Exploring Localized Provoked Vulvodynia: Insights from Animal Model Research
Abstract
:1. Introduction
- Hormonal exposure models, where early exposure to hormones is used to induce vulvodynia, suggesting the influence of hormonal factors on the condition’s pathogenesis [9].
2. Methods
2.1. Animals
2.2. Methods for Inducing LPV Animal Models
2.3. Vulvar Allodynia and Hypersensitivity Measurements in LPV Animal Models
2.4. Mechanical Sensitivity Testing in LPV Animal Models
2.5. Thermal Sensitivity Assessment in LPV Animal Models
2.6. Assessment of Post-Induction Tissue Alteration in LPV Animal Models
2.6.1. Histopathological Examination in LPV Animal Models
2.6.2. Immunofluorescent Staining and Microscopy in LPV Animal Models
2.6.3. Biochemistry and Protein Measurements in LPV Animal Models
2.6.4. Gene Expression in LPV Animal Models
3. Results—The LPV Animal Models
3.1. LPV Animal Models Induced by Inflammation
3.2. Candida/Zymosan for Induction of LPV Animal Model
3.2.1. First Animal Model of LPV Induced by Candida/Zymosan
3.2.2. Morphological Changes in LPV Animal Models Induced by Candida/Zymosan
3.2.3. Blocking Trial in LPV Animal Models Induced by Candida/Zymosan
3.2.4. Fibroblast, SPM, IL-6, and PGE2 Study in LPV Animal Models Induced by Candida/Zymosan
3.2.5. Morphological Changes and Biochemistry Measurement in LPV Animal Models Induced by Candida/Zymosan
3.2.6. Blocking Trial in LPV Animal Models Induced by Candida/Zymosan
3.2.7. Investigation of Mast Cell Role in LPV Animal Models Induced by Candida/Zymosan
3.2.8. Blocking Trial in LPV Animal Models Induced by Candida/Zymosan
3.3. The Complete Freund’s Adjuvant (CFA)-Induced LPV Animal Model
3.3.1. Morphological and Immunohistochemistry Changes in LPV Animal Models Induced by CFA
3.3.2. The Study of Visceromotor Response (VMR) in LPV Animal Models Induced by CFA
3.3.3. The Study of Renin–Angiotensin System in LPV Animal Models Induced by CFA
3.3.4. Blocking Trials in LPV Animal Models Induced by CFA
3.4. Induction of LPV Animal Models by Allergy
3.5. Oxazolone (OX) for Induction of LPV Animal Models
3.5.1. The Study of Cytokines in LPV Animal Models Induced by OX
3.5.2. Immunohistochemistry and PCR Measurements in LPV Animal Models Induced by OX
3.5.3. Blocking Trial in LPV Animal Models Induced by OX
3.5.4. The Study of T Cells in LPV Animal Models Induced by OX
3.5.5. Morphology, Immunohistochemistry, and PCR in LPV Animal Models Induced by OX
- An increase in Nerve Growth Factor (NGF) levels, Calcitonin Gene-Related Peptide (CGRP) nerve fibers, mast cell (MC) numbers, and histamine levels were documented. Notably, NGF levels began to decrease gradually and disappeared by day 21, while the latter three parameters only returned to baseline on day 42.
- Additionally, significant elevations in total Immunoglobulin E (IgE), interleukins (IL-3 and IL-6 mRNA), cellular adhesion molecule 1 (Camd1), Tumor Necrosis Factor-alpha (TNF-alpha), and chemokine (C-X-C motif) ligand 2 (CXCL2) were observed one day after the final OX application, indicating an acute inflammatory and immune response. All these markers returned to baseline levels by day 21.
3.5.6. T Cell Profile in LPV Animal Models Induced by OX
3.5.7. Blocking Trial in LPV Animal Models Induced by OX
3.6. Models Using Methylisothiazolinone (MI) for Induction of LPV Animal Models
3.6.1. Spinal Cord Transcript Study in LPV Animal Models Induced by MI
3.6.2. Immunohistochemistry and IgE Levels in LPV Animal Models Induced by MI
3.6.3. mRNA Extraction from Vaginal Canal and Spinal Cord in LPV Animal Models Induced by MI
3.6.4. T Cell Study with MI Application in LPV Animal Models Induced by MI
3.6.5. Immunohistochemistry, T Cell Profile, and Transcripts in LPV Animal Models Induced by MI
3.6.6. Blocking Trials in LPV Animal Models Induced by MI
3.7. Induction of LPV Animal Models by Hormonal Imbalance
3.8. Hormone Study in LPV Animal Models Induced by Hormonal Imbalance
3.9. Immunohistochemistry in LPV Animal Models Induced by Hormonal Imbalance
3.10. Blocking Trial in LPV Animal Models Induced by Hormonal Imbalance
4. Discussion
4.1. Application of Findings to Humans
4.2. Induction of Vulvodynia
4.3. Site of Injection
4.4. Study Period
4.5. Selection of the Animal and Ethical Considerations
4.6. H&E Assessment
4.7. Hyperinnervation and Pain Channels
4.8. Inflammatory Response in LPV Animal Models
4.9. Early Post-Induction Tissue Response
4.10. Immune Cells
4.11. Study of Mast Cells (MCs) in LPV
4.12. Clodronate Treatment
4.13. Considerations for Prophylaxis
4.14. PD as a Therapeutic Strategy
4.15. Marine 1—Specialized Pro-Resolving Mediators
4.16. THC Treatment
4.17. Estradiol (E2) Treatment
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sharma, H.; Ji, E.; Yap, P.; Vilimas, P.; Kyloh, M.; Spencer, N.J.; Haberberger, R.V.; Barry, C.M. Innervation Changes Induced by Inflammation in the Murine Vagina. Neuroscience 2018, 372, 16–26. [Google Scholar] [CrossRef] [PubMed]
- Aalto, A.; Huotari-Orava, R.; Luhtala, S.; Mäenpää, J.; Staff, S. Expression of Estrogen-Related Receptors in Localized Provoked Vulvodynia. BioResearch Open Access 2020, 9, 13–21. [Google Scholar] [CrossRef]
- Kalfon, L.; Azran, A.; Farajun, Y.; Golan-Hamu, O.; Toben, A.; Abramov, L.; Yeshaya, A.; Yakir, O.; Zarfati, D.; Falik Zaccai, T.C.; et al. Localized Provoked Vulvodynia: Association with Nerve Growth Factor and Transient Receptor Potential Vanilloid Type 1 Genes Polymorphisms. J. Low. Genit. Tract. Dis. 2019, 23, 58–64. [Google Scholar] [CrossRef] [PubMed]
- Zolnoun, D.; Bair, E.; Essick, G.; Gracely, R.; Goyal, V.; Maixner, W. Reliability and Reproducibility of Novel Methodology for Assessment of Pressure Pain Sensitivity in Pelvis. J. Pain 2012, 13, 910–920. [Google Scholar] [CrossRef] [PubMed]
- Wesselmann, U.; Bonham, A.; Foster, D. Vulvodynia: Current State of the Biological Science. Pain 2014, 155, 1696–1701. [Google Scholar] [CrossRef] [PubMed]
- Lev-Sagie, A.; Witkin, S.S. Recent Advances in Understanding Provoked Vestibulodynia. F1000Reserch 2016, 5, 2581. [Google Scholar] [CrossRef] [PubMed]
- Awad-Igbaria, Y.; Palzur, E.; Nasser, M.; Vieira-Baptista, P.; Bornstein, J. Changes in the Vaginal Microbiota of Women with Secondary Localized Provoked Vulvodynia. J. Low. Genit. Tract Dis. 2022, 26, 339–344. [Google Scholar] [CrossRef] [PubMed]
- Heddini, U.; Bohm-Starke, N.; Grönbladh, A.; Nyberg, F.; Nilsson, K.W.; Johannesson, U. Serotonin Receptor Gene (5HT-2A) Polymorphism Is Associated with Provoked Vestibulodynia and Comorbid Symptoms of Pain. J. Sex. Med. 2014, 11, 3064–3071. [Google Scholar] [CrossRef] [PubMed]
- Liao, Z.; Smith, P.G. Persistent Genital Hyperinnervation Following Progesterone Administration to Adolescent Female Rats. Biol. Reprod. 2014, 91, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Bergeron, S.; Reed, B.D.; Wesselmann, U.; Bohm-Starke, N. Vulvodynia. Nat. Rev. Dis. Primers 2020, 6, 36. [Google Scholar] [CrossRef] [PubMed]
- Awad-Igbaria, Y.; Dadon, S.; Shamir, A.; Livoff, A.; Shlapobersky, M.; Bornstein, J.; Palzur, E. Characterization of Early Inflammatory Events Leading to Provoked Vulvodynia Development in Rats. J. Inflamm. Res. 2022, 15, 3901–3923. [Google Scholar] [CrossRef] [PubMed]
- Farmer, M.A.; Taylor, A.M.; Bailey, A.L.; Tuttle, A.H.; Macintyre, C.; Milagrosa, Z.E.; Crissman, H.P.; Bennett, G.J.; Binik, Y.M.; Mogil, J.S. Repeated vulvovaginal fungal infections cause persistent pain in a mouse model of vulvodynia. Sci. Transl. Med. 2012, 3, 101ra91. [Google Scholar] [CrossRef]
- Falsetta, M.L.; Wood, R.W.; Linder, M.A.; Bonham, A.D.; Honn, K.V.; Maddipati, K.R.; Phipps, R.P.; Haidaris, C.G.; Foster, D.C. Specialized Pro-Resolving Mediators Reduce Pro-Nociceptive Inflammatory Mediator Production in Models of Localized Provoked Vulvodynia. J. Pain 2021, 22, 1195–1209. [Google Scholar] [CrossRef] [PubMed]
- Chakrabarty, A.; Liao, Z.; Mu, Y.; Smith, P.G. Inflammatory Renin-Angiotensin System Disruption Attenuates Sensory Hyperinnervation and Mechanical Hypersensitivity in a Rat Model of Provoked Vestibulodynia. J. Pain 2018, 19, 264–277. [Google Scholar] [CrossRef] [PubMed]
- Castro, J.; Harrington, A.M.; Chegini, F.; Matusica, D.; Spencer, N.J.; Brierley, S.M.; Haberberger, R.V.; Barry, C.M. Clodronate Treatment Prevents Vaginal Hypersensitivity in a Mouse Model of Vestibulodynia. Front. Cell Infect. Microbiol. 2022, 11, 784972. [Google Scholar] [CrossRef]
- Martinov, T.; Glenn-Finer, R.; Burley, S.; Tonc, E.; Balsells, E.; Ashbaugh, A.; Swanson, L.; Daughters, R.S.; Chatterjea, D. Contact Hypersensitivity to Oxazolone Provokes Vulvar Mechanical Hyperalgesia in Mice. PLoS ONE 2013, 8, e78673. [Google Scholar] [CrossRef]
- Kline, J.M.; Arriaga-Gomez, E.; Yangdon, T.; Boo, B.; Landry, J.; Saldías-Montivero, M.; Neamonitaki, N.; Mengistu, H.; Silverio, S.; Zacheis, H.; et al. Repeated Dermal Application of the Common Preservative Methylisothiazolinone Triggers Local Inflammation, T Cell Influx, and Prolonged Mast Cell-Dependent Tactile Sensitivity in Mice. PLoS ONE 2020, 15, e0241218. [Google Scholar] [CrossRef] [PubMed]
- Arriaga-Gomez, E.; Kline, J.; Emanuel, E.; Neamonitaki, N.; Yangdon, T.; Zacheis, H.; Pasha, D.; Lim, J.; Bush, S.; Boo, B.; et al. Repeated Vaginal Exposures to the Common Cosmetic and Household Preservative Methylisothiazolinone Induce Persistent, Mast Cell-Dependent Genital Pain in ND4 Mice. Int. J. Mol. Sci. 2019, 20, 5361. [Google Scholar] [CrossRef] [PubMed]
- Landry, J.; Martinov, T.; Mengistu, H.; Dhanwada, J.; Benck, C.J.; Kline, J.; Boo, B.; Swanson, L.; Tonc, E.; Daughters, R.; et al. Repeated Hapten Exposure Induces Persistent Tactile Sensitivity in Mice Modeling Localized Provoked Vulvodynia. PLoS ONE 2017, 12, e0169672. [Google Scholar] [CrossRef]
- National Research Council (US) Committee for the Update of the Guide for the Care and Use of Laboratory Animals. Guide for the Care and Use of Laboratory Animals, 8th ed.; National Academies Press: Washington, DC, USA, 2011. [Google Scholar]
- Hsieh, L.S.; Wen, J.H.; Miyares, L.; Lombroso, P.J.; Bordey, A. Outbred CD1 Mice Are as Suitable as Inbred C57BL/6J Mice in Performing Social Tasks. Neurosci. Lett. 2017, 637, 142–147. [Google Scholar] [CrossRef]
- Tuttle, A.H.; Philip, V.M.; Chesler, E.J.; Mogil, J.S. Comparing phenotypic variation between inbred and outbred mice. Nat. Methods 2018, 15, 994–996. [Google Scholar] [CrossRef]
- Donders, G.; Bellen, G. Characteristics of the Pain Observed in the Focal Vulvodynia Syndrome (VVS). Med. Hypotheses 2012, 78, 11–14. [Google Scholar] [CrossRef] [PubMed]
- Foster, D.C.; Falsetta, M.L.; Woeller, C.F.; Pollock, S.J.; Song, K.; Bonham, A.; Haidaris, C.G.; Stodgell, C.J.; Messing, S.P.; Iadarola, M.; et al. Site-Specific Mesenchymal Control of Inflammatory Pain to Yeast Challenge in Vulvodynia-Afflicted and Pain-Free Women. Pain 2015, 156, 386–396. [Google Scholar] [CrossRef] [PubMed]
- Bautista, D.M.; Jordt, S.E.; Nikai, T.; Tsuruda, P.R.; Read, A.J.; Poblete, J.; Yamoah, E.N.; Basbaum, A.I.; Julius, D. TRPA1 Mediates the Inflammatory Actions of Environmental Irritants and Proalgesic Agents. Cell 2006, 124, 1269–1282. [Google Scholar] [CrossRef] [PubMed]
- Kelchtermans, H.; De Klerck, B.; Mitera, T.; Van Balen, M.; Bullens, D.; Billiau, A.; Leclercq, G.; Matthys, P. Open Access Defective CD4 + CD25 + Regulatory T Cell Functioning in Collagen-Induced Arthritis: An Important Factor in Pathogenesis, Counter-Regulated by Endogenous IFN-γ. Arthritis Res. Ther. 2005, 7, R402–R415. [Google Scholar] [CrossRef]
- Noh, A.S.M.; Chuan, T.D.; Khir, N.A.M.; Zin, A.A.M.; Ghazali, A.K.; Long, I.; Ab Aziz, C.B.; Ismail, C.A.N. Effects of Different Doses of Complete Freund’s Adjuvant on Nociceptive Behaviour and Inflammatory Parameters in Polyarthritic Rat Model Mimicking Rheumatoid Arthritis. PLoS ONE 2021, 16, e0260423. [Google Scholar] [CrossRef] [PubMed]
- Yam, M.F.; Loh, Y.C.; Oo, C.W.; Basir, R. Overview of Neurological Mechanism of Pain Profile Used for Animal “Pain-Like” Behavioral Study with Proposed Analgesic Pathways. Int. J. Mol. Sci. 2020, 21, 4355. [Google Scholar] [CrossRef]
- Amarnani, D.; Sanchez, A.V.; Wong, L.L.; Duffy, B.V.; Ramos, L.; Freitag, S.K.; Bielenberg, D.R.; Kim, L.A.; Lee, N.G. Characterization of a Murine Model of Oxazolone-Induced Orbital Inflammation. Transl. Vis. Sci. Technol. 2020, 9, 26. [Google Scholar] [CrossRef]
- Bryce, P.J.; Miller, M.L.; Miyajima, I.; Tsai, M.; Galli, S.J.; Oettgen, H.C. Immune Sensitization in the Skin Is Enhanced by Antigen-Independent Effects of IgE. Immunity 2004, 20, 381–392. [Google Scholar] [CrossRef]
- Norman, M.U.; Hwang, J.; Hulliger, S.; Bonder, C.S.; Yamanouchi, J.; Santamaria, P.; Kubes, P. Mast Cells Regulate the Magnitude and the Cytokine Microenvironment of the Contact Hypersensitivity Response. Am. J. Pathol. 2008, 172, 1638–1649. [Google Scholar] [CrossRef] [PubMed]
- Lepoittevin, J.-P. Metabolism versus Chemical Transformation or Pro- versus Prehaptens? Contact Dermat. 2006, 54, 73–74. [Google Scholar] [CrossRef] [PubMed]
- Lundov, M.D.; Kolarik, B.; Bossi, R.; Gunnarsen, L.; Johansen, J.D. Emission of Isothiazolinones from Water-Based Paints. Environ. Sci. Technol. 2014, 48, 6989–6994. [Google Scholar] [CrossRef]
- Schwensen, J.F.; Lundov, M.D.; Bossi, R.; Banerjee, P.; Giménez-Arnau, E.; Lepoittevin, J.P.; Lidén, C.; Uter, W.; Yazar, K.; White, I.R.; et al. Methylisothiazolinone and benzisothiazolinone are widely used in paint: A multicentre study of paints from five European countries. Contact Dermat. 2015, 72, 127–138. [Google Scholar] [CrossRef]
- Koenig, H.L.; Gong, W.H.; Pelissier, P. Role of progesterone in peripheral nerve repair. Rev. Reprod. 2000, 5, 189–199. [Google Scholar] [CrossRef] [PubMed]
- Bjorling, D.E.; Beckman, M.; Clayton, M.K.; Wang, Z.Y. Modulation of nerve growth factor in peripheral organs by estrogen and progesterone. Neuroscience 2002, 110, 155–167. [Google Scholar] [CrossRef] [PubMed]
- Ness, T.J.; Gebhart, G.F. Colorectal distension as a noxious visceral stimulus: Physiologic and pharmacologic characterization of pseudaffective reflexes in the rat. Brain Res. 1988, 450, 153–169. [Google Scholar] [CrossRef]
- Shirai, Y.; Okano, J.; Nakagawa, T.; Katagi, M.; Nakae, Y.; Arakawa, A.; Koshinuma, S.; Yamamoto, G.; Kojima, H. Bone Marrow-Derived Vasculogenesis Leads to Scarless Regeneration in Deep Wounds with Periosteal Defects. Sci. Rep. 2022, 12, 20589. [Google Scholar] [CrossRef] [PubMed]
- Russell, F.A.; King, R.; Smillie, S.-J.; Kodji, X.; Brain, S.D. Calcitonin Gene-Related Peptide: Physiology and Pathophysiology. Physiol. Rev. 2014, 94, 1099–1142. [Google Scholar] [CrossRef] [PubMed]
- Harriott, N.D.; Williams, J.P.; Smith, E.B.; Bozigian, H.P.; Grigoriadis, D.E. VMAT2 Inhibitors and the Path to Ingrezza (Valbenazine). Prog. Med. Chem. 2018, 57, 87–111. [Google Scholar] [CrossRef]
- de Avila, E.D.; de Molon, R.S.; de Godoi Gonçalves, D.A.; Camparis, C.M. Relationship between levels of neuropeptide Substance P in periodontal disease and chronic pain: A literature review. J. Investig. Clin. Dent. 2014, 5, 91–97. [Google Scholar] [CrossRef] [PubMed]
- Zieglgänsberger, W. Substance P and pain chronicity. Cell Tissue Res. 2019, 375, 227–241. [Google Scholar] [CrossRef] [PubMed]
- Hoyle, C.H.; Stones, R.W.; Robson, T.; Whitley, K.; Burnstock, G. Innervation of vasculature and microvasculature of the human vagina by NOS and neuropeptide-containing nerves. J. Anat. 1996, 188 Pt 3, 633–644. [Google Scholar]
- Botelho, M.; Cavadas, C.; Neuropeptide, Y. An Anti-Aging Player? Trends Neurosci. 2015, 38, 701–711. [Google Scholar] [CrossRef] [PubMed]
- Chedid, P.; Boussetta, T.; Dang, P.M.C.; Belambri, S.A.; Marzaioli, V.; Fasseau, M.; Walker, F.; Couvineau, A.; El-Benna, J.; Marie, J.C. Vasoactive Intestinal Peptide Dampens Formyl-Peptide-Induced ROS Production and Inflammation by Targeting a MAPK-P47 Phox Phosphorylation Pathway in Monocytes. Mucosal Immunol. 2017, 10, 332–340. [Google Scholar] [CrossRef] [PubMed]
- Joh, T.H.; Geghman, C.; Reis, D. Immunochemical demonstration of increased accumulation of tyrosine hydroxylase protein in sympathetic ganglia and adrenal medulla elicited by reserpine. Proc. Natl. Acad. Sci. USA 1973, 70, 2767–2771. [Google Scholar] [CrossRef]
- Lindqvist, A.; Rivero-Melian, C.; Turan, I.; Fried, K. Neuropeptide- and tyrosine hydroxylase-immunoreactive nerve fibers in painful Morton’s neuromas. Muscle Nerve 2000, 23, 1214–1218. [Google Scholar] [CrossRef] [PubMed]
- Tassone, A.; Martella, G.; Meringolo, M.; Vanni, V.; Sciamanna, G.; Ponterio, G.; Imbriani, P.; Bonsi, P.; Pisani, A. Vesicular Acetylcholine Transporter Alters Cholinergic Tone and Synaptic Plasticity in DYT1 Dystonia. Mov. Disord. 2021, 36, 2768–2779. [Google Scholar] [CrossRef] [PubMed]
- Papka, R.E.; Traurig, H.H.; Schemann, M.; Collins, J.; Copelin, T.; Wilson, K. Cholinergic neurons of the pelvic autonomic ganglia and uterus of the female rat: Distribution of axons and presence of muscarinic receptors. Cell Tissue Res. 1999, 296, 293–305. [Google Scholar] [CrossRef] [PubMed]
- Kupari, J.; Airaksinen, M.S. Different Requirements for GFRα2-Signaling in Three Populations of Cutaneous Sensory Neurons. PLoS ONE 2014, 9, e104764. [Google Scholar] [CrossRef] [PubMed]
- Honda, K.; Shinoda, M.; Kondo, M.; Shimizu, K.; Yonemoto, H.; Otsuki, K.; Akasaka, R.; Furukawa, A.; Iwata, K. Sensitization of TRPV1 and TRPA1 via Peripheral MGluR5 Signaling Contributes to Thermal and Mechanical Hypersensitivity. Pain 2017, 158, 1754–1764. [Google Scholar] [CrossRef]
- Worsley, M.A.; Allen, C.E.; Billinton, A.; King, A.E.; Boissonade, F.M. Chronic Tooth Pulp Inflammation Induces Persistent Expression of Phosphorylated ERK (PERK) and Phosphorylated P38 (Pp38) in Trigeminal Subnucleus Caudalis. Neuroscience 2014, 269, 318–330. [Google Scholar] [CrossRef] [PubMed]
- Ji, R.R.; Baba, H.; Brenner, G.J.; Woolf, C.J. Nociceptive-specific activation of ERK in spinal neurons contributes to pain hypersensitivity. Nat. Neurosci. 1999, 2, 1114–1119. [Google Scholar] [CrossRef] [PubMed]
- Kelly, S.; Bombardieri, M.; Humby, F.; Ng, N.; Marrelli, A.; Riahi, S.; DiCicco, M.; Mahto, A.; Zou, L.; Pyne, D.; et al. Angiogenic Gene Expression and Vascular Density Are Reflected in Ultrasonographic Features of Synovitis in Early Rheumatoid Arthritis: An Observational Study. Arthritis Res. Ther. 2015, 17, 58. [Google Scholar] [CrossRef] [PubMed]
- Shinde, A.V.; Humeres, C.; Frangogiannis, N.G. The Role of α-Smooth Muscle Actin in Fibroblast-Mediated Matrix Contraction and Remodeling. Biochim. Biophys. Acta Mol. Basis Dis. 2017, 1863, 298–309. [Google Scholar] [CrossRef] [PubMed]
- Holness, C.L.; Simmons, D.L. Molecular cloning of CD68, a human macrophage marker related to lysosomal glycoproteins. Blood 1993, 81, 1607–1613. [Google Scholar] [CrossRef]
- Kigerl, K.A.; Gensel, J.C.; Ankeny, D.P.; Alexander, J.K.; Donnelly, D.J.; Popovich, P.G. Identification of Two Distinct Macrophage Subsets with Divergent Effects Causing Either Neurotoxicity or Regeneration in the Injured Mouse Spinal Cord. J. Neurosci. 2009, 29, 13435–13444. [Google Scholar] [CrossRef] [PubMed]
- Hou, L.; Yuki, K. CD11c Regulates Late-Stage T Cell Development in the Thymus. Front. Immunol. 2022, 13, 1040818. [Google Scholar] [CrossRef]
- Viola, A.; Munari, F.; Sánchez-Rodríguez, R.; Scolaro, T.; Castegna, A. The Metabolic Signature of Macrophage Responses. Front. Immunol. 2019, 10, 1462. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, M.C.; Hvidbjerg Gantzel, R.; Clària, J.; Trebicka, J.; Møller, H.J.; Grønbæk, H. Macrophage Activation Markers, CD163 and CD206, in Acute-on-Chronic Liver Failure. Cells 2020, 9, 1175. [Google Scholar] [CrossRef]
- Chu, P.G.; Arber, D.A. CD79: A review. Appl. Immunohistochem. Mol. Morphol. 2001, 9, 97–106. [Google Scholar] [CrossRef] [PubMed]
- Gupta, S.; Shimizu, M.; Ohira, K.; Vayuvegula, B. T cell activation via the T cell receptor: A comparison between WT31 (defining alpha/beta TcR)-induced and anti-CD3-induced activation of human T lymphocytes. Cell Immunol. 1991, 132, 26–44. [Google Scholar] [CrossRef] [PubMed]
- Takeuchi, A.; Saito, T. CD4 CTL, a Cytotoxic Subset of CD4+ T Cells, Their Differentiation and Function. Front. Immunol. 2017, 8, 194. [Google Scholar] [CrossRef] [PubMed]
- Chatterjea, D.; Wetzel, A.; Mack, M.; Engblom, C.; Allen, J.; Mora-Solano, C.; Paredes, L.; Balsells, E.; Martinov, T. Mast Cell Degranulation Mediates Compound 48/80-Induced Hyperalgesia in Mice. Biochem. Biophys. Res. Commun. 2012, 425, 237–243. [Google Scholar] [CrossRef] [PubMed]
- Caughey, G.H. Mast cell tryptases and chymases in inflammation and host defense. Immunol. Rev. 2007, 217, 141–154. [Google Scholar] [CrossRef]
- Liao, Z.; Chakrabarty, A.; Mu, Y.; Bhattacherjee, A.; Goestch, M.; Leclair, C.M.; Smith, P.G. A Local Inflammatory Renin-Angiotensin System Drives Sensory Axon Sprouting in Provoked Vestibulodynia. J. Pain 2017, 18, 511–525. [Google Scholar] [CrossRef] [PubMed]
- Magi, S.; Piccirillo, S.; Amoroso, S. The dual face of glutamate: From a neurotoxin to a potential survival factor-metabolic implications in health and disease. Cell Mol. Life Sci. 2019, 76, 1473–1488. [Google Scholar] [CrossRef] [PubMed]
- Bueker, E.D. Implantation of tumors in the hind limb field of the embryonic chick and the developmental response of the lumbosacral nervous system. Anat. Rec. 1948, 102, 369–389. [Google Scholar] [CrossRef] [PubMed]
- Petty, B.G.; Cornblath, D.R.; Adornato, B.T.; Chaudhry, V.; Flexner, C.; Wachsman, M.; Sinicropi, D.; Burton, L.E.; Peroutka, S.J. The effect of systemically administered recombinant human nerve growth factor in healthy human subjects. Ann. Neurol. 1994, 36, 244–246. [Google Scholar] [CrossRef]
- Denk, F.; Bennett, D.L.; Mcmahon, S.B. Nerve Growth Factor and Pain Mechanisms. Annu. Rev. Neurosci. 2017, 40, 307–325. [Google Scholar] [CrossRef]
- Cheng, H.; Huang, H.; Guo, Z.; Chang, Y.; Li, Z. Role of prostaglandin E2 in tissue repair and regeneration. Theranostics 2021, 11, 8836–8854. [Google Scholar] [CrossRef]
- Wang, C.; Li, G.W.; Huang, L.Y.M. Prostaglandin E2 Potentiation of P2X3 Receptor Mediated Currents in Dorsal Root Ganglion Neurons. Mol. Pain 2007, 3, 22. [Google Scholar] [CrossRef] [PubMed]
- Kawahara, K.; Hohjoh, H.; Inazumi, T.; Tsuchiya, S.; Sugimoto, Y. Prostaglandin E2-induced inflammation: Relevance of prostaglandin E receptors. Biochim. Biophys. Acta 2015, 1851, 414–421. [Google Scholar] [CrossRef] [PubMed]
- Obreja, O.; Schmelz, M.; Poole, S.; Kress, M. Interleukin-6 in combination with its soluble IL-6 receptor sensitises rat skin nociceptors to heat, in vivo. Pain 2002, 96, 57–62. [Google Scholar] [CrossRef]
- Wei, X.H.; Na, X.D.; Liao, G.J.; Chen, Q.Y.; Cui, Y.; Chen, F.Y.; Li, Y.Y.; Zang, Y.; Liu, X.G. The Up-Regulation of IL-6 in DRG and Spinal Dorsal Horn Contributes to Neuropathic Pain Following L5 Ventral Root Transection. Exp. Neurol. 2013, 241, 159–168. [Google Scholar] [CrossRef] [PubMed]
- Mwaura, A.N.; Marshall, N.; Anglesio, M.S.; Yong, P.J. Neuroproliferative dyspareunia in endometriosis and vestibulodynia. Sex. Med. Rev. 2023, 11, 323–332. [Google Scholar] [CrossRef] [PubMed]
- Seckin-Alac, E.; Akhant, S.E.; Bastu, E.; Tuzlalik, S.; Yavuz, E. Elevated tissue levels of tumor necrosis factor-α in vulvar vestibulitis syndrome. Clin. Exp. Obs. Gynecol. 2014, 41, 691–693. [Google Scholar] [CrossRef]
- De Filippo, K.; Dudeck, A.; Hasenberg, M.; Nye, E.; Van Rooijen, N.; Hartmann, K.; Gunzer, M.; Roers, A.; Hogg, N. Mast Cell and Macrophage Chemokines CXCL1/CXCL2 Control the Early Stage of Neutrophil Recruitment during Tissue Inflammation. Blood 2013, 121, 4930–4937. [Google Scholar] [CrossRef] [PubMed]
- Chung, H.T.; Kim, L.H.; Park, B.L.; Lee, J.H.; Park, H.S.; Choi, B.W.; Hong, S.J.; Chae, S.C.; Kim, J.J.; Park, C.S.; et al. Association Analysis of Novel TBX21 Variants with Asthma Phenotypes. Hum. Mutat. 2003, 22, 257. [Google Scholar] [CrossRef]
- Hagiyama, M.; Inoue, T.; Furuno, T.; Iino, T.; Itami, S.; Nakanishi, M.; Asada, H.; Hosokawa, Y.; Ito, A. Increased Expression of Cell Adhesion Molecule 1 by Mast Cells as a Cause of Enhanced Nerve-Mast Cell Interaction in a Hapten-Induced Mouse Model of Atopic Dermatitis. Br. J. Dermatol. 2013, 168, 771–778. [Google Scholar] [CrossRef] [PubMed]
- Lu, H.; Shrivastava, M.; Whiteway, M.; Jiang, Y. Candida albicans targets that potentially synergize with fluconazole. Crit. Rev. Microbiol. 2021, 47, 323–337. [Google Scholar] [CrossRef] [PubMed]
- Bornstein, J.; Livnat, G.; Stolar, Z.; Abramovici, H. Pure versus complicated vulvar vestibulitis: A randomized trial of fluconazole treatment. Gynecol. Obs. Investig. 2000, 50, 194–197. [Google Scholar] [CrossRef]
- Ben-Eli, H.; Solomon, A. Topical antihistamines, mast cell stabilizers, and dual-action agents in ocular allergy: Current trends. Curr. Opin. Allergy Clin. Immunol. 2018, 18, 411–416. [Google Scholar] [CrossRef] [PubMed]
- Moreno, S.G. Depleting Macrophages In Vivo with Clodronate-Liposomes. Methods Mol. Biol. 2018, 1784, 259–262. [Google Scholar] [CrossRef]
- Harlow, B.L.; He, W.; Nguyen, R.H.N. Allergic Reactions and Risk of Vulvodynia. Ann. Epidemiol. 2009, 19, 771–777. [Google Scholar] [CrossRef] [PubMed]
- Honda, T.; Egawa, G.; Grabbe, S.; Kabashima, K. Update of immune events in the murine contact hypersensitivity model: Toward the understanding of allergic contact dermatitis. J. Investig. Dermatol. 2013, 133, 303–315. [Google Scholar] [CrossRef] [PubMed]
- Heller, F.; Fuss, I.J.; Nieuwenhuis, E.E.; Blumberg, R.S.; Strober, W. Oxazolone colitis, a Th2 colitis model resembling ulcerative colitis, is mediated by IL-13-producing NK-T cells. Immunity 2002, 17, 629–638. [Google Scholar] [CrossRef] [PubMed]
- Leclair, C.M.; Leeborg, N.J.; Jacobson-Dunlop, E.; Goetsch, M.F.; Morgan, T.K. CD4-positive T-cell recruitment in primary-provoked localized vulvodynia: Potential insights into disease triggers. J. Low. Genit. Tract Dis. 2014, 18, 195–201. [Google Scholar] [CrossRef] [PubMed]
- Yu, M.; Eckart, M.R.; Morgan, A.A.; Mukai, K.; Butte, A.J.; Tsai, M.; Galli, S.J. Identification of an IFN-γ/Mast Cell Axis in a Mouse Model of Chronic Asthma. J. Clin. Investig. 2011, 121, 3133–3143. [Google Scholar] [CrossRef] [PubMed]
- Jones, T.G.; Finkelman, F.D.; Austen, K.F.; Gurish, M.F. T Regulatory Cells Control Antigen-Induced Recruitment of Mast Cell Progenitors to the Lungs of C57BL/6 Mice. J. Immunol. 2010, 185, 1804–1811. [Google Scholar] [CrossRef] [PubMed]
- Reed, B.D.; McKee, K.S.; Plegue, M.A.; Park, S.K.; Haefner, H.K.; Harlow, S.D. Environmental Exposure History and Vulvodynia Risk: A Population-Based Study. J. Womens Health 2019, 28, 69–76. [Google Scholar] [CrossRef]
- Turner, S.E.; Williams, C.M.; Iversen, L.; Whalley, B.J. Molecular Pharmacology of Phytocannabinoids. Prog. Chem. Org. Nat. Prod. 2017, 103, 61–101. [Google Scholar] [CrossRef] [PubMed]
- Vincent, L.; Vang, D.; Nguyen, J.; Benson, B.; Lei, J.; Gupta, K. Cannabinoid Receptor-Specific Mechanisms to Alleviate Pain in Sickle Cell Anemia via Inhibition of Mast Cell Activation and Neurogenic Inflammation. Haematologica 2016, 101, 566–577. [Google Scholar] [CrossRef]
- Chatterjea, D.; Martinov, T. Mast cells: Versatile gatekeepers of pain. Mol. Immunol. 2015, 63, 38–44. [Google Scholar] [CrossRef] [PubMed]
- Garau, J.M.; di Paola, G.R.; Charreau, E.H. Estrogen and progesterone receptor assays on the vulvar epithelium. J. Reprod. Med. 1986, 31, 987–991. [Google Scholar] [PubMed]
- Bouchard, C.; Brisson, J.; Fortier, M.; Morin, C.; Blanchette, C. Use of Oral Contraceptive Pills and Vulvar Vestibulitis: A Case-Control Study. Am. J. Epidemiol. 2002, 156, 254–261. [Google Scholar] [CrossRef] [PubMed]
- Masheb, R.M.; Nash, J.M.; Brondolo, E.; Kerns, R.D. Vulvodynia: An introduction and critical review of a chronic pain condition. Pain 2000, 86, 3–10. [Google Scholar] [CrossRef]
- Tommola, P.; Bützow, R.; Unkila-Kallio, L.; Paavonen, J.; Meri, S. Activation of Vestibule-Associated Lymphoid Tissue in Localized Provoked Vulvodynia. Am. J. Obs. Gynecol. 2015, 212, 476.e1–476.e8. [Google Scholar] [CrossRef] [PubMed]
- Bohm-Starke, N.; Hilliges, M.; Falconer, C.; Rylander, E. Increased intraepithelial innervation in women with vulvar vestibulitis syndrome. Gynecol. Obs. Investig. 1998, 46, 256–260. [Google Scholar] [CrossRef] [PubMed]
- Bornstein, J.; Goldschmid, N.; Sabo, E. Hyperinnervation and Mast Cell Activation May Be Used as Histopathologic Diagnostic Criteria for Vulvar Vestibulitis. Gynecol. Obs. Investig. 2004, 58, 171–178. [Google Scholar] [CrossRef]
- Bornstein, J.; Cohen, Y.; Zarfati, D.; Sela, S.; Ophir, E. Involvement of Heparanase in the Pathogenesis of Localized Vulvodynia. Int. J. Gynecol. Pathol. 2008, 27, 136–141. [Google Scholar] [CrossRef]
- Bohm-Starke, N.; Hilliges, M.; Falconer, C.; Rylander, E. Neurochemical characterization of the vestibular nerves in women with vulvar vestibulitis syndrome. Gynecol. Obs. Investig. 1999, 48, 270–275. [Google Scholar] [CrossRef]
- Tympanidis, P.; Terenghi, G.; Dowd, P. Increased innervation of the vulval vestibule in patients with vulvodynia. Br. J. Dermatol. 2003, 148, 1021–1027. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Huang, J.; McNaughton, P.A. NGF Rapidly Increases Membrane Expression of TRPV1 Heat-Gated Ion Channels. EMBO J. 2005, 24, 4211–4223. [Google Scholar] [CrossRef]
- Julius, D.; Basbaum, A.I. Molecular mechanisms of nociception. Nature 2001, 413, 203–210. [Google Scholar] [CrossRef] [PubMed]
- Dib-Hajj, S.D.; Black, J.A.; Cummins, T.R.; Kenney, A.M.; Kocsis, J.D.; Waxman, S.G. Rescue of alpha-SNS sodium channel expression in small dorsal root ganglion neurons after axotomy by nerve growth factor in vivo. J. Neurophysiol. 1998, 79, 2668–2676. [Google Scholar] [CrossRef]
- Kim, C.F.; Moalem-Taylor, G. Detailed Characterization of Neuro-Immune Responses Following Neuropathic Injury in Mice. Brain Res. 2011, 1405, 95–108. [Google Scholar] [CrossRef] [PubMed]
- Matsson, L.; Norevall, L.I.; Forsgren, S. Anatomic relationship between substance P- and CGRP-immunoreactive nerve fibers and mast cells in the palatal mucosa of the rat. Eur. J. Oral Sci. 1995, 103 Pt 1, 70–76. [Google Scholar] [CrossRef] [PubMed]
- Gangadharan, V.; Kuner, R. Pain hypersensitivity mechanisms at a glance. Dis. Model. Mech. 2013, 6, 889–895. [Google Scholar] [CrossRef] [PubMed]
- Foster, D.C.; Piekarz, K.H.; Murant, T.I.; LaPoint, R.; Haidaris, C.G.; Phipps, R.P. Enhanced Synthesis of Proinflammatory Cytokines by Vulvar Vestibular Fibroblasts: Implications for Vulvar Vestibulitis. Am. J. Obs. Gynecol. 2007, 196, 346.e1–346.e8. [Google Scholar] [CrossRef] [PubMed]
- Falsetta, M.L.; Foster, D.C.; Woeller, C.F.; Pollock, S.J.; Bonham, A.D.; Haidaris, C.G.; Phipps, R.P. A Role for Bradykinin Signaling in Chronic Vulvar Pain. J. Pain 2016, 17, 1183–1197. [Google Scholar] [CrossRef]
- Falsetta, M.L.; Foster, D.C.; Woeller, C.F.; Pollock, S.J.; Bonham, A.D.; Haidaris, C.G.; Stodgell, C.J.; Phipps, R.P. Identification of Novel Mechanisms Involved in Generating Localized Vulvodynia Pain. Am. J. Obs. Gynecol. 2015, 213, 38.e1–38.e12. [Google Scholar] [CrossRef] [PubMed]
- Rinn, J.L.; Bondre, C.; Gladstone, H.B.; Brown, P.O.; Chang, H.Y. Anatomic Demarcation by Positional Variation in Fibroblast Gene Expression Programs. PLoS Genet. 2006, 2, 1084–1096. [Google Scholar] [CrossRef] [PubMed]
- Serhan, C.N.; Levy, B.D. Resolvins in inflammation: Emergence of the pro-resolving superfamily of mediators. J. Clin. Investig. 2018, 128, 2657–2669. [Google Scholar] [CrossRef] [PubMed]
- Chiang, N.; Serhan, C.N. Specialized pro-resolving mediator network: An update on production and actions. Essays Biochem. 2020, 64, 443–462. [Google Scholar] [CrossRef]
- Fattori, V.; Pinho-Ribeiro, F.A.; Staurengo-Ferrari, L.; Borghi, S.M.; Rossaneis, A.C.; Casagrande, R.; Verri, W.A. The Specialised Pro-Resolving Lipid Mediator Maresin 1 Reduces Inflammatory Pain with a Long-Lasting Analgesic Effect. Br. J. Pharmacol. 2019, 176, 1728–1744. [Google Scholar] [CrossRef] [PubMed]
- Allen, B.L.; Montague-Cardoso, K.; Simeoli, R.; Colas, R.A.; Oggero, S.; Vilar, B.; McNaughton, P.A.; Dalli, J.; Perretti, M.; Sher, E.; et al. Imbalance of Proresolving Lipid Mediators in Persistent Allodynia Dissociated from Signs of Clinical Arthritis. Pain 2020, 161, 2155–2166. [Google Scholar] [CrossRef] [PubMed]
- Serhan, C.N.; Dalli, J.; Karamnov, S.; Choi, A.; Park, C.; Xu, Z.; Ji, R.; Zhu, M.; Petasis, N.A. Macrophage Proresolving Mediator Maresin 1 Stimulates Tissue Regeneration and Controls Pain. FASEB J. 2012, 26, 1755–1765. [Google Scholar] [CrossRef] [PubMed]
- Tao, X.; Lee, M.S.; Donnelly, C.R.; Ji, R.R. Neuromodulation, Specialized Proresolving Mediators, and Resolution of Pain. Neurotherapeutics 2020, 17, 886–899. [Google Scholar] [CrossRef]
- Artegiani, B.; Clevers, H. Use and application of 3D-organoid technology. Hum. Mol. Genet. 2018, 27, R99–R107. [Google Scholar] [CrossRef] [PubMed]
- Reilly, C.F.; Tewksbury, D.A.; Schechter, N.M.; Travis, J. Rapid Conversion of Angiotensin I to Angiotensin II by Neutrophil and Mast Cell Proteinases. J. Biol. Chem. 1982, 257, 8619–8622. [Google Scholar] [CrossRef]
- Hashikawa-Hobara, N.; Hashikawa, N. Angiotensin II AT2 Receptors Regulate NGF-Mediated Neurite Outgrowth via the NO-CGMP Pathway. Biochem. Biophys. Res. Commun. 2016, 478, 970–975. [Google Scholar] [CrossRef]
- Jurewicz, M.; McDermott, D.H.; Sechler, J.M.; Tinckam, K.; Takakura, A.; Carpenter, C.B.; Milford, E.; Abdi, R. Human T and Natural Killer Cells Possess a Functional Renin-Angiotensin System: Further Mechanisms of Angiotensin II-Induced Inflammation. J. Am. Soc. Nephrol. 2007, 18, 1093–1102. [Google Scholar] [CrossRef] [PubMed]
- Hoch, N.E.; Guzik, T.J.; Chen, W.; Deans, T.; Maalouf, S.A.; Gratze, P.; Weyand, C.; Harrison, D.G.; Harrison, D.G. Regulation of T-Cell Function by Endogenously Produced Angiotensin II. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2009, 296, 208–216. [Google Scholar] [CrossRef] [PubMed]
- Chadha, S.; Gianotten, W.L.; Drogendijk, A.C.; Weijmar Schultz, W.C.; Blindeman, L.A.; van der Meijden, W.I. Histopathologic features of vulvar vestibulitis. Int. J. Gynecol. Pathol. 1998, 17, 7–11. [Google Scholar] [CrossRef]
Species | Strain | Age Range (Weeks) | Study References | Type |
---|---|---|---|---|
Rat | Sprague Dawley | 10 | [9,11,14] | Outbred |
Mouse | CD-1 | 8–10 | [12] | Outbred |
Mouse | ND4 | 6–12 | [16,17,18,19] | Outbred |
Mouse | C57BL/6 | 6–12 | [13,15] | Inbred |
Substance | Origin | Description | Reference |
---|---|---|---|
Candida albicans (C. albicans) | Yeast | Induces local tissue inflammation | [23] |
Zymosan | Produced from a yeast cell wall | A highly stimulatory protein–carbohydrate complex. Provokes inflammation and hyperalgesia through activation of TRP channels and excitatory effect mediated by glutamate. | [24,25] |
Complete Freud adjuvant (CFA) | Compound containing heat-inactivated Mycobacterium butyricum in oil | Induces dose-related inflammatory response. Maximal effect is observed 6–8 h after administration. | [26,27,28] |
Oxazolone | Hapten, a chemical compound | Stimulates a type 4 hypersensitivity cascade that triggers the adaptive immune response. The response is mediated by a mast cell immunoglobulin IgE. | [29,30,31,32] |
Methylisothiazolinone (MI) | Potent antimicrobial sensitizer agent | Found in a wide range of cleaning and cosmetics products, soap, and the paint industry. It is estimated that 2–10% of the population is MI-sensitive by patch testing. | [18,33,34] |
Progesterone | Hormone | Increases neurotrophic factors in the female reproductive tract and has been shown to boost axon sprouting and myelination. | [35,36] |
Study | Year | Induction Method | Substance Used | Volume/Dose | Application Site |
---|---|---|---|---|---|
Farmer et al. [12] | 2012 | Infection and Injection | Candida albicans (C. albicans) strain SC5314, Zymosan | 0.1 mg | Posterior vulva |
Falsetta et al. [13] | 2021 | Injection | Zymosan | 0.1 mg | Midline posterior vulva |
Awad-Igbaria et al. [11] | 2022 | Injection | Zymosan | 0.1 mg | Both sides of the vulva |
Castro et al. [15] | 2022 | Injection | Complete Freud’s adjuvant (CFA) | 5 µL | Vaginal wall at the introitus |
Sharma et al. [1] | 2018 | Injection | CFA | 5 µL | Wall of the distal vagina |
Chakrabarty et al. [14] | 2018 | Injection | CFA | 30 μL | Posterior perivaginal vestibular tissue |
Martinov et al. [16] | 2013 | Topical Application | 1% Ox | 40 μL | Labia |
Landry et al. [19] | 2017 | Topical Application | 1% Ox | 40 μL | Genital skin, including labia |
Arriaga-Gomez et al. [18] | 2019 | Topical Application | 0.5% Methylisothiazolinone (MI) | 20 μL | Labia |
Kline et al. [17] | 2020 | Topical Application | 0.5% MI | 40 μL | Labia |
Liao and Smith et al. [9] | 2014 | Subcutaneous Injection | Progesterone | 20 mg/kg | Not specified |
Technique | Method | Description | Reference |
---|---|---|---|
Manual | Up-Down Psychophysical | Utilization of von Frey filaments to measure mechanical sensitivity. Pressure is increased until a behavioral response is observed. | [15] |
Electronic | Von Frey Device | An electronic device that increases the pressure, until the subject steps or jumps. The pressure is recorded to measure mechanical sensitivity precisely. | [15] |
Unique | Balloon Catheter | Used by Castro et al., 2022 [15], to distend the vaginal canal and assess visceromotor response (VMR), indicating nociceptive involuntary abdominal muscle contraction. | [37] |
Marker | Description | Function | References |
---|---|---|---|
Protein gene product 9.5 (PGP9.5) | Pan axonal marker | Peripheral nerve fiber identification | [38] |
Calcitonin gene-related peptide (CGRP) | Amino acid peptide | Found in sensory fibers; usually found in perivascular localization and has sensory and efferent functions | [39] |
Vesicular monoamine transporter 2 (VMAT2) | Presynaptic protein | Regulates dopamine and monoamine release into synapse | [40] |
Substance P (SP) | Neuropeptide | Overexpressed in nociception and chronic pain; histamine release from mast cells | [41,42] |
Neuropeptide Y (NPY) | Peptide | Present in CNS *, PNS *, peripheral tissues, and blood vessels | [43,44] |
Vasoactive intestinal polypeptide (VIP) | Neuropeptide | Vasomotor regulation; increases vaginal blood flow, lubrication, and anti-inflammatory effects in the vagina | [45] |
Tyrosine hydroxylase (TH) | Protein | Sympathetic neuronal marker; suggested role in pain development | [46,47] |
Vesicular acetylcholine transporter—(VAChT) | Integral membrane protein | Labels cholinergic parasympathetic neurons; acetylcholine release | [48,49] |
GDNF-family receptor-α2 (GFRα2) | Receptor | Mechanosensory neurons; extends unmyelinated C-fibers to targets | [50] |
Marker | Description | Function | References |
---|---|---|---|
Transient receptor potential vanilloid 1 (TRPV1) and ankyrin 1 (TRPA1) | Capsaicin/heat-activated and cold/mechanical stimuli-activated channels | Transduce noxious thermal and mechanical stimuli | [51] |
Phosphorylated extracellular signal-regulated kinase (pERK) | Protein kinase | Activated by peripheral stimuli; involved in chronic pain development | [52,53] |
α-smooth muscle actin (αSMA) | Actin isoform | Involved in inflammation and wound healing; labels smooth muscle blood vessels | [1,54,55] |
CD-68 | Glycoprotein | Marker for macrophages; role in inflammation and resolution | [56] |
CD11c | Hematopoietic cell protein | M1 macrophage marker; proinflammatory effects | [57,58] |
CD206 | Macrophage marker | M2 macrophage marker; downregulates inflammation | [59,60] |
CD79 | Protein | Expressed on B cells and neoplastic B cells | [61] |
T cell receptor (TCR)α/β | Receptor | Identified in T cells; leads to T cell activation | [62] |
CD4, CD8, CD25, FOXP3, CD103, and CD44 | T cell proteins | Classify T cell subtypes; involved in immune cell activity enhancement | [19,63] |
Myeloperoxidase and eosinophil peroxidase | Enzymes | Measure activation of neutrophils and eosinophils, respectively | [64] |
Chymase and tryptase | Enzymes in mast cells | Involved in inflammation and tissue remodeling | [65] |
Renin (REN) and angiotensinogen (AGT) | Renin and angiotensinogen | Part of the renin–angiotensin system; involved in nerve growth and hypersensitivity | [66] |
Biochemical Marker | Description | Role in Vulvar Pain | References |
---|---|---|---|
Glutamate | Major excitatory neurotransmitter in the CNS | Contributes to spontaneous pain and mechanical hypersensitivity through sensitization of TRP channels like TRPV1 and TRPA1 | [67] |
Nerve growth factor (NGF) | Promotes neuronal growth | Sensitizes nociceptors, inducing pain development; immediate pain response observed with NGF injection in skin sensitization studies | [68,69,70] |
Prostaglandin E2 (PGE2) | Lipid mediator released by various cell types | Impacts pain signaling, peripheral and central sensitization, tissue swelling, and vascular permeability | [71,72,73] |
Interleukin-6 (IL-6) | Pro-inflammatory cytokine produced by various cells | Contributes to allodynia and hyperalgesia in inflamed tissues | [74,75] |
Gene | Description | Role in Vulvar Pain | Study References |
---|---|---|---|
Interleukin-1β (IL-1β) | Cytokine | Contributes to hyperinnervation in vulvodynia | [18,76] |
Tumor necrosis factor-α (TNF-α) | Cytokine | Increased in biopsies from vulvodynia patients | [77] |
IL-6 | Cytokine | Associated with inflammation and pain signaling | [77] |
Interleukin-3 (IL-3) | Cytokine | Elevated in vulvodynia cases | [77] |
Chemokine ligand 2 (CXCL2) and chemokine ligand 1 (CXCL1) | Chemokines | Attract immune cells; involved in inflammation | [78] |
Interferon-γ (IFN-γ) | Cytokine | Induces mast cell remodeling | [78] |
T-box21 (Tbx21) | Transcription factor | Activates cytokines; involved in immune response and production of IFN-γ | [79] |
Cell adhesion molecule 1 (Camd1) | Cell adhesion molecule | Mediates adhesion and communication between mast cells and sympathetic nerves | [80] |
(A) | |||
---|---|---|---|
Study | Study Period | Induction Method | Findings and Observations |
Farmer et al. (2011) [12] | 70 days | Candida/zymosan model | -Repeated vulvovaginal infection with C. albicans or zymosan induced long-lasting allodynia. -No morphological changes were observed. -Significant increase in nerve fiber density (CGRP and VMAT). -Fluconazole reduced allodynia after two C. albicans challenges but not after the third. |
Falsetta et al. (2021) [13] | 91 days | Zymosan injection model | -Weekly zymosan injections induced long-lasting allodynia. -Inflammation signs were observed but no H&E staining was conducted. -PGE2 levels increased after zymosan. -Treatment with marine 1 and DHA decreased allodynia; treatment with marine 1 did not reduce PGE levels. |
Awad-Igbaria et al. (2022) [11] | 172 days | Zymosan injection in rats | -Long-lasting thermal and mechanical vulvar allodynia after zymosan. -Increase in MCs and neuroproliferation and increase in expression of pain channels TRPA1 and TRPV1. -KF pretreatment decreased allodynia, MCs, nerve fiber density, and NGF levels. |
(B) | |||
Study | Study Period | Induction Method | Findings and Observations |
Sharma et al. (2018) [1] | 28 days | CFA | -Vulvodynia was not proven. -Increased lamina propria thickening and hyperinnervation labeled for CGRP, SP, and VIP nerve fibers -Increased vascular proliferation vessels labeled for αSMA -Increased CD68 macrophages but no increase in MCs. |
Castro et al. (2022) [15] | 7 days | CFA | -CFA injection induced allodynia for a minimum of one week. -Increased VMR after CFA injection. -No morphological changes. -Increased hyperinnervation and M1-M2 macrophages and increased pERK neurons in the dorsal horn. -Treatment with clodronate reduced VMR and pERK activation to baseline levels and decreased M1-M2 macrophages but not hyperinnervation. |
Chakrabarty et al. (2017) [14] | 7 days | CFA | -Short-term allodynia was observed. -Hyperinnervation: mainly fibers labeled for CGRP and GFRalpha2. -Increase in macrophages, T cells expressing REN and AGT, and the degranulation of MCs. No change in B cells. -PD reduced pain, and the percentage of total cells expressing REN and AGT was reduced. Decreased degranulated MCs and T cells expressing REN and AGT. -PD normalized nerve fibers to baseline levels and did not change macrophage number. |
Study | Study Period | Induction Method | Findings and Observations |
---|---|---|---|
Martinov et al. (2013) [16] | 10 days | Oxazolone | -Vulvodynia was induced and lasted for a minimum of 10 days. -Increased neutrophils and eosinophils number and activity and increased PGP9.5 and CGPR nerve fibers. -Increased MCs one day after one OX topical challenge. -Increased transcripts of IL-1b, TNF-a, CXCL 1, CXCL 2, IL-6, and IFN-gamma were resolved 48 h later. -Pretreatment with SCG decreased allodynia 1–6 h after administration but not after 24 h. |
Landry et al. (2017) [19] | 42 days | Oxazolone | -A total of 10 topical applications induced vulvodynia for at least 21 days. -Increase in NGF, CGRP nerve fibers, MCs number, and histamine levels. -IgE, Il-3, Il-6 mRNA, Camd1, TNF-alpha, and CXCL2 increased significantly. -Increase in T cells positive for CD4, CD25, and FOXP3; increase in IFN-gamma. -MC degranulator C48/80 reduced the density of MCs and CGRP nerve fibers and increased pain thresholds. |
Arriaga-Gomez et al. (2019) [18] | 27 days | MI | -Allodynia lasted for a minimum of 14 days after 10 MI challenges. -Increase in circulating IgE levels, MC number, and activated eosinophils. -Transcripts of IFN-γ and IL-6 from the vaginal canal and transcripts of IL-1β and IL-6 from the spinal cord were detected one day after the 10th application. -Treatment with THC normalized allodynia and MC number. -Prevention treatment with THC reduced allodynia to less than 33% threshold and decreased MC number. |
Kline et al. (2020) [17] | 70 days | MI | -Long-lasting vulvodynia up to 70 days following 10 daily topical MI- challenges. -Increased MC density and IgE levels were observed for a minimum of 49 days. -Increase in activated eosinophils, neutrophils, and labial CD4+ and CD8+ T cells accumulation stained for CD44+, CD25+, and CD+103 one day after the last MI challenge. -Overexpression of pro-inflammatory cytokines Cxcl2, IL-1β, IL-6, IFN-γ, and Tbx21 mRNA transcripts. -Treatment with imatinib reduced mast cell density and allodynia to baseline levels. |
Study | Study Period | Induction Method | Findings and Observations |
---|---|---|---|
Liao and Smith (2014) [9] | 30 days | Progesterone | -Increases in PGP9.5 vaginal nerve fibers and TH- and CGRP- but not VAChT-labeled nerve fibers were observed on day 28. -At Day 50, OVX rats showed increased TH and CGRP nerve fiber density. -Treatment with E2 for 7 days reduced the density of nerves but not to baseline levels. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nakhleh-Francis, Y.; Awad-Igbaria, Y.; Sakas, R.; Bang, S.; Abu-Ata, S.; Palzur, E.; Lowenstein, L.; Bornstein, J. Exploring Localized Provoked Vulvodynia: Insights from Animal Model Research. Int. J. Mol. Sci. 2024, 25, 4261. https://doi.org/10.3390/ijms25084261
Nakhleh-Francis Y, Awad-Igbaria Y, Sakas R, Bang S, Abu-Ata S, Palzur E, Lowenstein L, Bornstein J. Exploring Localized Provoked Vulvodynia: Insights from Animal Model Research. International Journal of Molecular Sciences. 2024; 25(8):4261. https://doi.org/10.3390/ijms25084261
Chicago/Turabian StyleNakhleh-Francis, Yara, Yaseen Awad-Igbaria, Reem Sakas, Sarina Bang, Saher Abu-Ata, Eilam Palzur, Lior Lowenstein, and Jacob Bornstein. 2024. "Exploring Localized Provoked Vulvodynia: Insights from Animal Model Research" International Journal of Molecular Sciences 25, no. 8: 4261. https://doi.org/10.3390/ijms25084261
APA StyleNakhleh-Francis, Y., Awad-Igbaria, Y., Sakas, R., Bang, S., Abu-Ata, S., Palzur, E., Lowenstein, L., & Bornstein, J. (2024). Exploring Localized Provoked Vulvodynia: Insights from Animal Model Research. International Journal of Molecular Sciences, 25(8), 4261. https://doi.org/10.3390/ijms25084261