A.; Hansen, L.H. GC bias affects genomic and metagenomic reconstructions, underrepresenting GC-poor organisms. Gigascience 2020, 9, giaa008. [Google Scholar] [CrossRef]
- Weissman, J.L.; Peras, M.; Barnum, T.P.; Fuhrman, J.A. Benchmarking Community-Wide Estimates of Growth Potential from Metagenomes Using Codon Usage Statistics. mSystems 2022, 7, e0074522. [Google Scholar] [CrossRef]
- Sato, M.; Ogura, Y.; Nakamura, K.; Nishida, R.; Hayashi, M.; Hisatsune, J.; Sugai, M.; Itoh, T.; Hayashi, T. Comparison of the Sequencing Bias of Currently Available Library Preparation Kits for Illumina Sequencing of Bacterial Genomes and Metagenomes. DNA Res. 2019, dsz017. [Google Scholar] [CrossRef]
- Chouvarine, P.; Wiehlmann, L.; Moran Losada, P.; DeLuca, D.S.; Tümmler, B. Filtration and Normalization of Sequencing Read Data in Whole-Metagenome Shotgun Samples. PLoS ONE 2016, 11, e0165015. [Google Scholar] [CrossRef]
- Brumfield, K.D.; Shanks, O.C.; Sivaganesan, M.; Hey, J.; Hasan, N.A.; Huq, A.; Colwell, R.R.; Leddy, M.B. Metagenomic Sequencing and Quantitative Real-Time PCR for Fecal Pollution Assessment in an Urban Watershed. Front. Water 2021, 2021, 626849. [Google Scholar] [CrossRef]
- Mandal, S.D.; Panda, A.K.; Lalnunmawii, E.; Bisht, S.S.; Kumar, N.S. Illumina-Based Analysis of Bacterial Community in Khuangcherapuk Cave of Mizoram, Northeast India. Genom. Data 2015. [Google Scholar] [CrossRef]
- Fu, Y.; Wu, P.-H.; Beane, T.; Zamore, P.D.; Weng, Z. Elimination of PCR duplicates in RNA-seq and small RNA-seq using unique molecular identifiers. BMC Genom. 2018, 19, 531. [Google Scholar] [CrossRef]
- Saheb Kashaf, S.; Almeida, A.; Segre, J.A.; Finn, R.D. Recovering prokaryotic genomes from host-associated, short-read shotgun metagenomic sequencing data. Nat. Protoc. 2021, 16, 2520–2541. [Google Scholar] [CrossRef]
- Simner, P.J.; Miller, S.A.; Carroll, K.C. Understanding the Promises and Hurdles of Metagenomic Next-Generation Sequencing as a Diagnostic Tool for Infectious Diseases. Clin. Infect. Dis. 2017, 66, 778–788. [Google Scholar] [CrossRef]
- Quick, J.; Grubaugh, N.D.; Pullan, S.T.; Claro, I.M.; Smith, A.D.; Gangavarapu, K.; Oliveira, G.; Robles-Sikisaka, R.; Rogers, T.F.; Beutler, N.; et al. Multiplex PCR Method for MinION and Illumina Sequencing of Zika and Other Virus Genomes Directly from Clinical Samples. Nat. Protoc. 2017, 12, 1261–1276. [Google Scholar] [CrossRef] [PubMed]
- Charalampous, T.; Kay, G.L.; Richardson, H.; Aydin, A.; Baldan, R.; Jeanes, C.; Rae, D.; Grundy, S.; Turner, D.J.; Wain, J.; et al. Nanopore Metagenomics Enables Rapid Clinical Diagnosis of Bacterial Lower Respiratory Infection. Nat. Biotechnol. 2019, 37, 783–792. [Google Scholar] [CrossRef] [PubMed]
- Buytaers, F.E.; Saltykova, A.; Denayer, S.; Verhaegen, B.; Vanneste, K.; Roosens, N.; Piérard, D.; Marchal, K.; Keersmaecker, S.C.J.D. A Practical Method to Implement Strain-Level Metagenomics-Based Foodborne Outbreak Investigation and Source Tracking in Routine. Microorganisms 2020, 8, 1191. [Google Scholar] [CrossRef] [PubMed]
- Hendriksen, R.S.; Munk, P.; Njage, P.M.K.; Bunnik, B.A.D.v.; McNally, L.; Lukjancenko, O.; Röder, T.; Nieuwenhuijse, D.F.; Pedersen, S.K.; Kjeldgaard, J.S.; et al. Global Monitoring of Antimicrobial Resistance Based on Metagenomics Analyses of Urban Sewage. Nat. Commun. 2019, 10, 1124. [Google Scholar] [CrossRef] [PubMed]
- Pehrsson, E.C.; Tsukayama, P.; Patel, S.; Mejía-Bautista, M.; Sosa-Soto, G.; Navarrete, K.M.; Calderón, M.; Cabrera, L.; Hoyos-Arango, W.; Bértoli, M.; et al. Interconnected Microbiomes and Resistomes in Low-Income Human Habitats. Nature 2016, 533, 212–216. [Google Scholar] [CrossRef]
- Zuo, T.; Zhang, F.; Lui, G.; Yeoh, Y.K.; Li, A.Y.L.; Zhan, H.; Wan, Y.; Chung, A.C.K.; Cheung, C.P.; Chen, N.; et al. Alterations in Gut Microbiota of Patients With COVID-19 During Time of Hospitalization. Gastroenterology 2020, 159, 944–955.e8. [Google Scholar] [CrossRef]
- Quince, C.; Walker, A.W.; Simpson, J.T.; Loman, N.J.; Segata, N. Shotgun metagenomics, from sampling to analysis. Nat. Biotechnol. 2017, 35, 833–844. [Google Scholar] [CrossRef]
- McEvoy, C.R.E.; Semple, T.; Yellapu, B.; Choong, D.Y.H.; Xu, H.; Arnau, G.M.; Fellowes, A.; Fox, S.B. Improved Next-Generation Sequencing Pre-Capture Library Yields and Sequencing Parameters Using on-Bead PCR. BioTechniques 2020, 68, 48–51. [Google Scholar] [CrossRef]
- Oechslin, C.P.; Lenz, N.; Liechti, N.; Ryter, S.; Agyeman, P.; Bruggmann, R.; Leib, S.L.; Beuret, C. Limited Correlation of Shotgun Metagenomics Following Host Depletion and Routine Diagnostics for Viruses and Bacteria in Low Concentrated Surrogate and Clinical Samples. Front. Cell. Infect. Microbiol. 2018, 8, 375. [Google Scholar] [CrossRef] [PubMed]
- Espy, M.J.; Rys, P.N.; Wold, A.D.; Uhl, J.R.; Sloan, L.M.; Jenkins, G.D.; Ilstrup, D.M.; Cockerill, F.R.; Patel, R.; Rosenblatt, J.; et al. Detection of Herpes Simplex Virus DNA in Genital and Dermal Specimens by LightCycler PCR After Extraction Using the IsoQuick, MagNA Pure, and BioRobot 9604 Methods. J. Clin. Microbiol. 2001, 39, 2233–2236. [Google Scholar] [CrossRef] [PubMed]
- Schorling, S.; Schalasta, G.; Enders, G.; Zauke, M. Quantification of Parvovirus B19 DNA Using COBAS AmpliPrep Automated Sample Preparation and LightCycler Real-Time PCR. J. Mol. Diagn. 2004, 6, 37–41. [Google Scholar] [CrossRef] [PubMed]
- Pearlman, S.I.; Leelawong, M.; Richardson, K.A.; Adams, N.M.; Russ, P.K.; Pask, M.E.; Wolfe, A.E.; Wessely, C.; Haselton, F.R. Low-Resource Nucleic Acid Extraction Method Enabled by High-Gradient Magnetic Separation. ACS Appl. Mater. Interfaces 2020, 12, 12457–12467. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Latif, A.; Osman, G. Comparison of three genomic DNA extraction methods to obtain high DNA quality from maize. Plant Methods 2017, 13, 1. [Google Scholar] [CrossRef]
- Li, X.; Bosch-Tijhof, C.J.; Wei, X.; de Soet, J.J.; Crielaard, W.; Loveren, C.V.; Deng, D.M. Efficiency of chemical versus mechanical disruption methods of DNA extraction for the identification of oral Gram-positive and Gram-negative bacteria. J. Int. Med. Res. 2020, 48, 300060520925594. [Google Scholar] [CrossRef] [PubMed]
- Huq, T.; Khan, A.; Brown, D.; Dhayagude, N.; He, Z.; Ni, Y. Sources, production and commercial applications of fungal chitosan: A review. J. Bioresour. Bioprod. 2022, 7, 85–98. [Google Scholar] [CrossRef]
- Ramírez, A.C.; Cailleau, G.; Fatton, M.; Dorador, C.; Junier, P. Diversity of Lysis-Resistant Bacteria and Archaea in the Polyextreme Environment of Salar De Huasco. Front. Microbiol. 2022, 13, 826117. [Google Scholar] [CrossRef]
- Yasui, T.; Yanagida, T.; Shimada, T.; Otsuka, K.; Takeuchi, M.; Nagashima, K.; Rahong, S.; Naito, T.; Takeshita, D.; Yonese, A.; et al. Engineering Nanowire-Mediated Cell Lysis for Microbial Cell Identification. ACS Nano 2019, 13, 2262–2273. [Google Scholar] [CrossRef]
- Ramírez, A.C.; Bregnard, D.; Junier, T.; Cailleau, G.; Dorador, C.; Bindschedler, S.; Junier, P. Assessment of Fungal Spores and Spore-Like Diversity in Environmental Samples by Targeted Lysis. BMC Microbiol. 2023, 23, 68. [Google Scholar] [CrossRef]
- Nittala, P.V.K.; Hohreiter, A.; Linhard, E.R.; Dohn, R.; Mishra, S.; Konda, A.; Divan, R.; Guha, S.; Basu, A. Integration of Silicon Chip Microstructures for in-Line Microbial Cell Lysis in Soft Microfluidics. Lab Chip 2023, 23, 2327–2340. [Google Scholar] [CrossRef]
- Zinter, M.; Mayday, M.; Ryckman, K.; Jelliffe-Pawlowski, L.; DeRisi, J. Towards precision quantification of contamination in metagenomic sequencing experiments. Microbiome 2019, 7, 62. [Google Scholar] [CrossRef]
- Ogunbayo, A.E.; Sabiu, S.; Nyaga, M.M. Evaluation of extraction and enrichment methods for recovery of respiratory RNA viruses in a metagenomics approach. J. Virol. Methods 2023, 314, 114677. [Google Scholar] [CrossRef]
- Zhang, L.; Fang, X.; Liao, H.; Zhang, Z.; Zhou, X.; Chen, Y.; Qiu, Q.; Li, S.C. A Comprehensive Investigation of Metagenome Assembly by Linked-Read Sequencing. Microbiome 2020, 8, 156. [Google Scholar] [CrossRef] [PubMed]
- Zhou, F.; Xu, Y. cBar: A Computer Program to Distinguish Plasmid-Derived From Chromosome-Derived Sequence Fragments in Metagenomics Data. Bioinformatics 2010, 26, 2051–2052. [Google Scholar] [CrossRef] [PubMed]
- Noguchi, H.; Park, J.H.; Takagi, T. MetaGene: Prokaryotic Gene Finding From Environmental Genome Shotgun Sequences. Nucleic Acids Res. 2006, 34, 5623–5630. [Google Scholar] [CrossRef] [PubMed]
- Sharpton, T.J.; Riesenfeld, S.J.; Kembel, S.W.; Ladau, J.; O’Dwyer, J.P.; Green, J.L.; Eisen, J.A.; Pollard, K.S. PhylOTU: A High-Throughput Procedure Quantifies Microbial Community Diversity and Resolves Novel Taxa from Metagenomic Data. PLoS Comput. Biol. 2011, 7, e1001061. [Google Scholar] [CrossRef] [PubMed]
- Thomas, J.C.; Oladeinde, A.; Kieran, T.J.; Finger, J.W.; Bayona-Vásquez, N.J.; Cartee, J.C.; Beasley, J.C.; Seaman, J.C.; McArthur, J.V.; Rhodes, O.E.; et al. Co-occurrence of Antibiotic, Biocide, and Heavy Metal Resistance Genes in Bacteria From Metal and Radionuclide Contaminated Soils at the Savannah River Site. Microb. Biotechnol. 2020, 13, 1179–1200. [Google Scholar] [CrossRef] [PubMed]
- Gaulke, C.A.; Schmeltzer, E.R.; Dasenko, M.; Tyler, B.M.; Thurber, R.V.; Sharpton, T.J. Evaluation of the Effects of Library Preparation Procedure and Sample Characteristics on the Accuracy of Metagenomic Profiles. mSystems 2021, 6, e0044021. [Google Scholar] [CrossRef] [PubMed]
- Heinicke, F.; Zhong, X.; Zucknick, M.; Breidenbach, J.; Sundaram, A.; Flåm, S.T.; Leithaug, M.; Dalland, M.; Farmer, A.; Henderson, J.M.; et al. Systematic Assessment of Commercially Available Low-Input miRNA Library Preparation Kits. RNA Biol. 2019, 17, 75–86. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Zhang, L.; Jiang, X.; Ma, W.; Geng, H.; Wang, X.; Li, M. Toward Efficient and High-Fidelity Metagenomic Data From Sub-Nanogram DNA: Evaluation of Library Preparation and Decontamination Methods. BMC Biol. 2022, 20, 225. [Google Scholar] [CrossRef] [PubMed]
- Jones, M.B.; Highlander, S.K.; Anderson, E.L.; Li, W.; Dayrit, M.; Klitgord, N.; Fabani, M.M.; Seguritan, V.; Green, J.; Pride, D.T.; et al. Library Preparation Methodology Can Influence Genomic and Functional Predictions in Human Microbiome Research. Proc. Natl. Acad. Sci. USA 2015, 112, 14024–14029. [Google Scholar] [CrossRef] [PubMed]
- Petersen, L.M.; Martin, I.W.; Moschetti, W.E.; Kershaw, C.; Tsongalis, G.J. Third-Generation Sequencing in the Clinical Laboratory: Exploring the Advantages and Challenges of Nanopore Sequencing. J. Clin. Microbiol. 2019, 58. [Google Scholar] [CrossRef]
- Poulsen, C.S.; Ekstrøm, C.T.; Aarestrup, F.M.; Pamp, S.J. Library Preparation and Sequencing Platform Introduce Bias in Metagenomic-Based Characterizations of Microbiomes. Microbiol. Spectr. 2022, 10, e0009022. [Google Scholar] [CrossRef]
- Linde, J.; Brangsch, H.; Hölzer, M.; Thomas, C.; Elschner, M.C.; Melzer, F.; Tomaso, H. Comparison of Illumina and Oxford Nanopore Technology for genome analysis of Francisella tularensis, Bacillus anthracis, and Brucella suis. BMC Genom. 2023, 24, 258. [Google Scholar] [CrossRef]
- Chen, J.; Xu, F. Application of Nanopore Sequencing in the Diagnosis and Treatment of Pulmonary Infections. Mol. Diagn. Ther. 2023, 27, 685–701. [Google Scholar] [CrossRef]
- Ghurye, J.S.; Cepeda-Espinoza, V.; Pop, M. Metagenomic Assembly: Overview, Challenges and Applications. Yale J. Biol. Med. 2016, 89, 353–362. [Google Scholar]
- Gihawi, A.; Cardenas, R.; Hurst, R.; Brewer, D.S. Quality Control in Metagenomics Data. In Metagenomic Data Analysis; Springer: New York, NY, USA, 2023; pp. 21–54. [Google Scholar]
- Roev, G.V.; Borisova, N.I.; Chistyakova, N.V.; Agletdinov, M.R.; Akimkin, V.G.; Khafizov, K. Unlocking the Viral Universe: Metagenomic Analysis of Bat Samples Using Next-Generation Sequencing. Microorganisms 2023, 11, 2532. [Google Scholar] [CrossRef]
- Wang, L.; Ding, R.; He, S.; Wang, Q.; Zhou, Y. A pipeline for constructing reference genomes for large cohort-specific metagenome compression. Microorganisms 2023, 11, 2560. [Google Scholar] [CrossRef]
- Mushtaq, S.; Khan, M.I.U.; Khan, M.T.; Lodhi, M.S.; Wei, D.Q. Novel mutations in structural proteins of dengue virus genomes. J. Infect. Public Health 2023, 16, 1971–1981. [Google Scholar] [CrossRef]
- Child, H.T.; Airey, G.; Maloney, D.M.; Parker, A.; Wild, J.; McGinley, S.; Evens, N.; Porter, J.; Templeton, K.; Paterson, S. Comparison of metagenomic and targeted methods for sequencing human pathogenic viruses from wastewater. mBio 2023, 14, e0146823. [Google Scholar] [CrossRef] [PubMed]
- Bjerg, J.J.; Lustermans, J.J.M.; Marshall, I.P.G.; Mueller, A.; Brokjær, S.; Thorup, C.B.; Tataru, P.; Schmid, M.; Wagner, M.; Nielsen, L.P.; et al. Cable Bacteria With Electric Connection to Oxygen Attract Flocks of Diverse Bacteria. Nat. Commun. 2023, 14, 1614. [Google Scholar] [CrossRef]
- Kayani, M.U.R.; Huang, W.; Feng, R.; Chen, L. Genome-resolved metagenomics using environmental and clinical samples. Brief. Bioinform. 2021, 22, bbab030. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Liu, C.-M.; Luo, R.; Sadakane, K.; Lam, T.W. MEGAHIT: An Ultra-Fast Single-Node Solution for Large and Complex Metagenomics Assembly via Succinct de Bruijn Graph. Bioinformatics 2015, 31, 1674–1676. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Hernandez, J.E.; Berrios, P.; Santibáñez, R.; Astroz, Y.C.; Sanchez, C.; Martin, A.J.; Trombert, A.N. First metagenomic analysis of the Andean condor (Vultur gryphus) gut microbiome reveals microbial diversity and wide resistome. PeerJ 2023, 11, e15235. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Wu, N.; Zhang, T.; Li, Y.; Cao, L.; Zhang, P.; Zhang, Z.; Zhu, T.; Zhang, C. The microbiome, resistome, and their co-evolution in sewage at a hospital for infectious diseases in Shanghai, China. Microbiol. Spectr. 2023, 12, e0390023. [Google Scholar] [CrossRef] [PubMed]
- Mendes, C.I.; Vila-Cerqueira, P.; Motro, Y.; Moran-Gilad, J.; Carriço, J.A.; Ramirez, M. LMAS: Evaluating metagenomic short de novo assembly methods through defined communities. GigaScience 2023, 12, giac122. [Google Scholar] [CrossRef] [PubMed]
- Cheung, M.K.; Ng, R.W.Y.; Lai, C.K.C.; Zhu, C.; Au, E.T.K.; Yau, J.W.K.; Li, C.; Wong, H.C.; Wong, B.C.K.; Kwok, K.O.; et al. Alterations in faecal microbiome and resistome in Chinese international travellers: A metagenomic analysis. J. Travel Med. 2023, 30, taad027. [Google Scholar] [CrossRef] [PubMed]
- Yorki, S.; Shea, T.; Cuomo, C.A.; Walker, B.J.; LaRocque, R.C.; Manson, A.L.; Earl, A.M.; Worby, C.J. Comparison of long-and short-read metagenomic assembly for low-abundance species and resistance genes. Brief. Bioinform. 2023, 24, bbad050. [Google Scholar] [CrossRef] [PubMed]
- Diao, Z.; Zhang, Y.; Chen, Y.; Han, Y.; Chang, L.; Ma, Y.; Feng, L.; Huang, T.; Zhang, R.; Li, J. Assessing the Quality of Metagenomic Next-Generation Sequencing for Pathogen Detection in Lower Respiratory Infections. Clin. Chem. 2023, 69, 1038–1049. [Google Scholar] [CrossRef]
- Adekoya, A.E.; Kargbo, H.A.; Ibberson, C.B. Defining microbial community functions in chronic human infection with metatranscriptomics. mSystems 2023, 8, e00593-23. [Google Scholar] [CrossRef] [PubMed]
- Blanco-Míguez, A.; Beghini, F.; Cumbo, F.; McIver, L.J.; Thompson, K.N.; Zolfo, M.; Manghi, P.; Dubois, L.; Huang, K.D.; Thomas, A.M. Extending and improving metagenomic taxonomic profiling with uncharacterized species using MetaPhlAn 4. Nat. Biotechnol. 2023, 41, 1633–1644. [Google Scholar] [CrossRef] [PubMed]
- Martin-Cuadrado, A.-B.; Rubio-Portillo, E.; Antón, J. Community Shifts in the Coral Oculina Patagonica Holobiont in Response to Confinement, Temperature and Vibrio Infections. 2024. Available online: https://www.researchsquare.com/article/rs-3893459/v1 (accessed on 1 February 2024).
- Vigil, K.; Aw, T.G. Comparison of de novo assembly using long-read shotgun metagenomic sequencing of viruses in fecal and serum samples from marine mammals. Front. Microbiol. 2023, 14, 1248323. [Google Scholar] [CrossRef]
- van Boheemen, S.; van Rijn, A.L.; Pappas, N.; Carbo, E.C.; Vorderman, R.H.P.; Sidorov, I.; van’t Hof, P.J.; Mei, H.; Claas, E.C.J.; Kroes, A.C.M.; et al. Retrospective Validation of a Metagenomic Sequencing Protocol for Combined Detection of RNA and DNA Viruses Using Respiratory Samples from Pediatric Patients. J. Mol. Diagn. 2020, 22, 196–207. [Google Scholar] [CrossRef]
- de Vries, J.J.C.; Brown, J.R.; Couto, N.; Beer, M.; Le Mercier, P.; Sidorov, I.; Papa, A.; Fischer, N.; Oude Munnink, B.B.; Rodriquez, C.; et al. Recommendations for the introduction of metagenomic next-generation sequencing in clinical virology, part II: Bioinformatic analysis and reporting. J. Clin. Virol. 2021, 138, 104812. [Google Scholar] [CrossRef]
- Dulanto Chiang, A.; Dekker, J.P. From the pipeline to the bedside: Advances and challenges in clinical metagenomics. J. Infect. Dis. 2020, 221, S331–S340. [Google Scholar] [CrossRef]
- Vilsker, M.; Moosa, Y.; Nooij, S.; Fonseca, V.; Ghysens, Y.; Dumon, K.; Pauwels, R.; Alcantara, L.C.; Vanden Eynden, E.; Vandamme, A.-M.; et al. Genome Detective: An automated system for virus identification from high-throughput sequencing data. Bioinformatics 2018, 35, 871–873. [Google Scholar] [CrossRef]
- Shao, L.; Liao, J.; Qian, J.; Chen, W.; Fan, X. MetaGeneBank: A Standardized Database to Study Deep Sequenced Metagenomic Data From Human Fecal Specimen. BMC Microbiol. 2021, 21, 263. [Google Scholar] [CrossRef]
- Páez-Espino, D.; Eloe-Fadrosh, E.A.; Pavlopoulos, G.A.; Thomas, A.D.; Huntemann, M.; Mikhailova, N.; Rubin, E.M.; Ivanova, N.; Kyrpides, N.C. Uncovering Earth’s Virome. Nature 2016, 536, 425–430. [Google Scholar] [CrossRef] [PubMed]
- Sichtig, H.; Minogue, T.D.; Yan, Y.; Stefan, C.P.; Hall, A.T.; Tallon, L.J.; Sadzewicz, L.; Nadendla, S.; Klimke, W.; Hatcher, E.L.; et al. FDA-ARGOS Is a Database With Public Quality-Controlled Reference Genomes for Diagnostic Use and Regulatory Science. Nat. Commun. 2019, 33, 3313. [Google Scholar] [CrossRef] [PubMed]
- Parks, D.H.; Rigato, F.; Vera-Wolf, P.; Krause, L.; Hugenholtz, P.; Tyson, G.W.; Wood, D. Evaluation of the Microba Community Profiler for Taxonomic Profiling of Metagenomic Datasets From the Human Gut Microbiome. Front. Microbiol. 2021, 12, 643682. [Google Scholar] [CrossRef] [PubMed]
- OSF. Metagenomics Benchmarking. Available online: https://doi.org/10.17605/OSF.IO/RE4PD (accessed on 20 January 2024).
- Chen, Y.; Fan, L.; Chai, Y.-h.; Xu, J. Advantages and Challenges of Metagenomic Sequencing for the Diagnosis of Pulmonary Infectious Diseases. Clin. Respir. J. 2022, 16, 646–656. [Google Scholar] [CrossRef] [PubMed]
- Ruppé, É.; Cherkaoui, A.; Lazarević, V.; Emonet, S.; Schrenzel, J. Establishing Genotype-to-Phenotype Relationships in Bacteria Causing Hospital-Acquired Pneumonia: A Prelude to the Application of Clinical Metagenomics. Antibiotics 2017, 6, 30. [Google Scholar] [CrossRef] [PubMed]
- Goldberg, B.; Sichtig, H.; Geyer, C.N.; Ledeboer, N.A.; Weinstock, G.M. Making the Leap From Research Laboratory to Clinic: Challenges and Opportunities for Next-Generation Sequencing in Infectious Disease Diagnostics. mBio 2015, 6, 10–128. [Google Scholar] [CrossRef] [PubMed]
- Edgeworth, J.D. Respiratory Metagenomics: Route to Routine Service. Curr. Opin. Infect. Dis. 2023, 36, 115–123. [Google Scholar] [CrossRef]
- Govender, K.; Street, T.; Sanderson, N.; Eyre, D.W. Metagenomic Sequencing as a Pathogen-Agnostic Clinical Diagnostic Tool for Infectious Diseases: A Systematic Review and Meta-Analysis of Diagnostic Test Accuracy Studies. J. Clin. Microbiol. 2021, 59, 10–128. [Google Scholar] [CrossRef]
- Blauwkamp, T.A.; Thair, S.; Rosen, M.J.; Blair, L.; Lindner, M.S.; Vilfan, I.D.; Kawli, T.; Christians, F.C.; Venkatasubrahmanyam, S.; Wall, G.D.; et al. Analytical and clinical validation of a microbial cell-free DNA sequencing test for infectious disease. Nat. Microbiol. 2019, 4, 663–674. [Google Scholar] [CrossRef]
- Rehm, H.L.; Bale, S.J.; Bayrak-Toydemir, P.; Berg, J.S.; Brown, K.K.; Deignan, J.L.; Friez, M.J.; Funke, B.H.; Hegde, M.R.; Lyon, E. ACMG clinical laboratory standards for next-generation sequencing. Genet. Med. Off. J. Am. Coll. Med. Genet. 2013, 15, 733–747. [Google Scholar] [CrossRef]
- Diao, Z.; Lai, H.; Han, D.; Yang, B.; Zhang, R.; Li, J. Validation of a Metagenomic Next-Generation Sequencing Assay for Lower Respiratory Pathogen Detection. Microbiol. Spectr. 2023, 11, e0381222. [Google Scholar] [CrossRef]
- FDA Guidance Documents. Statistical Guidance on Reporting Results from Studies Evaluating Diagnostic Tests—Guidance for Industry and FDA Staff. Available online: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/statistical-guidance-reporting-results-studies-evaluating-diagnostic-tests-guidance-industry-and-fda (accessed on 4 January 2024).
- Mee, E.T.; Preston, M.D.; Minor, P.D.; Schepelmann, S.; Huang, X.; Nguyen, J.; Wall, D.; Hargrove, S.; Fu, T.; Xu, G.; et al. Development of a candidate reference material for adventitious virus detection in vaccine and biologicals manufacturing by deep sequencing. Vaccine 2016, 34, 2035–2043. [Google Scholar] [CrossRef]
- Sangwan, N.; Xia, F.; Gilbert, J.A. Recovering Complete and Draft Population Genomes From Metagenome Datasets. Microbiome 2016, 4, 8. [Google Scholar] [CrossRef] [PubMed]
- Lai, B.; Wang, F.; Wang, X.; Duan, L.; Zhu, H. InteMAP: Integrated Metagenomic Assembly Pipeline for NGS Short Reads. BMC Bioinform. 2015, 16, 66. [Google Scholar] [CrossRef] [PubMed]
- Hua, K.; Zhang, X. Estimating the Total Genome Length of a Metagenomic Sample Using K-Mers. BMC Genom. 2019, 20, 183. [Google Scholar] [CrossRef] [PubMed]
- Norling, M.; Lindsjö, O.K.; Gourlé, H.; Bongcam-Rudloff, E.; Hayer, J. MetLab: An in Silico Experimental Design, Simulation and Analysis Tool for Viral Metagenomics Studies. PLoS ONE 2016, 11, e0160334. [Google Scholar] [CrossRef] [PubMed]
- Zaheer, R.; Noyes, N.; Polo, R.O.; Cook, S.R.; Marinier, E.; Domselaar, G.V.; Belk, K.E.; Morley, P.S.; McAllister, T.A. Impact of Sequencing Depth on the Characterization of the Microbiome and Resistome. Sci. Rep. 2018, 8, 5890. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.X.; Anantharaman, K.; Shaiber, A.; Eren, A.M.; Banfield, J.F. Accurate and complete genomes from metagenomes. Genome Res. 2020, 30, 315–333. [Google Scholar] [CrossRef] [PubMed]
- Am, R.; Ar, R.; Rg, M.; Seah, C.; Nr, Y.; Dr, M.; Ag, M.; Ph, S.; Coburn, B. Performance Characteristics of Next-Generation Sequencing for Antimicrobial Resistance Gene Detection in Genomes and Metagenomes. bioRxiv 2021. [Google Scholar] [CrossRef]
- Pereira-Marques, J.; Hout, A.v.d.; Ferreira, R.M.; Weber, M.; Pinto-Ribeiro, I.; Doorn, L.J.v.; Knetsch, C.W.; Figueiredo, C. Impact of Host DNA and Sequencing Depth on the Taxonomic Resolution of Whole Metagenome Sequencing for Microbiome Analysis. Front. Microbiol. 2019, 10, 1277. [Google Scholar] [CrossRef]
- Mattocks, C.J.; Morris, M.A.; Matthijs, G.; Swinnen, E.; Corveleyn, A.; Dequeker, E.; Müller, C.R.; Pratt, V.; Wallace, A. A standardized framework for the validation and verification of clinical molecular genetic tests. Eur. J. Hum. Genet. 2010, 18, 1276–1288. [Google Scholar] [CrossRef]
- Ounit, R.; Wanamaker, S.; Close, T.J.; Lonardi, S. CLARK: Fast and Accurate Classification of Metagenomic and Genomic Sequences Using Discriminative K-Mers. BMC Genom. 2015, 16, 236. [Google Scholar] [CrossRef]
- Wylie, T.N.; Wylie, K.M.; Herter, B.N.; Storch, G.A. Enhanced virome sequencing using targeted sequence capture. Genome Res. 2015, 25, 1910–1920. [Google Scholar] [CrossRef]
- Hasan, M.R.; Rawat, A.; Tang, P.; Jithesh, P.V.; Thomas, E.; Tan, R.; Tilley, P. Depletion of human DNA in spiked clinical specimens for improvement of sensitivity of pathogen detection by next-generation sequencing. J. Clin. Microbiol. 2016, 54, 919–927. [Google Scholar] [CrossRef]
- Breitwieser, F.P.; Baker, D.; Salzberg, S.L. KrakenUniq: Confident and Fast Metagenomics Classification Using Unique K-Mer Counts. Genome Biol. 2018, 19, 198. [Google Scholar] [CrossRef]
- Greninger, A.L.; Chen, E.C.; Sittler, T.; Scheinerman, A.; Roubinian, N.; Yu, G.; Kim, E.; Pillai, D.R.; Guyard, C.; Mazzulli, T.; et al. A Metagenomic Analysis of Pandemic Influenza a (2009 H1N1) Infection in Patients From North America. PLoS ONE 2010, 5, e13381. [Google Scholar] [CrossRef]
- Orellana, L.H.; Rodriguez-R, L.M.; Konstantinidis, K.T. ROCker: Accurate Detection and Quantification of Target Genes in Short-Read Metagenomic Data Sets by Modeling Sliding-Window Bitscores. Nucleic Acids Res. 2016, 45, e14. [Google Scholar] [CrossRef]
- Biney-Assan, T.; Kron, M. Molecular Microbiology in Clinical Practice: Current and Future Applications. Al-Kindy Coll. Med. J. 2022, 18, 167–172. [Google Scholar] [CrossRef]
- Altermann, E.; Tegetmeyer, H.E.; Chanyi, R.M. The Evolution of Bacterial Genome Assemblies—Where Do We Need to Go Next? Microbiome Res. Rep. 2022, 1, 15. [Google Scholar] [CrossRef]
- Luan, Y.; Hu, H.; Liu, C.; Chen, B.; Liu, X.; Xu, Y.; Luo, X.; Chen, J.; Ye, B.; Huang, F.; et al. A proof-of-concept study of an automated solution for clinical metagenomic next-generation sequencing. J. Appl. Microbiol. 2021, 131, 1007–1016. [Google Scholar] [CrossRef]
- PacBio. PacBio Announces Collaboration with Leading Library Preparation Automation Partners; PacBio: Menlo Park, CA, USA, 2023. [Google Scholar]
- Diao, Z.; Han, D.; Zhang, R.; Li, J. Metagenomics next-generation sequencing tests take the stage in the diagnosis of lower respiratory tract infections. J. Adv. Res. 2022, 38, 201–212. [Google Scholar] [CrossRef]
- Yen, S.; Johnson, J. Metagenomics: A Path to Understanding the Gut Microbiome. Mamm. Genome 2021, 32, 282–296. [Google Scholar] [CrossRef]
- Jagadeesan, B.; Gerner-Smidt, P.; Allard, M.W.; Leuillet, S.; Winkler, A.; Xiao, Y.; Chaffron, S.; Van Der Vossen, J.; Tang, S.; Katase, M.; et al. The Use of Next Generation Sequencing for Improving Food Safety: Translation Into Practice. Food Microbiol. 2018, 79, 96–115. [Google Scholar] [CrossRef]
- Angers-Loustau, A.; Petrillo, M.; Bengtsson-Palme, J.; Berendonk, T.U.; Blais, B.W.; Chan, K.G.; Coque, T.M.; Hammer, P.; Heß, S.; Kagkli, D.M.; et al. The Challenges of Designing a Benchmark Strategy for Bioinformatics Pipelines in the Identification of Antimicrobial Resistance Determinants Using Next Generation Sequencing Technologies. F1000Research 2018, 7, 459. [Google Scholar] [CrossRef]
- Satam, H.; Joshi, K.; Mangrolia, U.; Waghoo, S.; Zaidi, G.; Rawool, S.; Thakare, R.P.; Banday, S.; Mishra, A.K.; Das, G.; et al. Next-Generation Sequencing Technology: Current Trends and Advancements. Biology 2023, 12, 997. [Google Scholar] [CrossRef]
- Shi, W.; Qi, H.; Sun, Q.; Fan, G.; Liu, S.; Wang, J.; Zhu, B.; Liu, H.; Zhao, F.; Wang, X.; et al. gcMeta: A Global Catalogue of Metagenomics platform to support the archiving, standardization and analysis of microbiome data. Nucleic Acids Res. 2019, 47, D637–D648. [Google Scholar] [CrossRef]
- Chowdhury, A.S.; Call, D.R.; Broschat, S.L. PARGT: A Software Tool for Predicting Antimicrobial Resistance in Bacteria. Sci. Rep. 2020, 10, 11033. [Google Scholar] [CrossRef]
- Erdem, G.; Kaptsan, I.; Sharma, H.; Kumar, A.; Aylward, S.C.; Kapoor, A.; Shimamura, M. Cerebrospinal Fluid Analysis for Viruses by Metagenomic Next-Generation Sequencing in Pediatric Encephalitis: Not Yet Ready for Prime Time? J. Child Neurol. 2020, 36, 350–356. [Google Scholar] [CrossRef]
- Field, D.; Amaral-Zettler, L.; Cochrane, G.; Cole, J.R.; Dawyndt, P.; Gilbert, J.A.; Glöckner, F.O.; Hirschman, L.; Karsch-Mizrachi, I.; Klenk, H.P.; et al. The Genomic Standards Consortium. PLoS Biol. 2011, 9, e1001088. [Google Scholar] [CrossRef]
- Kasmanas, J.C.; Bartholomäus, A.; Corrêa, F.B.; Tal, T.; Jehmlich, N.; Herberth, G.; von Bergen, M.; Stadler, P.F.; de Leon Ferreira de Carvalho, A.C.P.; da Rocha, U.N. HumanMetagenomeDB: A Public Repository of Curated and Standardized Metadata for Human Metagenomes. Nucleic Acids Res. 2020, 49, D743–D750. [Google Scholar] [CrossRef]
- Posey, J.E.; Harel, T.; Liu, P.; Rosenfeld, J.A.; James, R.A.; Akdemir, Z.H.C.; Walkiewicz, M.; Bi, W.; Xiao, R.; Ding, Y.; et al. Resolution of Disease Phenotypes Resulting From Multilocus Genomic Variation. N. Engl. J. Med. 2017, 376, 21–31. [Google Scholar] [CrossRef]
- Zhu, X.; Yan, S.; Yuan, F.; Wan, S. The Applications of Nanopore Sequencing Technology in Pathogenic Microorganism Detection. Can. J. Infect. Dis. Med. Microbiol. 2020, 2020, 6675206. [Google Scholar] [CrossRef]
Manpower | Machine | Material | Method | Environment | Measurement | |
---|---|---|---|---|---|---|
Subject | Well-trained personnel, compliance with SOP | Automation extraction machine | Raw materials, reagent and samples | Procedures, method, and protocols | Environment conditions such as humidity, lighting, temperature, and cleanliness | Instrument, techniques, data, and tools |
Action | Training, skill development, and monitoring of ongoing performance | Calibration, routine maintenance; adhering to equipment specification | Verification; sample acceptance criteria, reagent specification checking, storage and handling | Validation | Adequate controls, monitoring | Calibration, validation, and routine performance check |
Objective | Minimize human-related variation, human error | Minimize variations in test results; ensure that the equipment is performing within acceptable limits and meets the required specifications; reduces the risk of errors and inaccuracies in test results | Ensures the integrity and traceability of materials, prevents contamination and degradation, and ensures high-quality materials are acquired | Ensure reliable and accurate result | Minimize variations caused by environmental factors | Ensure precise measurement |
mNGS Procedure | Error/Risk | Consequence | 5M1E | Means of Minimizing Risk |
---|---|---|---|---|
Sample collection | Improper storage [89] and handling of samples, such as higher freezing and thawing cycle |
| Method, Materials, Environment |
|
Sample collection; nucleic acid extraction | Host DNA contamination/cross-contamination of samples | Method, Machine, Materials, Environment | ||
Nucleic acid extraction | Inadequate lysis of cells or tissues/non-verified reagent | Materials | ||
Nucleic acid extraction; library preparation | Improper sample preparation, such as incorrect sample loading or inadequate mixing |
| Methods |
|
Nucleic acid extraction | Inhibitory Substances | Interfere with the downstream analysis and application [103] | Methods | |
Library preparation | High levels of DNA fragmentation | Methods |
| |
Library preparation | Index hopping |
| Methods |
|
Sequencing | Systematics error/sequencing error | Overestimation of gene and taxon abundance [109] Inaccurate gene prediction on short reads [110] | Machine, Methods |
|
Bioinformatics analysis | Misinterpretation of results [113,114]; inadequate data preprocessing [115]; incorrect taxonomic or functional annotation [116]; failure to account for batch effects [117]; inadequate validation of findings [118]; lack of reproducibility [119]; overfitting or underfitting of models [120]; inadequate training data [121] | Impact the accuracy and reliability of the results | Manpower, Machine, Methods |
|
Measurement | Indicators of Validation | QC Metrics | Follow-Up Actions |
---|---|---|---|
Nucleic acid quality | DNA Purity | High DNA purity [125]: A260/A280: 1.88–1.94 Low DNA purity: A260/A280 < 1.6 | Perform additional purification step, such as phenol-chloroform extraction or silica-column-based purification kits Optimize the extraction protocols to minimize contamination and improve the purity and quantity Perform additional purification step, such as DNase treatment or RNA cleanup kits Re-extraction |
RNA Purity | RNA quality acceptable range [126]: A260/A280: around 2 A260/A230: 2-2.2 RNA integrity number (RIN) analysis depending on different sample types Acceptable range 7–8 | ||
Nucleic acid quantity | DNA/RNA concentration | Depend on the library preparation approaches: DNA: 20ug [127] 50–250 ng [128] RNA [129]: standard (1 ug); low (10 ng–100 ng); ultra-low (<1 ng) | |
Library quality and quantity | Library size distribution and quality patterns Library concentration | For short-read sequencing Size distribution: 250–350 For long-read sequencing Size distribution: 10–25 kb (PacBio® HiFi sequencing) [130] 250 bp to 50 kbp (Nanopore sequencers (MinION, GridION, and PromethION) [131] | Ensure that fragment sizes within the narrow range of expected molecular weight match the measured fragment sizesPrevent adapter dimers, primer dimers (~150 bp), and molecular weight outside the expected range |
Sequencing quality | Total run yield (Gb), sequencing cluster density (K/mm2), % reads passing filter, % bases ≥Q30, sequencing error rate, sequencing read length | For short-read sequencing: the sample base mass value shall be more than 20 if Q20 is greater than 90%; and the sample base mass value shall be more than 30 if Q30 is greater than 80% [42] | Resequencing should be conducted if sequencing QC cannot be achieved |
Coverage depth | Sequence depth should be evaluated before sequence assembly, taking the sample complexity into consideration [42] | A sufficient level of sensitivity and specificity must be achieved in the regions of interest Short read: at least 30× coverage | Reanalysis of samples should be conducted if coverage thresholds exceed the validated range; an alternate method may be used if only local regions are affected |
GC bias | GC content | No specific threshold for GC bias GC content <70% [132] | Optimization of library preparation [133] Implement filtering strategies [133] GC content correction [134] Evaluation of sequencing bias with different library preparation kit [135] Normalization techniques [136] |
Base call accuracy | Phred quality score (Q), where Q = −10 log10(P) [137] | Good base call quality scores Phred score > 30 [138] Base calling: Short-read sequencing: >99.9% Long-read sequencing: ~90% | Each run should be monitored for quality scores and signal-to-noise ratios The results of low-quality scoring can lead to more false positive variant calls; therefore, repeat testing may be necessary |
Duplication rate | Duplication rate | Maximum duplication rate should be defined for each assay. | Optimization of library preparation Adjust PCR conditions [42,43] Unique molecular identifiers (UMIs) [139] Filtering duplicate reads [140] Error correction algorithms [134] |
Mapping quality | Mapping quality scores | Map quality parameters must be established during validation in order to filter out reads that map to nontargeted regions (insertion or indel) and uncertain bases (N characters) [42] | The mapping quality of each run must be monitored as non-specific amplification, off-target DNA capture, or contamination may result in poor results |
Bioinformatic Step | Software | Function | Reference |
---|---|---|---|
Preprocessing of Sequencing Reads | FastQC (v0.12.0) | Assesses the quality of raw sequencing data | |
Trimmomatic (v0.4) | Trimming and filtering reads to eliminate low-quality bases and adapter sequences | [177] | |
Cutadapt (v3.4) | Efficiently removes adapter sequence | [178] | |
DUST (v0.9) | De-replication of reads | ||
QIIME (v2023.2) | Noise removal | ||
Fragment Recruitment to Reference Genomes | Bowtie2 (v2.5.3) | Mapping preprocessed reads to reference genomes, contamination removal | [179] |
BWA (v0.7.12) | Mapping low-divergent sequences against a large reference genome | ||
BWA-SW (v0.7.12) and BWA-MEM (v0.7.12) | Mapping longer sequences (70 bp to 1 Mbp), share similar features such as long-read support and split alignment | [180] | |
SAMtools (v1.19.2) | Manipulating and analyzing sequence alignment data, crucial for post-processing and downstream analysis of metagenomic data | [181,182] | |
De Novo Metagenome Assembly | MEGAHIT (v1.2.9) | Assembly of large and intricate metagenomic datasets using succinct de Bruijn graphs, providing a single-node solution for complex assemblies | [183,184] |
IDBA-UD (v1.1.3) | A specialized de Bruijn graph-based assembler designed for metagenomic sequencing data, aiding in the reconstruction of microbial genomes | [185] | |
MetaSPAdes (v.3.13.0) | Advanced metagenomic assemblers that integrate information from multiple samples to improve accuracy and congruency | [186] | |
QUAST (v5.0.2) | Evaluates genome/metagenome assemblies | [187] | |
Genome Binning | MaxBin (v2.0) | Binning tool that clusters contigs based on expectation-maximization algorithms, facilitating metagenomic data organization | [188] |
CONCOCT (v1.1.0) | The recovery of metagenome-assembled genomes in situations where the reference genome for a species of interest within a metagenome is unknown | [189] | |
MetaBAT (v2.15) | Binning metagenomic contigs into genome bins based on sequence composition and abundance | [189] | |
Taxonomic and Functional Analysis of Genomes | Kraken 2 (v2.0.8 beta) | A highly accurate classifier for taxonomic sequences that rapidly assigns taxonomic labels to metagenomic sequences, allowing precise taxonomic analysis | [190] |
HUMAnN 3 (v3) | The tool provides insights into the functional potential of microbial populations based on metagenomic sequencing data | [191] | |
MetaPhlAn 4 (v4) | This tool aids in taxonomic analysis of metagenomic shotgun sequencing data by profiling microbial communities | [192] | |
Metagenomic Assembly and Analysis | Anvi’o (v.2.1.0) | Analyze and visualize complex metagenomic datasets using an interactive platform for metagenomic analysis and visualization | [193] |
MEGAN-LR (v6.19.1) | A long-read version of MEGAN for taxonomic analysis and functional annotation of metagenomic data generated from long-read sequencing technologies | [194] |
Challenges | Strategies | Future Perspectives | References |
---|---|---|---|
Turnaround Time and Costs | Cost and turnaround time reduction | Development of more cost-effective NGS platforms Optimization of bioinformatics pipelines | [30,31] |
Standardization and Quality Control | Develop universally accepted protocol or standard | Development of consensus standards through cooperation among researchers, industry stakeholders, and regulatory bodies | [34,35] |
Integration of automation | Integration of automation into the whole mNGS workflow | [231,232] | |
Proficiency testing and reference materials | Expansion of proficiency testing programs for mNGS | [233] | |
Standards and developments in bioinformatics | Availability and accessibility of rapidly evolving software to users Usage of metabarcoding and metagenomic bioinformatics | [140,234,235,236] | |
Collaboration and open sharing | Supporting open science initiatives through funding mechanisms and academic recognition | [237] | |
Technological advancements | The standardization and quality control of mNGS | [238] | |
Bioinformatics and Data Analysis | User-friendly tools | Development of user-friendly software and databases | [239,240] |
Data storage and privacy | Implementation of robust data privacy and security measures | [239,240] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kan, C.-M.; Tsang, H.F.; Pei, X.M.; Ng, S.S.M.; Yim, A.K.-Y.; Yu, A.C.-S.; Wong, S.C.C. Enhancing Clinical Utility: Utilization of International Standards and Guidelines for Metagenomic Sequencing in Infectious Disease Diagnosis. Int. J. Mol. Sci. 2024, 25, 3333. https://doi.org/10.3390/ijms25063333
Kan C-M, Tsang HF, Pei XM, Ng SSM, Yim AK-Y, Yu AC-S, Wong SCC. Enhancing Clinical Utility: Utilization of International Standards and Guidelines for Metagenomic Sequencing in Infectious Disease Diagnosis. International Journal of Molecular Sciences. 2024; 25(6):3333. https://doi.org/10.3390/ijms25063333
Chicago/Turabian StyleKan, Chau-Ming, Hin Fung Tsang, Xiao Meng Pei, Simon Siu Man Ng, Aldrin Kay-Yuen Yim, Allen Chi-Shing Yu, and Sze Chuen Cesar Wong. 2024. "Enhancing Clinical Utility: Utilization of International Standards and Guidelines for Metagenomic Sequencing in Infectious Disease Diagnosis" International Journal of Molecular Sciences 25, no. 6: 3333. https://doi.org/10.3390/ijms25063333
APA StyleKan, C. -M., Tsang, H. F., Pei, X. M., Ng, S. S. M., Yim, A. K. -Y., Yu, A. C. -S., & Wong, S. C. C. (2024). Enhancing Clinical Utility: Utilization of International Standards and Guidelines for Metagenomic Sequencing in Infectious Disease Diagnosis. International Journal of Molecular Sciences, 25(6), 3333. https://doi.org/10.3390/ijms25063333