Human Cytomegalovirus Oncoprotection across Diverse Populations, Tumor Histologies, and Age Groups: The Relevance for Prospective Vaccinal Therapy
Abstract
:1. Introduction
2. Results
3. Discussion
3.1. Cytomegalovirus and Oncoprotection—From T-Cells to Vaccines
3.2. When Might CMV Provide the Highest Level of Protection?
3.3. Arguments in Favor of CMV Oncogenesis
3.4. Study Limitations
4. Materials and Methods
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zuhair, M.; Smit, G.S.A.; Wallis, G.; Jabbar, F.; Smith, C.; Devleesschauwer, B.; Griffiths, P. Estimation of the worldwide seroprevalence of cytomegalovirus: A systematic review and meta-analysis. Rev. Med. Virol. 2019, 29, e2034. [Google Scholar] [CrossRef] [PubMed]
- Fowler, K.; Mucha, J.; Neumann, M.; Lewandowski, W.; Kaczanowska, M.; Grys, M.; Schmidt, E.; Natenshon, A.; Talarico, C.; Buck, P.O.; et al. A systematic literature review of the global seroprevalence of cytomegalovirus: Possible implications for treatment, screening, and vaccine development. BMC Public Health 2022, 22, 1659. [Google Scholar] [CrossRef] [PubMed]
- Pandey, J.P. Immunoglobulin GM Genes, Cytomegalovirus Immunoevasion, and the Risk of Glioma, Neuroblastoma, and Breast Cancer. Front. Oncol. 2014, 4, 236. [Google Scholar] [CrossRef] [PubMed]
- Nehme, Z.; Pasquereau, S.; Haidar Ahmad, S.; El Baba, R.; Herbein, G. Polyploid giant cancer cells, EZH2 and Myc upregulation in mammary epithelial cells infected with high-risk human cytomegalovirus. EBioMedicine 2022, 80, 104056. [Google Scholar] [CrossRef] [PubMed]
- Sarshari, B.; Mohebbi, S.R.; Ravanshad, M.; Shahrokh, S.; Aghdaei, H.A.; Zali, M.R. Detection and quantification of Epstein-Barr virus, cytomegalovirus, and human herpesvirus-6 in stomach frozen tissue of chronic gastritis and gastric cancer patients. Microbiol. Immunol. 2022, 66, 379–385. [Google Scholar] [CrossRef] [PubMed]
- Doniger, J.; Muralidhar, S.; Rosenthal, L.J. Human cytomegalovirus and human herpesvirus 6 genes that transform and transactivate. Clin. Microbiol. Rev. 1999, 12, 367–382. [Google Scholar] [CrossRef] [PubMed]
- Janković, M.; Knežević, A.; Todorović, M.; Đunić, I.; Mihaljević, B.; Soldatović, I.; Protić, J.; Miković, N.; Stoiljković, V.; Jovanović, T. Cytomegalovirus infection may be oncoprotective against neoplasms of B-lymphocyte lineage: Single-institution experience and survey of global evidence. Virol. J. 2022, 19, 155. [Google Scholar] [CrossRef]
- Bigley, A.B.; Baker, F.L.; Simpson, R.J. Cytomegalovirus: An unlikely ally in the fight against blood cancers? Clin. Exp. Immunol. 2018, 193, 265–274. [Google Scholar] [CrossRef] [PubMed]
- Rashid, S.; Ardeljan, A.; Frankel, L.R.; Cardeiro, M.; Kim, E.; Nagel, B.M.; Takabe, K.; Rashid, O. Human Cytomegalovirus (CMV) Infection Associated with Decreased Risk of Bronchogenic Carcinoma: Understanding How a Previous CMV Infection Leads to an Enhanced Immune Response Against Malignancy. Cureus 2023, 15, e37265. [Google Scholar] [CrossRef] [PubMed]
- Nagel, B.; Frankel, L.; Ardeljan, A.; Cardeiro, M.; Rashid, S.; Takabe, K.; Rashid, O.M. The Association of Human Cytomegalovirus Infection and Colorectal Cancer: A Clinical Analysis. World J. Oncol. 2023, 14, 119–124. [Google Scholar] [CrossRef]
- Daei Sorkhabi, A.; Sarkesh, A.; Saeedi, H.; Marofi, F.; Ghaebi, M.; Silvestris, N.; Baradaran, B.; Brunetti, O. The Basis and Advances in Clinical Application of Cytomegalovirus-Specific Cytotoxic T Cell Immunotherapy for Glioblastoma Multiforme. Front. Oncol. 2022, 12, 818447. [Google Scholar] [CrossRef]
- Ahn, J.; Shin, C.; Kim, Y.S.; Park, J.S.; Jeun, S.S.; Ahn, S. Cytomegalovirus-Specific Immunotherapy for Glioblastoma Treatments. Brain Tumor Res. Treat. 2022, 10, 135–143. [Google Scholar] [CrossRef]
- Schuessler, A.; Walker, D.G.; Khanna, R. Cytomegalovirus as a novel target for immunotherapy of glioblastoma multiforme. Front. Oncol. 2014, 4, 275. [Google Scholar] [CrossRef]
- Gustafsson, R.K.L.; Jeffery, H.C.; Yaiw, K.-C.; Wilhelmi, V.; Kostopoulou, O.N.; Davoudi, B.; Rahbar, A.; Benard, M.; Renné, T.; Söderberg-Nauclér, C.; et al. Direct infection of primary endothelial cells with human cytomegalovirus prevents angiogenesis and migration. J. Gen. Virol. 2015, 96, 3598–3612. [Google Scholar] [CrossRef]
- Ozel, I.; Duerig, I.; Domnich, M.; Lang, S.; Pylaeva, E.; Jablonska, J. The Good, the Bad, and the Ugly: Neutrophils, Angiogenesis, and Cancer. Cancers 2022, 14, 536. [Google Scholar] [CrossRef]
- Laane, C.J.; Murr, A.H.; Mhatre, A.N.; Jones, K.D.; Lalwan, A.K. Role of Epstein-Barr virus and cytomegalovirus in the etiology of benign parotid tumors. Head Neck. 2002, 24, 443–450. [Google Scholar] [CrossRef]
- Ingerslev, K.; Høgdall, E.; Skovrider-Ruminski, W.; Schnack, T.H.; Lidang, M.; Høgdall, C.; Blaakaer, J. The prevalence of EBV and CMV DNA in epithelial ovarian cancer. Infect. Agents Cancer 2019, 14, 7. [Google Scholar] [CrossRef] [PubMed]
- Huang, T.S.; Lee, J.J.; Cheng, S.P. No evidence of association between human cytomegalovirus infection and papillary thyroid cancer. World J. Surg. Oncol. 2014, 12, 41. [Google Scholar] [CrossRef] [PubMed]
- Vermeulen, J.F.; van Hecke, W.; Jansen, M.K.; Spliet, W.G.; Broekhuizen, R.; Bovenschen, N. No evidence for human cytomegalovirus infection in pediatric medulloblastomas. Neuro Oncol. 2016, 18, 1461–1462. [Google Scholar] [CrossRef] [PubMed]
- Wiemels, J.L.; Talbäck, M.; Francis, S.; Feychting, M. Early Infection with Cytomegalovirus and Risk of Childhood Hematologic Malignancies. Cancer Epidemiol. Biomark. Prev. 2019, 28, 1024–1027. [Google Scholar] [CrossRef]
- Thompson, C.H.; Rose, B.R.; Elliott, P.M. Cytomegalovirus and cervical cancer: Failure to detect a direct association or an interaction with human papillomaviruses. Gynecol. Oncol. 1994, 54, 40–46. [Google Scholar] [CrossRef] [PubMed]
- Koldehoff, M.; Ross, S.R.; Dührsen, U.; Beelen, D.W.; Elmaagacli, A.H. Early CMV-replication after allogeneic stem cell transplantation is associated with a reduced relapse risk in lymphoma. Leuk. Lymphoma. 2017, 58, 822–833. [Google Scholar] [CrossRef] [PubMed]
- Elmaagacli, A.H.; Steckel, N.K.; Koldehoff, M.; Hegerfeldt, Y.; Trenschel, R.; Ditschkowski, M.; Christoph, S.; Gromke, T.; Kordelas, L.; Ottinger, H.D.; et al. Early human cytomegalovirus replication after transplantation is associated with a decreased relapse risk: Evidence for a putative virus-versus-leukemia effect in acute myeloid leukemia patients. Blood 2011, 118, 1402–1412. [Google Scholar] [CrossRef]
- Green, M.L.; Leisenring, W.M.; Xie, H.; Walter, R.B.; Mielcarek, M.; Sandmaier, B.M.; Riddell, S.R.; Boeckh, M. CMV reactivation after allogeneic HCT and relapse risk: Evidence for early protection in acute myeloid leukemia. Blood 2013, 122, 1316–1324. [Google Scholar] [CrossRef] [PubMed]
- Litjens, N.H.R.; van der Wagen, L.; Kuball, J.; Kwekkeboom, J. Potential Beneficial Effects of Cytomegalovirus Infection after Transplantation. Front. Immunol. 2018, 9, 389. [Google Scholar] [CrossRef]
- Inagaki, J.; Noguchi, M.; Kurauchi, K.; Tanioka, S.; Fukano, R.; Okamura, J. Effect of Cytomegalovirus Reactivation on Relapse after Allogeneic Hematopoietic Stem Cell Transplantation in Pediatric Acute Leukemia. Biol. Blood Marrow Transplant. 2016, 22, 300–306. [Google Scholar] [CrossRef]
- Peric, Z.; Wilson, J.; Durakovic, N.; Ostojic, A.; Desnica, L.; Vranjes, V.R.; Marekovic, I.; Serventi-Seiwerth, R.; Vrhovac, R. Early human cytomegalovirus reactivation is associated with lower incidence of relapse of myeloproliferative disorders after allogeneic hematopoietic stem cell transplantation. Bone Marrow Transplant. 2018, 53, 1450–1456. [Google Scholar] [CrossRef]
- Geris, J.M.; Spector, L.G.; Pfeiffer, R.M.; Limaye, A.P.; Yu, K.J.; Engels, E.A. Cancer risk associated with cytomegalovirus infection among solid organ transplant recipients in the United States. Cancer 2022, 128, 3985–3994. [Google Scholar] [CrossRef]
- Erlach, K.C.; Podlech, J.; Rojan, A.; Reddehase, M.J. Tumor control in a model of bone marrow transplantation and acute liver-infiltrating B-cell lymphoma: An unpredicted novel function of cytomegalovirus. J. Virol. 2002, 76, 2857–2870. [Google Scholar] [CrossRef]
- Lachmann, R.; Loenenbach, A.; Waterboer, T.; Brenner, N.; Pawlita, M.; Michel, A.; Thamm, M.; Poethko-Müller, C.; Wichmann, O.; Wiese-Posselt, M. Cytomegalovirus (CMV) seroprevalence in the adult population of Germany. PLoS ONE 2018, 13, e0200267. [Google Scholar] [CrossRef]
- Cannon, M.J.; Schmid, D.S.; Hyde, T.B. Review of cytomegalovirus seroprevalence and demographic characteristics associated with infection. Rev. Med. Virol. 2010, 20, 202–213. [Google Scholar] [CrossRef] [PubMed]
- Marshall, G.S.; Rabalais, G.P.; Stewart, J.A.; Dobbins, J.G. Cytomegalovirus seroprevalence in women bearing children in Jefferson County, Kentucky. Am. J. Med. Sci. 1993, 305, 292–296. [Google Scholar] [CrossRef] [PubMed]
- Kelly, E.; Russell, S.J. History of oncolytic viruses: Genesis to genetic engineering. Mol. Ther. 2007, 15, 651–659. [Google Scholar] [CrossRef] [PubMed]
- Russell, S.J.; Peng, K.W.; Bell, J.C. Oncolytic virotherapy. Nat. Biotechnol. 2012, 30, 658–670. [Google Scholar] [CrossRef] [PubMed]
- Cao, G.D.; He, X.B.; Sun, Q.; Chen, S.; Wan, K.; Xu, X.; Feng, X.; Li, P.P.; Chen, B.; Xiong, M.M. The Oncolytic Virus in Cancer Diagnosis and Treatment. Front. Oncol. 2020, 10, 1786. [Google Scholar] [CrossRef] [PubMed]
- Ye, S.; Hu, Y.; Chen, C.; Chen, S.; Tong, X.; Zhu, H.; Deng, B.; Hu, X.; Sun, X.; Chen, X.; et al. The Human Cytomegalovirus US31 Gene Predicts Favorable Survival and Regulates the Tumor Microenvironment in Gastric Cancer. Front. Oncol. 2021, 11, 614925, Erratum in Front. Oncol. 2021, 11, 715746. [Google Scholar] [CrossRef] [PubMed]
- Herbein, G.; Nehme, Z. Tumor Control by Cytomegalovirus: A Door Open for Oncolytic Virotherapy? Mol. Ther. Oncolytics 2020, 17, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Erkes, D.A.; Wilski, N.A.; Snyder, C.M. Intratumoral infection by CMV may change the tumor environment by directly interacting with tumor-associated macrophages to promote cancer immunity. Hum. Vaccin. Immunother. 2017, 13, 1778–1785. [Google Scholar] [CrossRef] [PubMed]
- Wilski, N.A.; Stotesbury, C.; Del Casale, C.; Montoya, B.; Wong, E.; Sigal, L.J.; Snyder, C.M. STING Sensing of Murine Cytomegalovirus Alters the Tumor Microenvironment to Promote Antitumor Immunity. J. Immunol. 2020, 204, 2961–2972. [Google Scholar] [CrossRef]
- Erlach, K.C.; Böhm, V.; Seckert, C.K.; Reddehase, M.J.; Podlech, J. Lymphoma cell apoptosis in the liver induced by distant murine cytomegalovirus infection. J. Virol. 2006, 80, 4801–4819. [Google Scholar] [CrossRef]
- Jackson, S.E.; Redeker, A.; Arens, R.; Van Baarle, D.; van den Berg, S.P.H.; Benedict, C.A.; Cicin-Sain, L.; Hill, A.B.; Wills, M.R. CMV immune evasion and manipulation of the immune system with aging. GeroScience 2017, 39, 273–291. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Coquard, L.; Pasquereau, S.; Russo, L.; Valmary-Degano, S.; Borg, C.; Pothier, P.; Herbein, G. Tumor control by human cytomegalovirus in a murine model of hepatocellular carcinoma. Mol. Ther. Oncolytics. 2016, 3, 16012. [Google Scholar] [CrossRef]
- Koldehoff, M.; Lindemann, M.; Opalka, B.; Bauer, S.; Ross, R.S.; Elmaagacli, A.H. Cytomegalovirus induces apoptosis in acute leukemia cells as a virus-versus-leukemia function. Leuk. Lymphoma. 2015, 56, 3189–3197. [Google Scholar] [CrossRef]
- Erkes, D.A.; Xu, G.; Daskalakis, C.; Zurbach, K.A.; Wilski, N.A.; Moghbeli, T.; Hill, A.B.; Snyder, C.M. Intratumoral Infection with Murine Cytomegalovirus Synergizes with PD-L1 Blockade to Clear Melanoma Lesions and Induce Long-term Immunity. Mol. Ther. 2016, 24, 1444–1455. [Google Scholar] [CrossRef] [PubMed]
- Wilski, N.A.; Del Casale, C.; Purwin, T.J.; Aplin, A.E.; Snyder, C.M. Murine Cytomegalovirus Infection of Melanoma Lesions Delays Tumor Growth by Recruiting and Repolarizing Monocytic Phagocytes in the Tumor. J. Virol. 2019, 93, e00533-19. [Google Scholar] [CrossRef]
- Picarda, G.; Benedict, C.A. Cytomegalovirus: Shape-Shifting the Immune System. J. Immunol. 2018, 200, 3881–3889. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Doualeh, M.; Affandi, J.S.; Makwana, N.; Irish, A.; Price, P. Functional and clinical consequences of changes to natural killer cell phenotypes driven by chronic cytomegalovirus infections. J. Med. Virol. 2019, 91, 1120–1127. [Google Scholar] [CrossRef] [PubMed]
- Wilkinson, G.W.G.; Tomasec, P.; Stanton, R.J.; Armstrong, M.; Prod’homme, V.; Aicheler, R.; McSharry, B.P.; Rickards, C.R.; Cochrane, D.; Llewellyn-Lacey, S.; et al. Modulation of natural killer cells by human cytomegalovirus. J. Clin. Virol. 2008, 41, 206–212. [Google Scholar] [CrossRef] [PubMed]
- Lisnić, B.; Lisnić, V.J.; Jonjić, S. NK cell interplay with cytomegaloviruses. Curr. Opin. Virol. 2015, 15, 9–18. [Google Scholar] [CrossRef]
- Jackson, S.E.; Mason, G.M.; Wills, M.R. Human cytomegalovirus immunity and immune evasion. Virus. Res. 2011, 157, 151–160. [Google Scholar] [CrossRef]
- Tršan, T.; Vuković, K.; Filipović, P.; Brizić, A.L.; Lemmermann, N.A.W.; Schober, K.; Busch, D.H.; Britt, W.J.; Messerle, M.; Krmpotić, A.; et al. Cytomegalovirus vector expressing RAE-1γ induces enhanced anti-tumor capacity of murine CD8+ T cells. Eur. J. Immunol. 2017, 47, 1354–1367. [Google Scholar] [CrossRef] [PubMed]
- Qiu, Z.; Huang, H.; Grenier, J.M.; Perez, O.A.; Smilowitz, H.M.; Adler, B.; Khanna, K.M. Cytomegalovirus-Based Vaccine Expressing a Modified Tumor Antigen Induces Potent Tumor-Specific CD8(+) T-cell Response and Protects Mice from Melanoma. Cancer Immunol. Res. 2015, 3, 536–546. [Google Scholar] [CrossRef] [PubMed]
- Quinn, M.; Erkes, D.A.; Snyder, C.M. Cytomegalovirus and immunotherapy: Opportunistic pathogen, novel target for cancer and a promising vaccine vector. Immunotherapy 2016, 8, 211–221. [Google Scholar] [CrossRef]
- Hartman, Z.C.; Wei, J.; Glass, O.K.; Guo, H.; Lei, G.; Yang, X.-Y.; Osada, T.; Hobeika, A.; Delcayre, A.; Le Pecq, J.-B.; et al. Increasing vaccine potency through exosome antigen targeting. Vaccine 2011, 29, 9361–9367. [Google Scholar] [CrossRef]
- Liu, J.; Jaijyan, D.K.; Tang, Q.; Zhu, H. Promising Cytomegalovirus-Based Vaccine Vector Induces Robust CD8+ T-Cell Response. Int. J. Mol. Sci. 2019, 20, 4457. [Google Scholar] [CrossRef]
- Mujoo, K.; Maneval, D.C.; Anderson, S.C.; Gutterman, J.U. Adenoviral-mediated p53 tumor suppressor gene therapy of human ovarian carcinoma. Oncogene 1996, 12, 1617–1623. [Google Scholar]
- Çuburu, N.; Bialkowski, L.; Pontejo, S.M.; Sethi, S.K.; Bell, A.T.F.; Kim, R.; Thompson, C.D.; Lowy, D.R.; Schiller, J.T. Harnessing anti-cytomegalovirus immunity for local immunotherapy against solid tumors. Proc. Natl. Acad. Sci. USA 2022, 119, e2116738119. [Google Scholar] [CrossRef]
- Hortal, A.M.; Vermeulen, J.F.; Van Hecke, W.; Bovenschen, N. Oncogenic role of cytomegalovirus in medulloblastoma? Cancer Lett. 2017, 408, 55–59. [Google Scholar] [CrossRef]
- Hochhalter, C.B.; Carr, C.; O’Neill, B.E.; Ware, M.L.; Strong, M.J. The association between human cytomegalovirus and glioblastomas: A review. Neurosciences 2017, 4, 96–108. [Google Scholar] [CrossRef]
- Meng, Q.; Valentini, D.; Rao, M.; Dodoo, E.; Maeurer, M. CMV and EBV targets recognized by tumor-infiltrating B lymphocytes in pancreatic cancer and brain tumors. Sci. Rep. 2018, 8, 17079. [Google Scholar] [CrossRef]
- Wilski, N.A.; Snyder, C.M. From Vaccine Vector to Oncomodulation: Understanding the Complex Interplay between CMV and Cancer. Vaccines 2019, 7, 62. [Google Scholar] [CrossRef]
- Francis, S.S.; Wallace, A.D.; Wendt, G.A.; Li, L.; Liu, F.; Riley, L.W.; Kogan, S.; Walsh, K.M.; de Smith, A.J.; Dahl, G.V.; et al. In utero cytomegalovirus infection and development of childhood acute lymphoblastic leukemia. Blood 2017, 129, 1680–1684. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, H.G.; Suliman, R.S.A.; Ashankyty, I.M.; Albieh, Z.A.; Warille, A.A. Role of human Cytomegalovirus in the etiology of nasopharyngeal carcinoma. J. Cancer Res. Ther. 2018, 14, 583–586. [Google Scholar] [CrossRef] [PubMed]
- Geder, L.; Sanford, E.J.; Rohner, T.J.; Rapp, F. Cytomegalovirus and cancer of the prostate: In vitro transformation of human cells. Cancer Treat. Rep. 1977, 61, 139–146. [Google Scholar] [PubMed]
- Herbein, G. Tumors and Cytomegalovirus: An Intimate Interplay. Viruses 2022, 14, 812. [Google Scholar] [CrossRef] [PubMed]
- Melnick, M.; Sedghizadeh, P.P.; Allen, C.M.; Jaskoll, T. Human cytomegalovirus and mucoepidermoid carcinoma of salivary glands: Cell-specific localization of active viral and oncogenic signaling proteins is confirmatory of a causal relationship. Exp. Mol. Pathol. 2012, 92, 118–125. [Google Scholar] [CrossRef] [PubMed]
- Nauclér, C.S.; Geisler, J.; Vetvik, K. The emerging role of human cytomegalovirus infection in human carcinogenesis: A review of current evidence and potential therapeutic implications. Oncotarget 2019, 10, 4333–4347. [Google Scholar] [CrossRef]
- Cobbs, C.S. Cytomegalovirus and brain tumor: Epidemiology, biology and therapeutic aspects. Curr. Opin. Oncol. 2013, 25, 682–688. [Google Scholar] [CrossRef] [PubMed]
- Barami, K. Oncomodulatory mechanisms of human cytomegalovirus in gliomas. J. Clin. Neurosci. 2010, 17, 819–823. [Google Scholar] [CrossRef]
- Polz-Gruszka, D.; Stec, A.; Dworzański, J.; Polz-Dacewicz, M. EBV, HSV, CMV and HPV in laryngeal and oropharyngeal carcinoma in Polish patients. Anticancer. Res. 2015, 35, 1657–1661. [Google Scholar]
- Wolmer-Solberg, N.; Baryawno, N.; Rahbar, A.; Fuchs, D.; Odeberg, J.; Taher, C.; Wilhelmi, V.; Milosevic, J.; Mohammad, A.A.; Martinsson, T.; et al. Frequent detection of human cytomegalovirus in neuroblastoma: A novel therapeutic target? Int. J. Cancer 2013, 133, 2351–2361. [Google Scholar] [CrossRef] [PubMed]
- Herbein, G.; Kumar, A. The oncogenic potential of human cytomegalovirus and breast cancer. Front. Oncol. 2014, 4, 230. [Google Scholar] [CrossRef] [PubMed]
- Taher, C.; de Boniface, J.; Mohammad, A.-A.; Religa, P.; Hartman, J.; Yaiw, K.-C.; Frisell, J.; Rahbar, A.; Söderberg-Naucler, C. High Prevalence of Human Cytomegalovirus Proteins and Nucleic Acids in Primary Breast Cancer and Metastatic Sentinel Lymph Nodes. PLoS ONE 2013, 8, e56795. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Guo, G.; Xu, J.; Sun, X.; Chen, W.; Jin, J.; Hu, C.; Zhang, P.; Shen, X.; Xue, X. Human cytomegalovirus detection in gastric cancer and its possible association with lymphatic metastasis. Diagn. Microbiol. Infect. Dis. 2017, 88, 62–68. [Google Scholar] [CrossRef]
- Yang, Z.; Tang, X.; Hasing, M.E.; Pang, X.; Ghosh, S.; McMullen, T.P.W.; Brindley, D.N.; Hemmings, D.G. Human Cytomegalovirus Seropositivity and Viral DNA in Breast Tumors Are Associated with Poor Patient Prognosis. Cancers 2022, 14, 1148. [Google Scholar] [CrossRef] [PubMed]
- Youssry, S.; Hussein, A.; Ramadan, R.; Alkarmouty, A.; Elsheredy, A. The association of human cytomegalovirus with biomarkers of inflammation and immune activation in breast cancer. Breast Dis. 2022, 41, 229–239. [Google Scholar] [CrossRef] [PubMed]
- Touma, J.; Pantalone, M.R.; Rahbar, A.; Liu, Y.; Vetvik, K.; Sauer, T.; Söderberg-Naucler, C.; Geisler, J. Human Cytomegalovirus Protein Expression Is Correlated with Shorter Overall Survival in Breast Cancer Patients: A Cohort Study. Viruses 2023, 15, 732. [Google Scholar] [CrossRef] [PubMed]
- Cui, J.; Wang, Q.; Wang, H.B.; Wang, B.; Li, L. Protein and DNA evidences of HCMV infection in primary breast cancer tissues and metastatic sentinel lymph nodes. Cancer Biomark. 2018, 21, 769–780. [Google Scholar] [CrossRef] [PubMed]
- Paradowska, E.; Jabłońska, A.; Studzińska, M.; Wilczyński, M.; Wilczyński, J.R. Detection and genotyping of CMV and HPV in tumors and fallopian tubes from epithelial ovarian cancer patients. Sci. Rep. 2019, 9, 19935. [Google Scholar] [CrossRef]
- Fang, Y.; Wang, Q.; Huang, K.; Zhang, M.; Pei, S.; Li, L.; Peng, Y.; Lan, L.; Zheng, X. Human cytomegalovirus-induced immune regulation is correlated with poor prognosis in patients with colorectal cancer. Clin. Exp. Med. 2023, 23, 427–436. [Google Scholar] [CrossRef]
- Chen, H.P.; Chan, Y.J. The oncomodulatory role of human cytomegalovirus in colorectal cancer: Implications for clinical trials. Front. Oncol. 2014, 4, 314. [Google Scholar] [CrossRef] [PubMed]
- Marongiu, L.; Venturelli, S.; Allgayer, H. Involvement of HHV-4 (Epstein-Barr Virus) and HHV-5 (Cytomegalovirus) in Inflammatory Bowel Disease and Colorectal Cancer: A Meta-Analysis. Cancers 2022, 14, 5085. [Google Scholar] [CrossRef]
- Soroceanu, L.; Cobbs, C.S. Is HCMV a tumor promoter? Virus Res. 2011, 157, 193–203. [Google Scholar] [CrossRef]
- Harkins, L.; Volk, A.L.; Samanta, M.; Mikolaenko, I.; Britt, W.J.; Bland, K.I.; Cobbs, C.S. Specific localisation of human cytomegalovirus nucleic acids and proteins in human colorectal cancer. Lancet 2002, 360, 1557–1563. [Google Scholar] [CrossRef] [PubMed]
- Michaelis, M.; Doerr, H.W.; Cinatl, J. The story of human cytomegalovirus and cancer: Increasing evidence and open questions. Neoplasia 2009, 11, 1–9. [Google Scholar] [CrossRef]
- Costa, H.; Xu, X.; Overbeek, G.; Vasaikar, S.; Patro, C.P.; Kostopoulou, O.N.; Jung, M.; Shafi, G.; Ananthaseshan, S.; Tsipras, G.; et al. Human cytomegalovirus may promote tumor progression by upregulating arginase-2. Oncotarget 2016, 7, 47221–47231. [Google Scholar] [CrossRef] [PubMed]
- Cobbs, C.S.; Harkins, L.; Samanta, M.; Gillespie, G.Y.; Bharara, S.; King, P.H.; Nabors, L.B.; Cobbs, C.G.; Britt, W.J. Human cytomegalovirus infection and expression in human malignant glioma. Cancer Res. 2002, 62, 3347–3350. [Google Scholar]
- Joseph, G.P.; McDermott, R.; Baryshnikova, M.A.; Cobbs, C.S.; Ulasov, I.V. Cytomegalovirus as an oncomodulatory agent in the progression of glioma. Cancer Lett. 2017, 384, 79–85. [Google Scholar] [CrossRef]
- Farias, K.P.R.A.; Moreli, M.L.; Floriano, V.G.; da Costa, V.G. Evidence based on a meta-analysis of human cytomegalovirus infection in glioma. Arch. Virol. 2019, 164, 1249–1257. [Google Scholar] [CrossRef]
- Bhattacharjee, B.; Renzette, N.; Kowalik, T.F. Genetic analysis of cytomegalovirus in malignant gliomas. J. Virol. 2012, 86, 6815–6824. [Google Scholar] [CrossRef]
- Maleki, F.; Sadigh, Z.A.; Sadeghi, F.; Muhammadnejad, A.; Farahmand, M.; Parvin, M.; Shirkoohi, R. Human cytomegalovirus infection in Iranian glioma patients correlates with aging and tumor aggressiveness. J. Med. Virol. 2020, 92, 1266–1276. [Google Scholar] [CrossRef] [PubMed]
- Yang, T.; Liu, D.; Fang, S.; Ma, W.; Wang, Y. Cytomegalovirus and Glioblastoma: A Review of the Biological Associations and Therapeutic Strategies. J. Clin. Med. 2022, 11, 5221. [Google Scholar] [CrossRef] [PubMed]
- Libard, S.; Popova, S.N.; Amini, R.-M.; Kärjä, V.; Pietiläinen, T.; Hämäläinen, K.M.; Sundström, C.; Hesselager, G.; Bergqvist, M.; Ekman, S.; et al. Human Cytomegalovirus Tegument Protein pp65 Is Detected in All Intra- and Extra-Axial Brain Tumours Independent of the Tumour Type or Grade. PLoS ONE 2014, 9, e108861. [Google Scholar] [CrossRef] [PubMed]
- Habibi, Z.; Hajizadeh, M.; Nozarian, Z.; Safavi, M.; Monajemzadeh, M.; Meybodi, K.T.; Nejat, F.; Vasei, M. Cytomegalovirus DNA in non-glioblastoma multiforme brain tumors of infants. Childs Nerv. Syst. 2021, 37, 1581–1586. [Google Scholar] [CrossRef] [PubMed]
- Ranganathan, P.; Clark, P.A.; Kuo, J.S.; Salamat, M.S.; Kalejta, R.F. Significant association of multiple human cytomegalovirus genomic Loci with glioblastoma multiforme samples. J. Virol. 2012, 86, 854–864. [Google Scholar] [CrossRef]
- Carpagnano, G.E.; Lacedonia, D.; Natalicchio, M.I.; Cotugno, G.; Zoppo, L.; Martinelli, D.; Antonetti, R.; Foschino-Barbaro, M.P. Viral colonization in exhaled breath condensate of lung cancer patients: Possible role of EBV and CMV. Clin. Respir. J. 2018, 12, 418–424. [Google Scholar] [CrossRef]
- Nelson, H.H.; Contestabile, E.; Hunter-Schlichting, D.; Koestler, D.; Pawlita, M.; Waterboer, T.; Christensen, B.C.; Petersen, C.L.; Miller, J.S.; Kelsey, K.T. Human cytomegalovirus alters immune cell profile with potential implications for patient survival in head and neck cancer. Carcinogenesis 2022, 43, 430–436. [Google Scholar] [CrossRef] [PubMed]
- Lv, Y.L.; Han, F.F.; An, Z.L.; Jia, Y.; Xuan, L.L.; Gong, L.L.; Zhang, W.; Ren, L.L.; Yang, S.; Liu, H.; et al. Cytomegalovirus Infection Is a Risk Factor in Gastrointestinal Cancer: A Cross-Sectional and Meta-Analysis Study. Intervirology 2020, 63, 10–16. [Google Scholar] [CrossRef] [PubMed]
- Samanta, M.; Harkins, L.; Klemm, K.; Britt, W.J.; Cobbs, C.S. High prevalence of human cytomegalovirus in prostatic intraepithelial neoplasia and prostatic carcinoma. J. Urol. 2003, 170, 998–1002. [Google Scholar] [CrossRef] [PubMed]
- Stevenson, K.; Macnab, J.C. Cervical carcinoma and human cytomegalovirus. Biomed. Pharmacother. 1989, 43, 173–176. [Google Scholar] [CrossRef]
- Gaekwad, S.S.; Gujjari, S.K. Cytomegalovirus occurrence in chronic periodontitis and in carcinoma of the cervix: An exploratory study. J. Clin. Diagn. Res. 2012, 6, 1442–1447. [Google Scholar] [CrossRef] [PubMed]
- Yin, M.; Chen, A.; Zhao, F.; Ji, X.; Li, C.; Wang, G. Detection of human cytomegalovirus in patients with epithelial ovarian cancer and its impacts on survival. Infect. Agent Cancer 2020, 15, 23. [Google Scholar] [CrossRef] [PubMed]
- D’Orazi, G.; Cordani, M.; Cirone, M. Oncogenic pathways activated by pro-inflammatory cytokines promote mutant p53 stability: Clue for novel anticancer therapies. Cell Mol. Life Sci. 2021, 78, 1853–1860. [Google Scholar] [CrossRef] [PubMed]
- Grivennikov, S.I.; Karin, M. Inflammation and oncogenesis: A vicious connection. Curr. Opin. Genet. Dev. 2010, 20, 65–71. [Google Scholar] [CrossRef] [PubMed]
- Greten, F.R.; Grivennikov, S.I. Inflammation and Cancer: Triggers, Mechanisms, and Consequences. Immunity 2019, 51, 27–41. [Google Scholar] [CrossRef] [PubMed]
- Qu, X.; Tang, Y.; Hua, S. Immunological Approaches towards Cancer and Inflammation: A Cross Talk. Front. Immunol. 2018, 9, 563. [Google Scholar] [CrossRef] [PubMed]
- Singh, N.; Baby, D.; Rajguru, J.P.; Patil, P.B.; Thakkannavar, S.S.; Pujari, V.B. Inflammation and cancer. Ann. Afr. Med. 2019, 18, 121–126. [Google Scholar] [CrossRef] [PubMed]
- Balkwill, F.; Charles, K.A.; Mantovani, A. Smoldering and polarized inflammation in the initiation and promotion of malignant disease. Cancer Cell. 2005, 7, 211–217. [Google Scholar] [CrossRef]
- Colotta, F.; Allavena, P.; Sica, A.; Garlanda, C.; Mantovani, A. Cancer-related inflammation, the seventh hallmark of cancer: Links to genetic instability. Carcinogenesis 2009, 30, 1073–1081. [Google Scholar] [CrossRef]
- Grivennikov, S.I.; Greten, F.R.; Karin, M. Immunity, inflammation, and cancer. Cell 2010, 140, 883–899. [Google Scholar] [CrossRef]
- Michaelis, M.; Doerr, H.W.; Cinatl, J., Jr. Oncomodulation by human cytomegalovirus: Evidence becomes stronger. Med. Microbiol. Immunol. 2009, 198, 79–81. [Google Scholar] [CrossRef] [PubMed]
- Herbein, G. High-Risk Oncogenic Human Cytomegalovirus. Viruses 2022, 14, 2462. [Google Scholar] [CrossRef] [PubMed]
- Cinatl, J., Jr.; Vogel, J.U.; Kotchetkov, R.; Wilhelm Doerr, H. Oncomodulatory signals by regulatory proteins encoded by human cytomegalovirus: A novel role for viral infection in tumor progression. FEMS Microbiol. Rev. 2004, 28, 59–77. [Google Scholar] [CrossRef] [PubMed]
- Goerig, N.L.; Frey, B.; Korn, K.; Fleckenstein, B.; Überla, K.; Schmidt, M.A.; Dörfler, A.; Engelhorn, T.; Eyüpoglu, I.; Rühle, P.F.; et al. Frequent occurrence of therapeutically reversible CMV-associated encephalopathy during radiotherapy of the brain. Neuro Oncol. 2016, 18, 1664–1672. [Google Scholar] [CrossRef] [PubMed]
- Merchut-Maya, J.M.; Bartek JJr Bartkova, J.; Galanos, P.; Pantalone, M.R.; Lee, M.; Cui, H.L.; Shilling, P.J.; Brøchner, C.B.; Broholm, H.; Maya-Mendoza, A.; et al. Human cytomegalovirus hijacks host stress response fueling replication stress and genome instability. Cell Death Differ. 2022, 29, 1639–1653. [Google Scholar] [CrossRef] [PubMed]
- Yang, R.; Liang, J.; Xu, G.X.; Ding, L.M.; Huang, H.M.; Su, Q.Z.; Yan, J.; Li, Y.C. Human cytomegalovirus glycoprotein B inhibits migration of breast cancer MDA-MB-231 cells and impairs TGF-β/Smad2/3 expression. Oncol. Lett. 2018, 15, 7730–7738. [Google Scholar] [CrossRef]
- Geisler, J.; Touma, J.; Rahbar, A.; Söderberg-Nauclér, C.; Vetvik, K. A Review of the Potential Role of Human Cytomegalovirus (HCMV) Infections in Breast Cancer Carcinogenesis and Abnormal Immunity. Cancers 2019, 11, 1842. [Google Scholar] [CrossRef] [PubMed]
- Herbein, G. The Human Cytomegalovirus, from Oncomodulation to Oncogenesis. Viruses 2018, 10, 408. [Google Scholar] [CrossRef]
- Cobbs, C.S. Cytomegalovirus is a tumor-associated virus: Armed and dangerous. Curr. Opin. Virol. 2019, 39, 49–59. [Google Scholar] [CrossRef]
- Roche, J. The Epithelial-to-Mesenchymal Transition in Cancer. Cancers 2018, 10, 52, Erratum in Cancers 2018, 10, 79. [Google Scholar] [CrossRef]
- Marcucci, F.; Stassi, G.; De Maria, R. Epithelial-mesenchymal transition: A new target in anticancer drug discovery. Nat. Rev. Drug Discov. 2016, 15, 311–325. [Google Scholar] [CrossRef]
- Maussang, D.; Verzijl, D.; van Walsum, M.; Leurs, R.; Holl, J.; Pleskoff, O.; Michel, D.; van Dongen, G.A.; Smit, M.J. Human cytomegalovirus-encoded chemokine receptor US28 promotes tumorigenesis. Proc. Natl. Acad. Sci. USA 2006, 103, 13068–13073. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Belcher, J.D.; Marker, P.H.; Wilcken, D.E.; Vercellotti, G.M.; Wang, X.L. Cytomegalovirus inhibits p53 nuclear localization signal function. J. Mol. Med. 2001, 78, 642–647. [Google Scholar] [CrossRef]
- Hecker, M.; Qiu, D.; Marquardt, K.; Bein, G.; Hackstein, H. Continuous cytomegalovirus seroconversion in a large group of healthy blood donors. Vox Sang. 2004, 86, 41–44. [Google Scholar] [CrossRef] [PubMed]
- Staras, S.A.S.; Dollard, S.C.; Radford, K.W.; Flanders, W.D.; Pass, R.F.; Cannon, M.J. Seroprevalence of cytomegalovirus infection in the United States, 1988–1994. Clin. Infect Dis. 2006, 43, 1143–1151. [Google Scholar] [CrossRef]
- Ahlfors, K. IgG antibodies to cytomegalovirus in a normal urban Swedish population. Scand J Infect Dis. 1984, 16, 335–337. [Google Scholar] [CrossRef]
- Varga, M.; Görög, D.; Kári, D.; Környei, E.; Kis, É.; Túryné, H.J.; Jankovics, I.; Péter, A.; Toronyi, É.; Sárváry, E.; et al. Cytomegalovirus seroprevalence among solid organ donors in Hungary: Correlations with age, gender, and blood group. Transplant. Proc. 2011, 43, 1233–1235. [Google Scholar] [CrossRef]
- Bate, S.L.; Dollard, S.C.; Cannon, M.J. Cytomegalovirus seroprevalence in the United States: The national health and nutrition examination surveys, 1988–2004. Clin. Infect Dis. 2010, 50, 1439–1447. [Google Scholar] [CrossRef]
- Clarke, C.A.; Glaser, S.L.; Gomez, S.L.; Wang, S.S.; Keegan, T.H.; Yang, J.; Chang, E.T. Lymphoid malignancies in US Asians: Incidence rate differences by birthplace and acculturation. Cancer Epidemiol. Biomark. Prev. 2011, 20, 1064–1077. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Wang, Z.; Yi, D.; Ma, S. Racial Differences in Three mayor NHL Subtypes: Descriptive epidemiology. Cancer Epidemiol. 2015, 39, 8–13. [Google Scholar] [CrossRef]
- Global Cancer Observatory. Available online: https://gco.iarc.fr/ (accessed on 2 November 2023).
- UNDP Human Development Reports. Available online: https://hdr.undp.org/data-center/human-development-index#/indicies/HDI (accessed on 2 November 2023).
- Our World in Data. Available online: https://ourworldindata.org/age-structure#how-does-median-age-vary-across-the-world (accessed on 2 November 2023).
- World population Review. Available online: https://worldpopulationreview.com/country-rankings/average-number-of-sexual-partners-by-country (accessed on 2 November 2023).
- The Tobacco Atlas. Available online: https://tobaccoatlas.org/challenges/prevalence/ (accessed on 2 November 2023).
- UNICEF. Available online: https://data.unicef.org/resources/world-breastfeeding-week-2020/ (accessed on 2 November 2023).
- The World Bank. Available online: https://datahelpdesk.worldbank.org/knowledgebase/articles/906519-world-bank-country-and-lending-groups (accessed on 2 November 2023).
Tumor/Localization | Correlation Analysis | Univariate Linear Regression Analysis | Multivariate Linear Regression Analysis | |||
---|---|---|---|---|---|---|
Spearman’s ρ | p-Value | Standardized Coefficients β | p-Value | Standardized Coefficients β | p-Value | |
Melanoma (skin) | −0.763 | 0.001 * | −0.719 | <0.001 * | −0.529 | <0.001 * |
Kidney | −0.754 | 0.001 * | −0.792 | <0.001 * | −0.493 | <0.001 * |
All cancers | −0.732 | 0.001 * | −0.776 | <0.001 * | −0.482 | <0.001 * |
All cancers (excluding skin non-melanoma) | −0.726 | 0.001 * | −0.778 | <0.001 * | −0.462 | <0.001 * |
Breast | −0.719 | 0.001 * | −0.754 | <0.001 * | −0.470 | <0.001 * |
Testis | −0.711 | 0.001 * | −0.741 | <0.001 * | −0.474 | <0.001 * |
Non-melanoma (skin) | −0.692 | 0.001 * | −0.497 | <0.001 * | −0.372 | 0.006 * |
Colorectum | −0.671 | 0.001 * | −0.665 | <0.001 * | −0.280 | 0.001 |
Vulva | −0.665 | 0.001 * | −0.703 | <0.001 * | −0.761 | <0.001 * |
Prostate | −0.663 | 0.001 * | −0.667 | <0.001 * | −0.470 | <0.001 * |
Corpus uteri | −0.656 | 0.001 * | −0.610 | <0.001 * | −0.306 | 0.006 * |
Oropharynx | −0.651 | 0.001 * | −0.635 | <0.001 * | −0.533 | <0.001 * |
Pancreas | −0.633 | 0.001 * | −0.638 | <0.001 * | −0.250 | 0.007 * |
Multiple myeloma | −0.633 | 0.001 * | −0.622 | <0.001 * | −0.338 | 0.002 * |
Leukemia | −0.632 | 0.001 * | −0.637 | <0.001 * | −0.218 | 0.013 * |
Hodgkin lymphoma | −0.618 | 0.001 * | −0.676 | <0.001 * | −0.363 | 0.002 * |
Non-Hodgkin lymphoma | −0.617 | 0.001 * | −0.624 | <0.001 * | −0.336 | 0.001 * |
Mesothelioma | −0.574 | 0.001 * | −0.630 | <0.001 * | −0.344 | 0.002 * |
Lip/Oral cavity | −0.551 | 0.001 * | −0.367 | 0.001 * | −0.368 | 0.012 * |
Lung | −0.548 | 0.001 * | −0.573 | <0.001 * | −0.259 | 0.011 * |
Brain/CNS | −0.541 | 0.001 * | −0.554 | <0.001 * | −0.219 | 0.050 * |
Thyroid | −0.532 | 0.001 * | −0.485 | <0.001 * | −0.138 | 0.238 |
Bladder | −0.519 | 0.001 * | −0.547 | <0.001 * | −0.328 | 0.009 * |
Ovary | −0.461 | 0.001 * | −0.407 | <0.001 * | −0.172 | 0.199 |
Penis | −0.432 | 0.001 * | −0.326 | 0.005 * | −0.251 | 0.086 |
Hypopharynx | −0.377 | 0.001 * | −0.236 | 0.044 * | −0.261 | 0.084 |
Salivary glands | −0.35 | 0.002 * | −0.320 | 0.006 * | −0.440 | 0.003 * |
Gallbladder | 0.316 | 0.006 * | 0.265 | 0.023 * | 0.337 | 0.025 * |
Nasopharynx | 0.266 | 0.023 * | 0.227 | 0.053 | 0.338 | 0.025 * |
Vagina | −0.224 | 0.056 | −0.105 | 0.377 | −0.389 | 0.007 |
Larynx | −0.165 | 0.164 | −0.117 | 0.325 | 0.016 | 0.913 |
Esophagus | −0.149 | 0.208 | −0.052 | 0.660 | −0.181 | 0.235 |
Cervix uteri | 0.118 | 0.319 | 0.234 | 0.046 * | −0.175 | 0.166 |
Stomach | −0.085 | 0.473 | 0.046 | 0.701 | 0.172 | 0.255 |
Kaposi’s sarcoma | −0.007 | 0.953 | 0.135 | 0.255 | 0.031 | 0.836 |
Liver | 0.007 | 0.951 | 0.185 | 0.117 | 0.202 | 0.184 |
Tumor | Statistical Measures | Age Intervals (Years) | |||||||
---|---|---|---|---|---|---|---|---|---|
0–9 | 10–19 | 20–29 | 30–39 | 40–49 | 50–59 | 60–69 | ≥70 | ||
Gallbladder | Spearman’s ρ | N/A | 0.154 | 0.297 | 0.394 | 0.416 | 0.423 | 0.290 | 0.147 |
p-value | N/A | 0.193 | 0.011 | 0.001 | <0.001 | <0.001 | 0.013 | 0.215 | |
Bladder † | Spearman’s ρ | −0.082 | 0.120 | −0.185 | −0.167 | −0.254 | −0.427 | −0.517 | −0.552 |
p-value | 0.490 | 0.311 | 0.118 | 0.158 | 0.030 | <0.001 | <0.001 | <0.001 | |
Colorectum † | Spearman’s ρ | 0.089 | −0.394 | −0.205 | −0.373 | −0.604 | −0.648 | −0.648 | −0.662 |
p-value | 0.452 | 0.001 | 0.082 | 0.001 | <0.001 | <0.001 | <0.001 | <0.001 | |
Kaposi’s sarcoma † | Spearman’s ρ | −0.642 | 0.218 | −0.083 | −0.242 | −0.101 | 0.044 | 0.006 | 0.031 |
p-value | <0.001 | 0.064 | 0.486 | 0.040 | 0.394 | 0.709 | 0.959 | 0.792 | |
Cervix uteri † | Spearman’s ρ | −0.016 | −0.017 | −0.427 | −0.220 | 0.036 | 0.249 | 0.373 | 0.400 |
p-value | 0.895 | 0.884 | <0.001 | 0.061 | 0.761 | 0.034 | 0.001 | <0.001 | |
Corpus uteri † | Spearman’s ρ | −0.196 | −0.071 | −0.180 | −0.294 | −0.576 | −0.644 | −0.672 | −0.655 |
p-value | 0.096 | 0.549 | 0.128 | 0.012 | <0.001 | <0.001 | <0.001 | <0.001 | |
Hypopharynx † | Spearman’s ρ | 0.050 | 0.205 | 0.307 | 0.187 | −0.235 | −0.335 | −0.425 | −0.378 |
p-value | 0.674 | 0.081 | 0.008 | 0.114 | 0.045 | 0.004 | <0.001 | 0.001 | |
Larynx † | Spearman’s ρ | 0.377 | 0.219 | 0.359 | 0.047 | −0.103 | −0.212 | −0.236 | −0.004 |
p-value | 0.001 | 0.063 | 0.002 | 0.693 | 0.388 | 0.072 | 0.045 | 0.972 | |
Lip/Oral † | Spearman’s ρ | 0.375 | 0.244 | −0.218 | −0.438 | −0.501 | −0.536 | −0.528 | −0.528 |
p-value | 0.001 | 0.038 | 0.064 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | |
Liver † | Spearman’s ρ | −0.378 | 0.076 | 0.239 | 0.353 | 0.088 | −0.056 | −0.071 | 0.057 |
p-value | 0.001 | 0.523 | 0.042 | 0.002 | 0.458 | 0.639 | 0.548 | 0.631 | |
Lung † | Spearman’s ρ | −0.092 | −0.120 | −0.312 | −0.308 | −0.373 | −0.558 | −0.579 | −0.501 |
p-value | 0.438 | 0.311 | 0.007 | 0.008 | 0.001 | <0.001 | <0.001 | <0.001 | |
Melanoma † | Spearman’s ρ | −0.242 | −0.692 | −0.769 | −0.786 | −0.746 | −0.749 | −0.722 | −0.722 |
p-value | 0.039 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | |
Mesothelioma † | Spearman’s ρ | 0.129 | −0.090 | 0.076 | −0.235 | −0.373 | −0.516 | −0.544 | −0.595 |
p-value | 0.278 | 0.448 | 0.524 | 0.045 | 0.001 | <0.001 | <0.001 | <0.001 | |
Non-melanoma skin cancer † | Spearman’s ρ | 0.173 | −0.099 | −0.345 | −0.411 | −0.531 | −0.589 | −0.633 | −0.709 |
p-value | 0.144 | 0.403 | 0.003 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | |
Nasopharynx | Spearman’s ρ | 0.210 | 0.233 | 0.157 | 0.138 | 0.184 | 0.150 | 0.138 | 0.425 |
p-value | 0.074 | 0.047 | 0.185 | 0.246 | 0.119 | 0.204 | 0.244 | <0.001 | |
Oropharynx † | Spearman’s ρ | 0.389 | 0.239 | 0.180 | −0.423 | −0.582 | −0.643 | −0.657 | −0.611 |
p-value | 0.001 | 0.042 | 0.127 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | |
Esophagus † | Spearman’s ρ | 0.298 | 0.406 | 0.208 | 0.192 | −0.091 | −0.211 | −0.243 | −0.025 |
p-value | 0.011 | <0.001 | 0.077 | 0.104 | 0.445 | 0.073 | 0.039 | 0.833 | |
Pancreas † | Spearman’s ρ | 0.052 | −0.230 | −0.155 | −0.360 | −0.594 | −0.649 | −0.620 | −0.611 |
p-value | 0.662 | 0.050 | 0.189 | 0.002 | <0.001 | <0.001 | <0.001 | <0.001 | |
Penis † | Spearman’s ρ | 0.171 | −0.021 | 0.037 | −0.188 | −0.317 | −0.337 | −0.453 | −0.495 |
p-value | 0.148 | 0.863 | 0.756 | 0.112 | 0.006 | 0.004 | <0.001 | <0.001 | |
Prostate † | Spearman’s ρ | −0.058 | 0.029 | 0.185 | −0.126 | −0.602 | −0.663 | −0.708 | −0.542 |
p-value | 0.628 | 0.807 | 0.118 | 0.289 | <0.001 | <0.001 | <0.001 | <0.001 | |
Salivary glands † | Spearman’s ρ | 0.198 | −0.078 | −0.226 | −0.276 | −0.417 | −0.359 | −0.126 | −0.429 |
p-value | 0.093 | 0.509 | 0.055 | 0.018 | <0.001 | 0.002 | 0.287 | <0.001 | |
Testis † | Spearman’s ρ | −0.319 | −0.653 | −0.694 | −0.707 | −0.728 | −0.728 | −0.486 | −0.097 |
p-value | 0.006 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | 0.415 | |
Thyroid † | Spearman’s ρ | −0.266 | −0.489 | −0.467 | −0.491 | −0.499 | −0.550 | −0.544 | −0.363 |
p-value | 0.023 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | 0.002 | |
Vulva † | Spearman’s ρ | 0.044 | −0.003 | −0.192 | −0.384 | −0.549 | −0.544 | −0.642 | −0.745 |
p-value | 0.709 | 0.980 | 0.103 | 0.001 | <0.001 | <0.001 | <0.001 | <0.001 | |
All cancers † | Spearman’s ρ | −0.642 | −0.672 | −0.731 | −0.784 | −0.756 | −0.726 | −0.720 | −0.678 |
p-value | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | |
Vagina † | Spearman’s ρ | −0.033 | 0.126 | <0.001 | −0.125 | −0.257 | −0.103 | −0.189 | −0.376 |
p-value | 0.785 | 0.287 | 0.999 | 0.291 | 0.028 | 0.385 | 0.110 | 0.001 | |
Stomach | Spearman’s ρ | 0.283 | 0.145 | 0.079 | 0.039 | −0.042 | −0.055 | −0.081 | −0.097 |
p-value | 0.015 | 0.221 | 0.504 | 0.746 | 0.723 | 0.644 | 0.496 | 0.413 | |
Ovary † | Spearman’s ρ | −0.121 | −0.181 | −0.071 | −0.188 | −0.284 | −0.395 | −0.517 | −0.454 |
p-value | 0.308 | 0.124 | 0.551 | 0.111 | 0.015 | 0.001 | <0.001 | <0.001 | |
Brain/CNS † | Spearman’s ρ | −0.649 | −0.577 | −0.654 | −0.607 | −0.529 | −0.477 | −0.455 | −0.452 |
p-value | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | |
All cancers excl. non-melanoma skin † | Spearman’s ρ | −0.645 | −0.667 | −0.733 | −0.785 | −0.753 | −0.726 | −0.717 | −0.656 |
p-value | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | |
Breast † | Spearman’s ρ | 0.050 | 0.182 | −0.239 | −0.645 | −0.674 | −0.696 | −0.700 | −0.661 |
p-value | 0.674 | 0.124 | 0.042 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | |
Kidney † | Spearman’s ρ | −0.493 | −0.016 | −0.365 | −0.693 | −0.736 | −0.731 | −0.728 | −0.744 |
p-value | <0.001 | 0.893 | 0.002 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | |
Hodgkin lymphoma † | Spearman’s ρ | 0.174 | −0.622 | −0.676 | −0.681 | −0.575 | −0.478 | −0.389 | −0.229 |
p-value | 0.141 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | 0.001 | 0.051 | |
Non-Hodgkin lymphoma † | Spearman’s ρ | −0.036 | −0.005 | −0.437 | −0.590 | −0.593 | −0.618 | −0.610 | −0.552 |
p-value | 0.762 | 0.968 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | |
Multiple myeloma † | Spearman’s ρ | 0.235 | 0.110 | 0.055 | −0.356 | −0.483 | −0.577 | −0.644 | −0.627 |
p-value | 0.045 | 0.355 | 0.645 | 00.002 | <0.001 | <0.001 | <0.001 | <0.001 | |
Leukemia † | Spearman’s ρ | −0.495 | −0.236 | 0.108 | −0.165 | −0.472 | −0.630 | −0.645 | −0.543 |
p-value | <0.001 | 0.044 | 0.364 | 0.164 | <0.001 | <0.001 | <0.001 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jankovic, M.; Knezevic, T.; Tomic, A.; Milicevic, O.; Jovanovic, T.; Djunic, I.; Mihaljevic, B.; Knezevic, A.; Todorovic-Balint, M. Human Cytomegalovirus Oncoprotection across Diverse Populations, Tumor Histologies, and Age Groups: The Relevance for Prospective Vaccinal Therapy. Int. J. Mol. Sci. 2024, 25, 3741. https://doi.org/10.3390/ijms25073741
Jankovic M, Knezevic T, Tomic A, Milicevic O, Jovanovic T, Djunic I, Mihaljevic B, Knezevic A, Todorovic-Balint M. Human Cytomegalovirus Oncoprotection across Diverse Populations, Tumor Histologies, and Age Groups: The Relevance for Prospective Vaccinal Therapy. International Journal of Molecular Sciences. 2024; 25(7):3741. https://doi.org/10.3390/ijms25073741
Chicago/Turabian StyleJankovic, Marko, Tara Knezevic, Ana Tomic, Ognjen Milicevic, Tanja Jovanovic, Irena Djunic, Biljana Mihaljevic, Aleksandra Knezevic, and Milena Todorovic-Balint. 2024. "Human Cytomegalovirus Oncoprotection across Diverse Populations, Tumor Histologies, and Age Groups: The Relevance for Prospective Vaccinal Therapy" International Journal of Molecular Sciences 25, no. 7: 3741. https://doi.org/10.3390/ijms25073741
APA StyleJankovic, M., Knezevic, T., Tomic, A., Milicevic, O., Jovanovic, T., Djunic, I., Mihaljevic, B., Knezevic, A., & Todorovic-Balint, M. (2024). Human Cytomegalovirus Oncoprotection across Diverse Populations, Tumor Histologies, and Age Groups: The Relevance for Prospective Vaccinal Therapy. International Journal of Molecular Sciences, 25(7), 3741. https://doi.org/10.3390/ijms25073741