The Role of Epigenetics in Brain Aneurysm and Subarachnoid Hemorrhage: A Comprehensive Review
Abstract
:1. Introduction
2. Overview of Epigenetics and Its Mechanisms
2.1. DNA Methylation (DNAm)
2.2. Non-Coding RNA Molecules (ncRNAs)
2.2.1. MicroRNAs
2.2.2. Long Non-Coding RNAs
2.2.3. Circular RNAs
2.3. Histone Modification
3. Results
3.1. DNA-Methylation
3.2. Non-Coding RNA
3.2.1. MicroRNA
3.2.2. Long Non-Coding RNA
3.2.3. Circular RNA
3.2.4. Studies Based on Bioinformatic Analysis: Regulation of Gene Expression through Non-Coding RNA
3.3. Histone Modification
4. Discussion
4.1. Epigenetic Mechanisms and Implications
4.2. Limitations
4.3. Future Directions
5. Materials and Methods
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Correction Statement
References
- Molenberg, R.; Thio, C.H.L.; Aalbers, M.W.; Uyttenboogaart, M.; ISGC Intracranial Aneurysm Working Group; Larsson, S.C.; Bakker, M.K.; Ruigrok, Y.M.; Snieder, H.; van Dijk, J.M.C. Sex Hormones and Risk of Aneurysmal Subarachnoid Hemorrhage: A Mendelian Randomization Study. Stroke 2022, 53, 2870–2875. [Google Scholar] [CrossRef] [PubMed]
- Roquer, J.; Cuadrado-Godia, E.; Guimaraens, L.; Conesa, G.; Rodríguez-Campello, A.; Capellades, J.; García-Arnillas, M.P.; Fernández-Candil, J.L.; Avellaneda-Gómez, C.; Giralt-Steinhauer, E.; et al. Short-and Long-Term Outcome of Patients with Aneurysmal Subarachnoid Hemorrhage. Neurology 2020, 95, E1819–E1829. [Google Scholar] [CrossRef]
- Chou, S.H.-Y. Subarachnoid Hemorrhage. Contin. Lifelong Learn. Neurol. 2021, 27, 1201–1245. [Google Scholar] [CrossRef] [PubMed]
- Rinkel, G.J.; Ruigrok, Y.M. Preventive Screening for Intracranial Aneurysms. Int. J. Stroke 2022, 17, 30–36. [Google Scholar] [CrossRef] [PubMed]
- Bakker, M.K.; Ruigrok, Y.M. Genetics of Intracranial Aneurysms. Stroke 2021, 52, 3004–3012. [Google Scholar] [CrossRef]
- Galea, J.P.; Dulhanty, L.; Patel, H.C. Predictors of Outcome in Aneurysmal Subarachnoid Hemorrhage Patients. Stroke 2017, 48, 2958–2963. [Google Scholar] [CrossRef]
- Macdonald, R.L.; Higashida, R.T.; Keller, E.; Mayer, S.A.; Molyneux, A.; Raabe, A.; Vajkoczy, P.; Wanke, I.; Bach, D.; Frey, A.; et al. Randomized Trial of Clazosentan in Patients with Aneurysmal Subarachnoid Hemorrhage Undergoing Endovascular Coiling. Stroke 2012, 43, 1463–1469. [Google Scholar] [CrossRef]
- Macdonald, R.L.; Higashida, R.T.; Keller, E.; Mayer, S.A.; Molyneux, A.; Raabe, A.; Vajkoczy, P.; Wanke, I.; Bach, D.; Frey, A.; et al. Clazosentan, an Endothelin Receptor Antagonist, in Patients with Aneurysmal Subarachnoid Haemorrhage Undergoing Surgical Clipping: A Randomised, Double-Blind, Placebo-Controlled Phase 3 Trial (CONSCIOUS-2). Lancet Neurol. 2011, 10, 618–625. [Google Scholar] [CrossRef]
- Dodd, W.S.; Laurent, D.; Dumont, A.S.; Hasan, D.M.; Jabbour, P.M.; Starke, R.M.; Hosaka, K.; Polifka, A.J.; Hoh, B.L.; Chalouhi, N. Pathophysiology of Delayed Cerebral Ischemia After Subarachnoid Hemorrhage: A Review. J. Am. Heart Assoc. 2021, 10, e021845. [Google Scholar] [CrossRef]
- Medina-Suárez, J.; Rodríguez-Esparragón, F.; Sosa-Pérez, C.; Cazorla-Rivero, S.; Torres-Mata, L.B.; Jiménez-O’Shanahan, A.; Clavo, B.; Morera-Molina, J. A Review of Genetic Polymorphisms and Susceptibilities to Complications after Aneurysmal Subarachnoid Hemorrhage. Int. J. Mol. Sci. 2022, 23, 15427. [Google Scholar] [CrossRef]
- Portela, A.; Esteller, M. Epigenetic Modifications and Human Disease. Nat. Biotechnol. 2010, 28, 1057–1068. [Google Scholar] [CrossRef]
- Klein, C.J.; Benarroch, E.E. Epigenetic Regulation. Neurology 2014, 82, 1833–1840. [Google Scholar] [CrossRef] [PubMed]
- Jones, P.A. Functions of DNA Methylation: Islands, Start Sites, Gene Bodies and Beyond. Nat. Rev. Genet. 2012, 13, 484–492. [Google Scholar] [CrossRef] [PubMed]
- Ryan, C.P. “Epigenetic Clocks”: Theory and Applications in Human Biology. Am. J. Hum. Biol. 2021, 33, e23488. [Google Scholar] [CrossRef]
- Jones, M.J.; Goodman, S.J.; Kobor, M.S. DNA Methylation and Healthy Human Aging. Aging Cell 2015, 14, 924–932. [Google Scholar] [CrossRef] [PubMed]
- Soriano-Tárraga, C.; Lazcano, U.; Giralt-Steinhauer, E.; Avellaneda-Gómez, C.; Ois, Á.; Rodríguez-Campello, A.; Cuadrado-Godia, E.; Gómez-González, A.; Fernández-Sanlés, A.; Elosua, R.; et al. Identification of 20 Novel Loci Associated with Ischaemic Stroke. Epigenome-Wide Association Study. Epigenetics 2020, 15, 988–997. [Google Scholar] [CrossRef] [PubMed]
- Giralt-Steinhauer, E.; Jiménez-Balado, J.; Fernández-Pérez, I.; Rey Álvarez, L.; Rodríguez-Campello, A.; Ois, Á.; Cuadrado-Godia, E.; Jiménez-Conde, J.; Roquer, J. Genetics and Epigenetics of Spontaneous Intracerebral Hemorrhage. Int. J. Mol. Sci. 2022, 23, 6479. [Google Scholar] [CrossRef]
- Jiménez-Balado, J.; Giralt-Steinhauer, E.; Fernández-Pérez, I.; Rey, L.; Cuadrado-Godia, E.; Ois, Á.; Rodríguez-Campello, A.; Soriano-Tárraga, C.; Lazcano, U.; Macias-Gómez, A.; et al. Epigenetic Clock Explains White Matter Hyperintensity Burden Irrespective of Chronological Age. Biology 2022, 12, 33. [Google Scholar] [CrossRef]
- The ENCODE Project Consortium. Identification and Analysis of Functional Elements in 1% of the Human Genome by the ENCODE Pilot Project. Nature 2007, 447, 799–816. [Google Scholar] [CrossRef]
- Amaral, P.P.; Dinger, M.E.; Mercer, T.R.; Mattick, J.S. The Eukaryotic Genome as an RNA Machine. Science 2008, 319, 1787–1789. [Google Scholar] [CrossRef]
- Ebert, M.S.; Sharp, P.A. Roles for MicroRNAs in Conferring Robustness to Biological Processes. Cell 2012, 149, 515–524. [Google Scholar] [CrossRef] [PubMed]
- Guo, H.; Ingolia, N.T.; Weissman, J.S.; Bartel, D.P. Mammalian MicroRNAs Predominantly Act to Decrease Target MRNA Levels. Nature 2010, 466, 835–840. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.X.; Springer, J.E.; Hatton, K.W. Micrornas as Biomarkers for Predicting Complications Following Aneurysmal Subarachnoid Hemorrhage. Int. J. Mol. Sci. 2021, 22, 9492. [Google Scholar] [CrossRef] [PubMed]
- Cordes, K.R.; Sheehy, N.T.; White, M.P.; Berry, E.C.; Morton, S.U.; Muth, A.N.; Lee, T.-H.; Miano, J.M.; Ivey, K.N.; Srivastava, D. MiR-145 and MiR-143 Regulate Smooth Muscle Cell Fate and Plasticity. Nature 2009, 460, 705–710. [Google Scholar] [CrossRef] [PubMed]
- O’Connell, R.M.; Rao, D.S.; Baltimore, D. MicroRNA Regulation of Inflammatory Responses. Annu. Rev. Immunol. 2012, 30, 295–312. [Google Scholar] [CrossRef]
- Müller, A.H.; Povlsen, G.K.; Bang-Berthelsen, C.H.; Kruse, L.S.; Nielsen, J.; Warfvinge, K.; Edvinsson, L. Regulation of MicroRNAs MiR-30a and MiR-143 in Cerebral Vasculature after Experimental Subarachnoid Hemorrhage in Rats. BMC Genom. 2015, 16, 119. [Google Scholar] [CrossRef]
- Albinsson, S.; Skoura, A.; Yu, J.; DiLorenzo, A.; Fernández-Hernando, C.; Offermanns, S.; Miano, J.M.; Sessa, W.C. Smooth Muscle MiRNAs Are Critical for Post-Natal Regulation of Blood Pressure and Vascular Function. PLoS ONE 2011, 6, e18869. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, W.; Zhu, W.; Dong, J.; Cheng, Y.; Yin, Z.; Shen, F. Mechanisms and Functions of Long Non-Coding RNAs at Multiple Regulatory Levels. Int. J. Mol. Sci. 2019, 20, 5573. [Google Scholar] [CrossRef]
- Skroblin, P.; Mayr, M. “Going Long”: Long Non-Coding RNAs as Biomarkers. Circ. Res. 2014, 115, 607–609. [Google Scholar] [CrossRef]
- Xu, Y.; Yang, S.; Xue, G. The role of long non-coding RNA in abdominal aortic aneurysm. Front. Genet. 2023, 14, 1153899. [Google Scholar] [CrossRef]
- Bao, M.-H.; Szeto, V.; Yang, B.B.; Zhu, S.; Sun, H.-S.; Feng, Z.-P. Long Non-Coding RNAs in Ischemic Stroke. Cell Death Dis. 2018, 9, 281. [Google Scholar] [CrossRef] [PubMed]
- He, X.; Wang, S.; Li, M.; Zhong, L.; Zheng, H.; Sun, Y.; Lai, Y.; Chen, X.; Wei, G.; Si, X.; et al. Long Noncoding RNA GAS5 Induces Abdominal Aortic Aneurysm Formation by Promoting Smooth Muscle Apoptosis. Theranostics 2019, 9, 5558–5576. [Google Scholar] [CrossRef] [PubMed]
- Pamudurti, N.R.; Bartok, O.; Jens, M.; Ashwal-Fluss, R.; Stottmeister, C.; Ruhe, L.; Hanan, M.; Wyler, E.; Perez-Hernandez, D.; Ramberger, E.; et al. Translation of CircRNAs. Mol. Cell 2017, 66, 9–21.e7. [Google Scholar] [CrossRef] [PubMed]
- Pedro Ferreira, J.; Pitt, B.; Zannad, F. Histone Deacetylase Inhibitors for Cardiovascular Conditions and Healthy Longevity. Lancet Healthy Longev. 2021, 2, e371–e379. [Google Scholar] [CrossRef] [PubMed]
- Burd, C.E.; Jeck, W.R.; Liu, Y.; Sanoff, H.K.; Wang, Z.; Sharpless, N.E. Expression of Linear and Novel Circular Forms of an INK4/ARF-Associated Non-Coding RNA Correlates with Atherosclerosis Risk. PLoS Genet. 2010, 6, e1001233. [Google Scholar] [CrossRef] [PubMed]
- Song, H.; Yang, Y.; Sun, Y.; Wei, G.; Zheng, H.; Chen, Y.; Cai, D.; Li, C.; Ma, Y.; Lin, Z.; et al. Circular RNA Cdyl Promotes Abdominal Aortic Aneurysm Formation by Inducing M1 Macrophage Polarization and M1-Type Inflammation. Mol. Ther. 2022, 30, 915–931. [Google Scholar] [CrossRef]
- Zhao, J.; Xu, T.; Zhou, S.; Zhang, J.; Wu, Y.; Zhou, C.; Sun, J.; Gao, X.; Huang, Y. DNA Methylation of the MAP3K10 Gene May Participate in the Development of Intracranial Aneurysm. Gene 2023, 851, 147024. [Google Scholar] [CrossRef]
- Wang, Z.; Zhao, J.; Sun, J.; Nie, S.; Li, K.; Gao, F.; Zhang, T.; Duan, S.; Di, Y.; Huang, Y.; et al. Sex-Dichotomous Effects of NOS1AP Promoter DNA Methylation on Intracranial Aneurysm and Brain Arteriovenous Malformation. Neurosci. Lett. 2016, 621, 47–53. [Google Scholar] [CrossRef]
- Zhou, S.; Gao, X.; Sun, J.; Lin, Z.; Huang, Y. DNA Methylation of the PDGFD Gene Promoter Increases the Risk for Intracranial Aneurysms and Brain Arteriovenous Malformations. DNA Cell Biol. 2017, 36, 436–442. [Google Scholar] [CrossRef]
- Yu, L.; Wang, J.; Wang, S.; Zhang, D.; Zhao, Y.; Wang, R.; Zhao, J. DNA Methylation Regulates Gene Expression in Intracranial Aneurysms. World Neurosurg. 2017, 105, 28–36. [Google Scholar] [CrossRef]
- Xu, T.; Yu, X.; Zhou, S.; Wu, Y.; Deng, X.; Wu, Y.; Wang, S.; Gao, X.; Nie, S.; Zhou, C.; et al. DNA Methylation and MRNA Expression of Glutathione S-Transferase Alpha 4 Are Associated with Intracranial Aneurysms in a Gender-Dependent Manner. Front. Genet. 2023, 13, 1079455. [Google Scholar] [CrossRef] [PubMed]
- Kim, B.J.; Kim, Y.; Youn, D.H.; Park, J.J.; Rhim, J.K.; Kim, H.C.; Kang, K.; Jeon, J.P. Genome-Wide Blood DNA Methylation Analysis in Patients with Delayed Cerebral Ischemia after Subarachnoid Hemorrhage. Sci. Rep. 2020, 10, 11419. [Google Scholar] [CrossRef]
- Liu, D.; Arockiaraj, A.I.; Shaffer, J.R.; Poloyac, S.M.; Sherwood, P.R.; Alexander, S.A.; Crago, E.A.; Weeks, D.E.; Conley, Y.P. ANGPT1 Methylation and Delayed Cerebral Ischemia in Aneurysmal Subarachnoid Hemorrhage Patients. Epigenet.Commun. 2021, 1, 3. [Google Scholar] [CrossRef] [PubMed]
- Arati, S.; Chetan, G.K.; Sibin, M.K.; Bhat, D.I.; Vazhayil, V.; Narasingarao, K.V.L. Prognostic Significance of Factor XIIIA Promoter Methylation Status in Aneurysmal Subarachnoid Haemorrhage (ASAH). BMC Cardiovasc. Disord. 2019, 19, 170. [Google Scholar] [CrossRef]
- Ladenvall, C.; Csajbok, L.; Nylén, K.; Jood, K.; Nellgård, B.; Jern, C. Association between Factor XIII Single Nucleotide Polymorphisms and Aneurysmal Subarachnoid Hemorrhage. J. Neurosurg. 2009, 110, 475–481. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Mao, P.; Xie, C.; Xie, W.; Wang, M.; Jiang, H. Apolipoprotein E Polymorphism and the Risk of Intracranial Aneurysms in a Chinese Population. BMC Neurol. 2016, 16, 14. [Google Scholar] [CrossRef] [PubMed]
- Heinsberg, L.W.; Arockiaraj, A.I.; Crago, E.A.; Ren, D.; Shaffer, J.R.; Sherwood, P.R.; Sereika, S.M.; Weeks, D.E.; Conley, Y.P. Genetic Variability and Trajectories of DNA Methylation May Support a Role for HAMP in Patient Outcomes after Aneurysmal Subarachnoid Hemorrhage. Neurocrit. Care 2020, 32, 550–563. [Google Scholar] [CrossRef]
- Heinsberg, L.W.; Weeks, D.E.; Alexander, S.A.; Minster, R.L.; Sherwood, P.R.; Poloyac, S.M.; Deslouches, S.; Crago, E.A.; Conley, Y.P. Iron Homeostasis Pathway DNA Methylation Trajectories Reveal a Role for STEAP3 Metalloreductase in Patient Outcomes after Aneurysmal Subarachnoid Hemorrhage. Epigenet. Commun. 2021, 1, 4. [Google Scholar] [CrossRef]
- Galea, I.; Durnford, A.; Glazier, J.; Mitchell, S.; Kohli, S.; Foulkes, L.; Norman, J.; Darekar, A.; Love, S.; Bulters, D.O.; et al. Iron Deposition in the Brain after Aneurysmal Subarachnoid Hemorrhage. Stroke 2022, 53, 1633–1642. [Google Scholar] [CrossRef]
- Arockiaraj, A.I.; Liu, D.; Shaffer, J.R.; Koleck, T.A.; Crago, E.A.; Weeks, D.E.; Conley, Y.P. Methylation Data Processing Protocol and Comparison of Blood and Cerebral Spinal Fluid Following Aneurysmal Subarachnoid Hemorrhage. Front. Genet. 2020, 11, 671. [Google Scholar] [CrossRef]
- Deng, J.; Ning, K.; Liu, D.; Wu, D.; Wan, R.; Ge, J. MiR-140 Promotes the Progression of Intracranial Aneurysms by Targeting BCL2L2. NeuroReport 2023, 34, 38–45. [Google Scholar] [CrossRef] [PubMed]
- Boga, Z.; Anlas, O.; Acik, V.; Ozalp, O.; Gezercan, Y. The Role of MiR-26a, MiR-29a and MiR-448-3p in the Development of Cerebral Aneurysm. Turk. Neurosurg. 2023, 33, 423–430. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Wu, A.; Dai, W.; Liu, R.; Jiang, B.; Zhou, R. Cerebrospinal Fluid Exosomal MiR-152-3p Predicts the Occurrence of Subarachnoid Haemorrhage and Regulates Vascular Smooth Muscle Cell Dysfunction. Folia Neuropathol. 2022, 60, 185–194. [Google Scholar] [CrossRef] [PubMed]
- Zheng, L.; Zhang, X.; Liu, L.; Pu, Y. Altered Expression of Specific MicroRNAs in Plasma of Aneurysmal Subarachnoid Hemorrhage Patients. Front. Neurol. 2022, 13, 842888. [Google Scholar] [CrossRef] [PubMed]
- Supriya, M.; Christopher, R.; Devi, B.I.; Bhat, D.I.; Shukla, D.; Kalpana, S.R. Altered MicroRNA Expression in Intracranial Aneurysmal Tissues: Possible Role in TGF-β Signaling Pathway. Cell Mol. Neurobiol. 2022, 42, 2393–2405. [Google Scholar] [CrossRef]
- Supriya, M.; Christopher, R.; Indira Devi, B.; Bhat, D.I.; Shukla, D. Circulating MicroRNAs as Potential Molecular Biomarkers for Intracranial Aneurysmal Rupture. Mol. Diagn. Ther. 2020, 24, 351–364. [Google Scholar] [CrossRef] [PubMed]
- Yashar, M.; Kalani, S.; Alsop, E.; Meechoovet, B.; Beecroft, T.; Agrawal, K.; Whitsett, T.G.; Huentelman, M.J.; Spetzler, R.F.; Nakaji, P.; et al. Extracellular MicroRNAs in Blood Differentiate between Ischaemic and Haemorrhagic Stroke Subtypes; Extracellular MicroRNAs in Blood Differentiate between Ischaemic and Haemorrhagic Stroke Subtypes. J. Extracell. Vesicles 2020, 9, 1713540. [Google Scholar] [CrossRef]
- Yang, F.; Xing, W.W.; Shen, D.W.; Tong, M.F.; Xie, F.M. Effect of MiR-126 on Intracranial Aneurysms and Its Predictive Value for Rupture of Aneurysms. Eur. Rev. Med. Pharmacol. Sci. 2020, 24, 3245–3253. [Google Scholar] [CrossRef]
- Liao, B.; Zhou, M.X.; Zhou, F.K.; Luo, X.M.; Zhong, S.X.; Zhou, Y.F.; Qin, Y.S.; Li, P.P.; Qin, C. Exosome-Derived MiRNAs as Biomarkers of the Development and Progression of Intracranial Aneurysms. J. Atheroscler. Thromb. 2020, 27, 545–610. [Google Scholar] [CrossRef]
- Korostynski, M.; Morga, R.; Piechota, M.; Hoinkis, D.; Golda, S.; Dziedzic, T.; Slowik, A.; Moskala, M.; Pera, J. Inflammatory Responses Induced by the Rupture of Intracranial Aneurysms Are Modulated by MiRNAs. Mol. Neurobiol. 2020, 57, 988–996. [Google Scholar] [CrossRef]
- Yang, X.; Peng, J.; Pang, J.; Wan, W.; Chen, L. A Functional Polymorphism in the Promoter Region of MiR-155 Predicts the Risk of Intracranial Hemorrhage Caused by Rupture Intracranial Aneurysm. J. Cell Biochem. 2019, 120, 18618–18628. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Yan, S.; Tan, H.; Ma, L.; Feng, H.; Han, H.; Pan, M.; Yu, L.; Fang, C. The MiR-143/145 Cluster Reverses the Regulation Effect of KLF5 in Smooth Muscle Cells with Proliferation and Contractility in Intracranial Aneurysm. Gene 2018, 679, 266–273. [Google Scholar] [CrossRef]
- Lopes, K.D.P.; Vinasco-Sandoval, T.; Vialle, R.A.; Paschoal, F.M.; Bastos, V.A.P.A.; Bor-Seng-Shu, E.; Teixeira, M.J.; Yamada, E.S.; Pinto, P.; Vidal, A.F.; et al. Global MiRNA Expression Profile Reveals Novel Molecular Players in Aneurysmal Subarachnoid Haemorrhage. Sci. Rep. 2018, 8, 8786. [Google Scholar] [CrossRef]
- Sheng, B.; Lai, N.-S.; Yao, Y.; Dong, J.; Li, Z.-B.; Zhao, X.-T.; Liu, J.-Q.; Li, X.-Q.; Fang, X.-G. Early Serum MiR-1297 Is an Indicator of Poor Neurological Outcome in Patients with ASAH. Biosci. Rep. 2018, 38, BSR20180646. [Google Scholar] [CrossRef]
- Sheng, B.; Fang, X.; Liu, C.; Wu, D.; Xia, D.; Xu, S.; Lai, N. Persistent High Levels of MiR-502-5p Are Associated with Poor Neurologic Outcome in Patients with Aneurysmal Subarachnoid Hemorrhage. World Neurosurg. 2018, 116, e92–e99. [Google Scholar] [CrossRef]
- Feng, X.; Peng, F.; Zhang, B.; Wang, L.; Guo, E.; Li, Y.; Jiang, C.; Wu, Z.; Liu, A. Lower MiR-143/145 and Higher Matrix Metalloproteinase-9 Levels in Circulation May Be Associated with Intracranial Aneurysm Formation and Rupture: A Pilot Study. Clin. Neurol. Neurosurg. 2018, 173, 124–129. [Google Scholar] [CrossRef] [PubMed]
- Guo, D.; Wang, Y.W.; Yan, L.; Ma, J.; Han, X.W.; Shui, S.F. Dysregulation of MicroRNA-23b-3p Contributes to the Development of Intracranial Aneurysms by Targeting Phosphatase and Tensin Homolog. Int. J. Mol. Med. 2018, 42, 1637–1643. [Google Scholar] [CrossRef]
- Lu, G.; Wong, M.S.; Xiong, M.Z.Q.; Leung, C.K.; Su, X.W.; Zhou, J.Y.; Poon, W.S.; Zheng, V.Z.Y.; Chan, W.Y.; Wong, G.K.C. Circulating MicroRNAs in Delayed Cerebral Infarction after Aneurysmal Subarachnoid Hemorrhage. J. Am. Heart Assoc. 2017, 6, e005363. [Google Scholar] [CrossRef] [PubMed]
- Lai, N.-S.; Zhang, J.-Q.; Qin, F.-Y.; Sheng, B.; Fang, X.-G.; Li, Z.-B. Serum MicroRNAs Are Non-Invasive Biomarkers for the Presence and Progression of Subarachnoid Haemorrhage. Biosci. Rep. 2017, 37, BSR20160480. [Google Scholar] [CrossRef]
- Meeuwsen, J.A.L.; van’t Hof, F.N.G.; van Rheenen, W.; Rinkel, G.J.E.; Veldink, J.H.; Ruigrok, Y.M. Circulating MicroRNAs in Patients with Intracranial Aneurysms. PLoS ONE 2017, 12, e0176558. [Google Scholar] [CrossRef]
- Kikkawa, Y.; Ogura, T.; Nakajima, H.; Ikeda, T.; Takeda, R.; Neki, H.; Kohyama, S.; Yamane, F.; Kurogi, R.; Amano, T.; et al. Altered Expression of MicroRNA-15a and Kruppel-Like Factor 4 in Cerebrospinal Fluid and Plasma after Aneurysmal Subarachnoid Hemorrhage. World Neurosurg. 2017, 108, 909–916.e3. [Google Scholar] [CrossRef]
- Bache, S.; Rasmussen, R.; Rossing, M.; Laigaard, F.P.; Nielsen, F.C.; Møller, K. MicroRNA Changes in Cerebrospinal Fluid after Subarachnoid Hemorrhage. Stroke 2017, 48, 2391–2398. [Google Scholar] [CrossRef]
- Stylli, S.S.; Adamides, A.A.; Koldej, R.M.; Luwor, R.B.; Ritchie, D.S.; Ziogas, J.; Kaye, A.H. MiRNA Expression Profiling of Cerebrospinal Fluid in Patients with Aneurysmal Subarachnoid Hemorrhage. J. Neurosurg. 2017, 126, 1131–1139. [Google Scholar] [CrossRef] [PubMed]
- Hou, W.Z.; Chen, X.L.; Wu, W.; Hang, C.H. MicroRNA-370-3p Inhibits HUASMC Cell Proliferation via Targeting KDR/AKT. Eur. Rev. Med. Pharmacol. Sci. 2017, 21, 1080–1087. [Google Scholar] [PubMed]
- Sima, X.; Sun, H.; Zhou, P.; You, C.; Cai, B. Association between Functional Polymorphisms in the Promoter of the MiR-143/145 Cluster and Risk of Intracranial Aneurysm. Sci. Rep. 2017, 7, 43633. [Google Scholar] [CrossRef]
- Luo, J.; Jin, H.; Jiang, Y.; Ge, H.; Wang, J.; Li, Y. Aberrant Expression of MicroRNA-9 Contributes to Development of Intracranial Aneurysm by Suppressing Proliferation and Reducing Contractility of Smooth Muscle Cells. Med. Sci. Monit. 2016, 22, 4247–4253. [Google Scholar] [CrossRef] [PubMed]
- Bekelis, K.; Kerley-Hamilton, J.S.; Teegarden, A.; Tomlinson, C.R.; Kuintzle, R.; Simmons, N.; Singer, R.J.; Roberts, D.W.; Kellis, M.; Hendrix, D.A. MicroRNA and Gene Expression Changes in Unruptured Human Cerebral Aneurysms. J. Neurosurg. 2016, 125, 1390–1399. [Google Scholar] [CrossRef] [PubMed]
- Powers, C.J.; Dickerson, R.; Zhang, S.W.; Rink, C.; Roy, S.; Sen, C.K. Human Cerebrospinal Fluid MicroRNA: Temporal Changes Following Subarachnoid Hemorrhage. Physiol. Genom. 2016, 48, 361–366. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Ren, Y.; Wang, Y.; Wang, R.; Zhou, Q.; Peng, Y.; Li, Q.; Yu, M.; Jiang, Y. Regulation of Smooth Muscle Contractility by Competing Endogenous MRNAs in Intracranial Aneurysms. J. Neuropathol. Exp. Neurol. 2015, 74, 411–424. [Google Scholar] [CrossRef]
- Su, X.W.; Chan, A.H.Y.; Lu, G.; Lin, M.; Sze, J.; Zhou, J.Y.; Poon, W.S.; Liu, Q.; Zheng, V.Z.Y.; Wong, G.K.C. Circulating MicroRNA 132-3p and 324-3p Profiles in Patients after Acute Aneurysmal Subarachnoid Hemorrhage. PLoS ONE 2015, 10, e0144724. [Google Scholar] [CrossRef]
- Li, P.; Zhang, Q.; Wu, X.; Yang, X.; Zhang, Y.; Li, Y.; Jiang, F. Circulating MicroRNAs Serve as Novel Biological Markers for Intracranial Aneurysms. J. Am. Heart Assoc. 2014, 3, e000972. [Google Scholar] [CrossRef]
- Liu, D.; Han, L.; Wu, X.; Yang, X.; Zhang, Q.; Jiang, F. Genome-Wide MicroRNA Changes in Human Intracranial Aneurysms. BMC Neurol. 2014, 14, 188. [Google Scholar] [CrossRef]
- Jin, H.; Li, C.; Ge, H.; Jiang, Y.; Li, Y. Circulating MicroRNA: A Novel Potential. Biomarker for Early Diagnosis of Intracranial Aneurysm Rupture a Case Control Study. J. Transl. Med. 2013, 11, 296. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Zhang, M.; He, H.; Chen, J.; Zeng, H.; Li, J.; Duan, R. MicroRNA/MRNA Profiling and Regulatory Network of Intracranial Aneurysm. BMC Med. Genom. 2013, 6, 36. [Google Scholar] [CrossRef] [PubMed]
- Bache, S.; Rasmussen, R.; Wolcott, Z.; Rossing, M.; Møgelvang, R.; Tolnai, D.; Hassager, C.; Forman, J.L.; Køber, L.; Nielsen, F.C.; et al. Elevated MiR-9 in Cerebrospinal Fluid Is Associated with Poor Functional Outcome after Subarachnoid Hemorrhage. Transl. Stroke Res. 2020, 11, 1243–1252. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.; Liu, X.; Yang, J.; Lin, Y.; Xu, D.-Z.; Lu, Q.; Deitch, E.A.; Huo, Y.; Delphin, E.S.; Zhang, C. MicroRNA-145, a Novel Smooth Muscle Cell Phenotypic Marker and Modulator, Controls Vascular Neointimal Lesion Formation. Circ. Res. 2009, 105, 158–166. [Google Scholar] [CrossRef] [PubMed]
- Robinson, H.C.; Baker, A.H. How Do MicroRNAs Affect Vascular Smooth Muscle Cell Biology? Curr. Opin. Lipidol. 2012, 23, 405–411. [Google Scholar] [CrossRef] [PubMed]
- Pulcrano-Nicolas, A.-S.; Proust, C.; Clarençon, F.; Jacquens, A.; Perret, C.; Roux, M.; Shotar, E.; Thibord, F.; Puybasset, L.; Garnier, S.; et al. Whole-Blood MiRNA Sequencing Profiling for Vasospasm in Patients with Aneurysmal Subarachnoid Hemorrhage. Stroke 2018, 49, 2220–2223. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Chen, W.; Li, C.; Wang, X.; Luo, J.; Cheng, B. LncRNA ANRIL Facilitates Vascular Smooth Muscle Cell Proliferation and Suppresses Apoptosis via Modulation of MiR-7/FGF2 Pathway in Intracranial Aneurysms. Neurocrit. Care 2022, 36, 106–115. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.; Song, H.; Wang, Y.; Gao, L.; Cai, Y.; Cheng, Q.; Chen, Y.; Zheng, Z.; Liao, Y.; Lin, J.; et al. Long Non-Coding RNA TCONS 00000200 as a Non-Invasive Biomarker in Patients with Intracranial Aneurysm. Biosci. Rep. 2019, 39, BSR20182224. [Google Scholar] [CrossRef]
- Ouyang, Y.; Jiang, Y.; Yu, M.; Zhang, M.; Tan, Z. Upregulation of MALAT1 Expression Predicts a Poor Prognosis in the Development of Intracranial Aneurysm (IA). Int. J. Clin. Exp. Pathol. 2017, 10, 5907–5912. [Google Scholar]
- Wang, W.; Li, H.; Yu, L.; Zhao, Z.; Wang, H.; Zhang, D.; Zhang, Y.; Lan, Q.; Wang, J.; Zhao, J. Aberrant Expression of LncRNAs and MRNAs in Patients with Intracranial Aneurysm. Oncotarget 2017, 8, 2477–2484. [Google Scholar] [CrossRef]
- Li, H.; Wang, W.; Zhang, L.; Lan, Q.; Wang, J.; Cao, Y.; Zhao, J. Identification of a Long Noncoding RNA-Associated Competing Endogenous RNA Network in Intracranial Aneurysm. World Neurosurg. 2017, 97, 684–692.e4. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Yue, H.; Hao, Y.; Li, H.; Wang, S.; Yu, L.; Zhang, D.; Cao, Y.; Zhao, J. Expression Profile of Long Noncoding RNAs in Human Cerebral Aneurysms: A Microarray Analysis. J. Neurosurg. 2017, 127, 1055–1062. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Tang, X.; Liu, K.; Hamblin, M.H.; Yin, K.-J. Long Noncoding RNA Malat1 Regulates Cerebrovascular Pathologies in Ischemic Stroke. J. Neurosci. 2017, 37, 1797–1806. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Zhang, B.; Zhang, D.; Wang, S.; Li, M.; Zhao, J. Differentially Expressed Circular RNA Profile in an Intracranial Aneurysm Group Compared with a Healthy Control Group. Dis. Markers 2021, 2021, 8889569. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Fang, C. Circ-ATL1 Silencing Reverses the Activation Effects of SIRT5 on Smooth Muscle Cellular Proliferation, Migration and Contractility in Intracranial Aneurysm by Adsorbing MiR-455. BMC Mol. Cell Biol. 2023, 24, 3. [Google Scholar] [CrossRef]
- Cao, H.; Chen, J.; Lai, X.; Liu, T.; Qiu, P.; Que, S.; Huang, Y. Circular RNA Expression Profile in Human Primary Multiple Intracranial Aneurysm. Exp. Ther. Med. 2021, 21, 239. [Google Scholar] [CrossRef]
- Huang, Y.; Cao, H.; Qi, X.; Guan, C.; Que, S. Circular RNA Hsa_circ_0000690 as a Potential Biomarker for Diagnosis and Prognosis of Intracranial Aneurysm: Closely Relating to the Volume of Hemorrhage. Brain Behav. 2023, 13, e2929. [Google Scholar] [CrossRef]
- Clough, E.; Barrett, T. The Gene Expression Omnibus Database. In Methods in Molecular Biology; Humana Press: New York, NY, USA, 2016; pp. 93–110. [Google Scholar]
- Zhao, M.; Xu, L.; Qian, H. Bioinformatics Analysis of MicroRNA Profiles and Identification of MicroRNA-MRNA Network and Biological Markers in Intracranial Aneurysm. Medicine 2020, 99, e21186. [Google Scholar] [CrossRef]
- Weng, Y. Investigation of Molecular Regulation Mechanism under the Pathophysiology of Subarachnoid Hemorrhage. Open Life Sci. 2021, 16, 1377–1392. [Google Scholar] [CrossRef]
- Huang, L.; Li, X.; Chen, Z.; Liu, Y.; Zhang, X. Identification of Inflammation-associated Circulating Long Non-coding RNAs and Genes in Intracranial Aneurysm Rupture-induced Subarachnoid Hemorrhage. Mol. Med. Rep. 2020, 22, 4541–4550. [Google Scholar] [CrossRef]
- Wei, L.; Wang, Q.; Zhang, Y.; Yang, C.; Guan, H.; Chen, Y.; Sun, Z. Identification of Key Genes, Transcription Factors and MicroRNAs Involved in Intracranial Aneurysm. Mol. Med. Rep. 2018, 17, 891–897. [Google Scholar] [CrossRef]
- Pan, Y.-B.; Lu, J.; Yang, B.; Lenahan, C.; Zhang, J.; Shao, A. Construction of Competitive Endogenous RNA Network Reveals Regulatory Role of Long Non-Coding RNAs in Intracranial Aneurysm. BMC Neurosci. 2021, 22, 15. [Google Scholar] [CrossRef]
- Cheng, L.; Zhao, Y.; Ke, H. Screening for Immune-Related RNA Biomarkers of Aneurysmal Subarachnoid Hemorrhage. Clin. Investig. Med. 2022, 45, E28–E38. [Google Scholar] [CrossRef] [PubMed]
- Poppenberg, K.E.; Jiang, K.; Tso, M.K.; Snyder, K.V.; Siddiqui, A.H.; Kolega, J.; Jarvis, J.N.; Meng, H.; Tutino, V.M. Epigenetic Landscapes Suggest That Genetic Risk for Intracranial Aneurysm Operates on the Endothelium. BMC Med. Genom. 2019, 12, 149. [Google Scholar] [CrossRef] [PubMed]
- Laarman, M.D.; Vermunt, M.W.; Kleinloog, R.; de Boer-Bergsma, J.J.; Brain Bank, N.; Rinkel, G.J.E.; Creyghton, M.P.; Mokry, M.; Bakkers, J.; Ruigrok, Y.M. Intracranial Aneurysm–Associated Single-Nucleotide Polymorphisms Alter Regulatory DNA in the Human Circle of Willis. Stroke 2018, 49, 447–453. [Google Scholar] [CrossRef] [PubMed]
- Soriano-Tárraga, C.; Lazcano, U.; Jiménez-Conde, J.; Ois, A.; Cuadrado-Godia, E.; Giralt-Steinhauer, E.; Rodríguez-Campello, A.; Gomez-Gonzalez, A.; Avellaneda-Gómez, C.; Vivanco-Hidalgo, R.M.; et al. Biological Age Is a Novel Biomarker to Predict Stroke Recurrence. J. Neurol. 2020, 268, 285–292. [Google Scholar] [CrossRef] [PubMed]
- Soriano-Tárraga, C.; Giralt-Steinhauer, E.; Mola-Caminal, M.; Ois, A.; Rodríguez-Campello, A.; Cuadrado-Godia, E.; Fernández-Cadenas, I.; Cullell, N.; Roquer, J.; Jiménez-Conde, J. Biological Age Is a Predictor of Mortality in Ischemic Stroke. Sci. Rep. 2018, 8, 4148. [Google Scholar] [CrossRef]
- Gaunt, T.R.; Shihab, H.A.; Hemani, G.; Min, J.L.; Woodward, G.; Lyttleton, O.; Zheng, J.; Duggirala, A.; McArdle, W.L.; Ho, K.; et al. Systematic Identification of Genetic Influences on Methylation across the Human Life Course. Genome Biol. 2016, 17, 61. [Google Scholar] [CrossRef] [PubMed]
- Obón-Santacana, M.; Vilardell, M.; Carreras, A.; Duran, X.; Velasco, J.; Galván-Femenía, I.; Alonso, T.; Puig, L.; Sumoy, L.; Duell, E.J.; et al. GCAT|Genomes for Life: A Prospective Cohort Study of the Genomes of Catalonia. BMJ Open 2018, 8, e018324. [Google Scholar] [CrossRef] [PubMed]
Reference | Cohorts | Sample and Collection Day | Detection Method | DE miRNAs | Pathway/Functional Analysis | Other Findings |
---|---|---|---|---|---|---|
[51] China | 25 uIA/20 controls | Serum | RT-qPCR | miR-140 upregulated in IA | Apoptosis and inhibition of proliferation of HVSMCs | |
[52] Turkey | 50 IA (34 rIA and 66 uIA)/50 controls | IA tissue Control: STA | RT-qPCR | miR-26a, miR-29a, and miR-448-3p upregulated in IA | Extracellular matrix regulation, HVSMCs proliferation and apoptosis, oxidative stress | |
[53] China | 69 rIA and 66 uIA, 68 hydrocephalus patients as controls | CSF at time of admission | RT-qPCR | miR-152-3p downregulated in IA | Proliferation and migration of HVSMCs | Lower miR-152-3p levels in rIA patients compared to uIA |
[54] China | Screening: 5 aSAH/5 controls. Validation in 2 cohorts: - 20 aSAH/40 controls - 40 aSAH/30 controls | Plasma. Day 1 | Screening: microarray. Validation: RT-qPCR | Screening 14 DE miRNAs. Validation: miR-23b-3p, miR-590-5p, miR-20b-5p, miR-142-3p, miR-29b-3p, all downregulated in aSAH | Inflammation, smooth muscle cell proliferation, and cell adhesion. TGF-beta pathway | |
[23] China | 31 aSAH (14 with VS)/ 8 controls | CSF and plasma collected at 3, 5, 7, and 10 days | RT-qPCR | Let-7b-5p, miR-15b-5p, miR-17-5p, miR-19b-3p, miR-20a-5p, miR-24-3p, and miR-29a-3p, all upregulated in aSAH in CSF on days 3 and 7. | Angiogenesis, inflammatory and immune response, proliferation and apoptosis, oxidative stress, mitochondrial function, neurogenesis, and differentiation | A panel including 26 miRNAs on CSF at day 3 had an AUC of 0.8 for VS prediction. |
[55] India | Screening: 8 aSAH/8 controls. Validation: 29 aSAH/20 controls 1 | IA tissue Control: Intercostal arteries | Screening: microarray. Validation: RT-qPCR | Screening: 70 miRNAs DE (67 downregulated in aSAH). 10 selected miRNAs are validated: miR-24-3p, miR-26b-5p, miR-27b-3p, miR-125b-5p, miR-143-3p, miR-145-5p, miR-193a-3p, miR-199a-5p, miR-365a-3p/365b-3p, miR-497-5p | TGF- beta and MAPK pathways. Inflammation, extracellular matrix and VSMC degradation and apoptosis | miR-125b-5p, miR-143-3p, miR-199a-5p decreased in patients with WFNS 3-4. miR-125b-5p, miR-143-3p, decreased in VS |
[56] India | Screening: 20 aSAH/20 controls. Validation: 88 aSAH 1/110 controls and 25 spontaneous non-aneurysmatic SAH | Plasma. Day 1 | Screening: RT-qPCR (179 miRNAs panel). Validation: RT-qPCR | Screening: DE 76 miRNAs (35 upregulated and 41 downregulated in SAH). 8 Selected miR validated: miR-15a-5p, miR-34a-5p, miR-374a-5p, miR-146a-5p, miR-376c-3p, miR-18b-5p, miR-24-3p, miR-27b-3p | Inflammation. TFG-beta, MAPK, focal adhesion, PI3K/Akt pathways | Expression patterns of the 8 miR in the non-aneurysmal SAH cohort are similar to controls. miR-146a-5p and miR-27b-3p associated with outcome |
[57] USA | 19 IPH/17 aSAH/21 IS (no controls) | Extracellular vesicles from plasma. Day 1 | NGS | ex-miRNA that distinguished aSAH from IPH: 68. aSAH from IS: 52 | A 25 miR panel can discriminate aSAH from other stroke subtypes (AUC 0.927) | |
[58] China | 102 IA patients (79 rIA, 23 uIA)/ 80 controls | Serum extracted before treatment | RT-qPCR | miR-126 upregulated in IA | MAPK signaling pathway | miR-126 was an independent risk factor for IA rupture |
[59] China | Screening: 4 uIA/8 rIA/4 controls. Validation: 30 uIA/39 rIA/30 controls 1 | Plasma exosomes extracted within the first 7 days in aSAH | Screening: NGS. Validation: RT-qPCR | Screening: - 29 miRNAs DE between uIA and controls - 31 miRNAs DE between rIA and controls - 121 DE miRNAs between uIA and rIA. Validation (from 5 selected miRNAs): miR-145-5p and miR-29a-3p upregulated in uIA and rIA vs. controls | ||
[60] Poland | 19 acute aSAH (first 72 h)/20 chronic aSAH (3–15 months)/20 controls | Peripheral blood (before neurosurgical intervention) | NGS | 196 miRNAs DE between 3 groups. 2 patterns: - 81 miRNAs DE in the acute phase that return to normal levels in the chronic phase - 11 miRNAs downregulated in the chronic phase | Cytokine-cytokine receptor interactions. Control of immune cell homeostasis | |
[61] China | 48 rIA/46 uIA | IA tissue and peripheral blood 2 | qPCR | miR-155 upregulated in uIA vs. rIA | miR-155 downregulates matrix metalloproteinase-2, implicated in extracellular matrix degradation | SNP rs767649 could inhibit miR-155 transcription |
[62] China | 30 IA 3/30 controls | Serum | qPCR | miR-145 and miR-143 are decreased in IA patients | Suppress VSMCs proliferation and migration with upregulation of Krüppel-like factor 5 | |
[63] Brazil | 27 aSAH (14 with VS)/6 controls | Peripheral blood. Day 7–10 | NGS | 5 miRNAs downregulated (let-7f-5p, miR-486-5p, miR-126-5p, miR-17-5p, miR-451a), and 3 upregulated (miR-146a-5p, miR-589-5p, miR-941) | Proto-oncogenes, caspase activation and apoptosis, cyclin kinase regulators, growth factors | miR-486-5p associated with poor outcome |
[64] China | 128 aSAH/40 controls | Serum. 24 h, 72 h, day 7, day 14. | RT-qPCR | miR-1297 upregulated in aSAH since day 1, reaching a peak at 7 days | miR-1297 at 24 h negatively correlated with WFNS grade, miR-1297 at 24 and 72 h associated with mRS scale at 1 year | |
[65] China | 129 aSAH/40 controls | Serum. 24 h, 72 h, day 7, day 14. | RT-qPCR | miR-502-5p upregulated in aSAH since day 1, reaching a peak at 7 days | miR-502-5p at 3 and 7 days negatively correlated with WFNS grade, miR-502-5p at days 1,3 and 7 associated with mRS scale at 1 year | |
[66] China | 9 uIA/8 rIA/7 controls | Plasma. Day 1-3 | RT-qPCR | miR-143 and 145 downregulated in rIA vs. controls. Both miR were correlated | Vascular inflammation | rIA patients had higher levels of matrix-metalloproteinase-9 than uIA and controls |
[67] China | 32 uIA/17 controls | IA tissue vs. VSMCs isolated from vessel walls | RT-qPCR | miR-23b-3p downregulated in IA. | miR-23b-3p targets phosphatase and tensin homolog, interfering with viability and apoptosis of VSMCs | |
[68] China | 40 aSAH (20 with DCI)/20 controls | Plasma. Day 7 | RT-qPCR | The combination of 4 miRNAs (miR-4532, miR-4463, miR-1290 and miR-4793) could distinguish aSAH patients from controls | Developmental pathways as Wnt signaling pathway, hedgehog and oxytocin signaling pathways | The combination of the same 4 miR could distinguish patients with and without DCI. |
[69] China | Screening: 3 aSAH/3 controls. Validation: 60 aSAH/10 controls | Serum. Day 3 | Screening: microarray. Validation: RT-qPCR | Screening: 13 miRNAs upregulated. Validation: miR-502-5p, miR-1297, miR-4320 upregulated in aSAH | miR-1297 and miR-502-5p were negatively correlated with WFNS grade and associated with poor outcome | |
[70] Netherlands | Screening: 15 prior aSAH (at least 2 years before, 11 with and additional uIA)/15 controls. Validation: 15 prior aSAH/15 uIA/15 controls | Plasma | Screening: RT-qPCR. Validation: RT-qPCR | Screening: - 3 DE miRNAs in aSAH - 2 DE miRNAs in aSAH with additional uIA vs. controls. Validation: - miR-183-5p downregulated in aSAH and uIA vs. controls - miR-200a-3p upregulated in aSAH vs. controls - Let-7b-5p downregulated in uBA vs. controls | miR-183-5p, miR-200a-3p and let-7b-5p regulated 15 genes previously described to be involved in IA development and rupture, implicated in cell proliferation, extracellular matrix composition and inflammation | |
[71] Japan | Screening: 2 aSAH/2 controls Validation: 8 aSAH/3 controls 1 | Plasma and CSF Screening: day 3. Validation: days 1, 3, 5, 7, 9, 11, 13 | Screening: Microarray. Validation: RT-qPCR | Screening: - Plasma: 19 miRNAs DE - CSF: 42 miRNAs DE. Validation (2 selected miRNAs): - miR-6724 downregulated in plasma and CSF from day 1 to 3. - miR-15a: upregulated in plasma on days 5 and 7; and upregulated in CSF on days 1,3, and 5 | ||
[72] Denmark | 27 aSAH with EVD/10 controls. Screening and validation in the same cohort | CSF within the first 5 days | RT-qPCR. 2 different platforms | Screening: 151 miRNAs DE. Validation: 66 upregulated miRNAs in aSAH | ||
[73] Australia | 20 aSAH (10 with VS) with EVD/4 controls | CSF extracted between day 1 and 8 | NanoString | 33 miRNAs DE between different aSAH groups (VS or not, day 1 samples or all) and controls. miR-451a upregulated in almost all aSAH groups | 6 miRNAs DE in VS | |
[74] China | 8 IA 3 vs. 3 controls | IA tissue Control: ‘normal cerebral arteries’ | qPCR | miR-370-3p increased in IA. | Cell proliferation and angiogenesis | |
[75] (China-Han population) | 62 IA (rIA and uIA mixed)/62 controls | Plasma 2 | qPCR | miR-143 and 145 were downregulated in IA | rs4705342 TC and TC/CC genotypes in the promoter of the miR-143/145 cluster were related to a lower risk of IA | |
[76] China | 13 aSAH/11 controls | IA tissue Control: Middle meningeal artery | qPCR | miR-9 increased in aSAH | miR-9 interferes with the viability and contractility of VSMC by targeting myocardin | |
[77] USA | 7 uIA/10 controls | IA tissue Control: STA | Microarray. NanoString for technical validation | 19 miRNAs upregulated and 5 downregulated in uIA. Strongest changes in: miR-21, miR-143-5p and miR-145 | Collagen formation, inflammation regulation, lipid metabolism, smooth muscle phenotypic modification and extracellular matrix remodeling | They also found 1028 genes DE and investigated miRNA-mRNA pairs |
[78] USA | 8 aSAH women with EVD (all Fisher III). No controls | CSF daily collected during days 3 to 12 | NanoString RT-qPCR for technical validation in 3 selected miRNAs | 52 miRNAs detected divided in 2 clusters: one with decreased abundance over time and another with increasing abundance over time | ||
[79] China | Screening: 3 aSAH/3 controls. Validation: 70 aSAH 1/10 controls | IA tissue Control: Middle meningeal artery | Screening: microarray. Validation: RT-qPCR | Screening 17 DE miRNAs Validation: miR-34c-5p, miR-539-5p, miR-431-5p, miR-3651, and miR-758-3p, all upregulated en aSAH | VSMCs differentiation by targeting myocardin | |
[80] China | Screening: 20 aSAH with DCI /20 controls. Validation: 20 aSAH with DCI 1 + 20 aSAH without DCI /20 controls | Plasma. Day 7 | Screening: microarray. Validation: qPCR | Screening: 99 DE miRNAs. Validation: miR-132 and miR-324 upregulated in both SAH DCI and non-DCI groups vs. controls | ||
[81] China | Screening: 40 IA (20 uIA and 20 rIA)/20 controls. Validation: 93 IA 3/50 controls. Validation of potential biomarkers: 17 controls and 26 IA randomly selected from a combination of the 2 previous cohorts | Plasma | Screening: microarray. Validation: microarray. Validation of potential biomarkers: RT-qPCR | Screening: 119 miRNAs DE in uIA, 23 in rIA and 20 in both vs. controls. 73 miRNAs DE in uIA vs. rIA. Validation: 99 DE miRNAs in IA vs. controls. Potential biomarkers: miR-16 and miR-25 upregulated in IA | Inflammation and connective tissue | miR-16 and miR-25 are good predictors of IA |
[82] China | 6 rIA/6 controls. Validation: ‘semi-independent sample including new and the original samples’ | IA tissue Control: STA | Microarray RT-qPCR for technical validation in 3 miR | 157 DE miRNAs in IA. Technical validation confirms that miR-99b and miR-493 were upregulated and miR-340 downregulated | Endothelium and vascular smooth muscle-enriched miR. Inflammation, dysregulation of extracellular matrix, smooth muscle cell proliferation, programmed cell death and response to oxidative stress. Protein translation process | |
[83] China | 4 groups: A: 6 uIA with daughter aneurysms B: 6 uIA without daughter aneurysms C: 6 rIA D: 6 controls | Plasma 2 | Microarray | 86 DE miRNAs between any of the IA group and controls | Apoptosis and activation of cells associated with function of vascular wall | |
[84] China | 14 rIA/14 controls Screening and validation in the same cohort. | IA tissue Control: middle meningeal artery | Screening: Microarray. Validation: RT-qPCR | Screening: 30 DE miRNAs Validation: 18 DE miRNAs, all downregulated | Migration of phagocytes, proliferation and cell movement of mononuclear leukocytes, cell movement of smooth muscle cells |
microRNA | Studies | Sample Type | Expression |
---|---|---|---|
let-7b-5p | [23,72] | CSF | Upregulated in ruptured IA |
miR-1297 | [64,69] | Serum | Upregulated in ruptured IA |
miR-132 | [72,80] | CSF Plasma | Upregulated in ruptured IA |
miR-143/miR-145 | [55,62,66,72,75,77,80,84] | Plasma Serum IA tissue | Downregulated in ruptured and unruptured IA |
miR-15a-5p | [56,72] | Plasma CSF | Upregulated in ruptured IA |
miR-15b-5p | [23,72] | CSF | Upregulated in ruptured IA |
miR-17-5p | [23,72] | CSF | Upregulated in ruptured IA |
miR-19b-3p | [23,72] | CSF | Upregulated in ruptured IA |
miR-20a-5p | [23,72] | CSF | Upregulated in ruptured IA |
miR-23b-3p | [54,67,84] | Plasma IA tissue | Downregulated in ruptured and unruptured IA |
miR-24-3p | [23,72] | CSF | Upregulated in ruptured IA |
miR-26a | [52,72] | IA tissue CSF | Upregulated in ruptured and unruptured IA |
miR-27b-3p | [55,56] | IA tissue Plasma | Downregulated in ruptured IA |
miR-29a-3p | [23,52,59,72] | Plasma CSF IA tissue | Upregulated in ruptured and unruptured IA |
miR-324-3p | [72,81] | CSF Plasma | Upregulated in ruptured and unruptured IA |
miR-34c-5p | [72,79] | CSF IA tissue | Upregulated in ruptured IA |
miR-502-5p | [65,69] | Plasma | Upregulated in ruptured IA |
miR-9 | [76,85] | CSF IA tissue | Upregulated in ruptured IA |
Reference | Cohorts | Sample and Collection Day | Detection Method | DE lncRNA and mRNA | Pathway Analysis | Other Findings |
---|---|---|---|---|---|---|
[89] China | 20 IA/20 STA | IA tissue | RT-qPCR | lncRNA Antisense Non-coding RNA in the INK4 Locus (ANRIL) enhances VSMC proliferation through mir-7/FGF2 pathway | VSMC proliferation and suppresses apoptosis | |
[90] China | Screening: 5 aSAH/5 controls. Validation: 30 aSAH/20 controls | Plasma | Screening: Microarray. Validation: RT-qPCR of 4 selected candidates. mRNA microarray for constructing networks | Screening: 797 DE lncRNAs. Validation: TCONS 00000200 and ENST00000511927 upregulated and ENST00000421997 and ENST00000538202 downregulated in aSAH | Co-expression regulatory networks including the 4 validated lncRNAs and 144 mRNA. Pathways related to muscle tissue development and lymphocyte negative regulation | ROC curve suggests that TCONS 00000200 could serve as biomarker of BA |
[91] China | 105 IA (69 rIA and 36 uIA)/40 controls | Plasma | RT-qPCR | MALAT-1 upregulated in IA | MALAT-1 also associated with hypertension history, IA rupture, HH level and poor prognosis | |
[92] China | 27 IA (12 rIA and 15 uIA)/27 paired controls | IA tissue Control: STAs from the same patients | Microarray | 4129 DE lncRNAs and 2926 DE mRNA | Co-expression regulatory networks: 72 lncRNAs and 34 mRNAs implicated in 4 pathways: VSMC contraction, immune response, inflammatory response and muscle contraction | |
[93] China | 12 IA patients (6 rIA and 6 uIA)/12 paired controls | IA tissue Control: STAs from the same patients | Microarray | 1150 DE lncRNAs, 2545 DE mRNAs, and 286 DE miRNAs | ceRNA network consisting of 8401 miRNA-lncRNA-mRNA interactions. Pathways related to muscle contraction and VSMC contraction | |
[94] China | 12 IA (6 rIA and 6 uIA)/12 paired controls | IA tissue Control: STAs from the same patients | Microarray RT-qPCR in 8 randomly selected lncRNAs and mRNAs for technical validation | 1518 DE lncRNAs and 2545 DE mRNA. 4 lncRNAs and 4 mRNAs replicated with RT-qPCR | Co-expression regulatory networks: 559 lncRNAs, 408 mRNAs. Involved in VSMC contraction, immune response and inflammatory response pathways |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fernández-Pérez, I.; Macias-Gómez, A.; Suárez-Pérez, A.; Vallverdú-Prats, M.; Giralt-Steinhauer, E.; Bojtos, L.; Susin-Calle, S.; Rodriguez-Campello, A.; Guisado-Alonso, D.; Jimenez-Balado, J.; et al. The Role of Epigenetics in Brain Aneurysm and Subarachnoid Hemorrhage: A Comprehensive Review. Int. J. Mol. Sci. 2024, 25, 3433. https://doi.org/10.3390/ijms25063433
Fernández-Pérez I, Macias-Gómez A, Suárez-Pérez A, Vallverdú-Prats M, Giralt-Steinhauer E, Bojtos L, Susin-Calle S, Rodriguez-Campello A, Guisado-Alonso D, Jimenez-Balado J, et al. The Role of Epigenetics in Brain Aneurysm and Subarachnoid Hemorrhage: A Comprehensive Review. International Journal of Molecular Sciences. 2024; 25(6):3433. https://doi.org/10.3390/ijms25063433
Chicago/Turabian StyleFernández-Pérez, Isabel, Adrià Macias-Gómez, Antoni Suárez-Pérez, Marta Vallverdú-Prats, Eva Giralt-Steinhauer, Lidia Bojtos, Sílvia Susin-Calle, Ana Rodriguez-Campello, Daniel Guisado-Alonso, Joan Jimenez-Balado, and et al. 2024. "The Role of Epigenetics in Brain Aneurysm and Subarachnoid Hemorrhage: A Comprehensive Review" International Journal of Molecular Sciences 25, no. 6: 3433. https://doi.org/10.3390/ijms25063433
APA StyleFernández-Pérez, I., Macias-Gómez, A., Suárez-Pérez, A., Vallverdú-Prats, M., Giralt-Steinhauer, E., Bojtos, L., Susin-Calle, S., Rodriguez-Campello, A., Guisado-Alonso, D., Jimenez-Balado, J., Jiménez-Conde, J., & Cuadrado-Godia, E. (2024). The Role of Epigenetics in Brain Aneurysm and Subarachnoid Hemorrhage: A Comprehensive Review. International Journal of Molecular Sciences, 25(6), 3433. https://doi.org/10.3390/ijms25063433