New Insights on Solvent-Induced Changes in Refractivity and Specific Rotation of Poly(propylene oxide) Systems Extracted from Channeled Spectra
Abstract
:1. Introduction
2. Results and Discussion
2.1. Rheological Behavior
2.2. Linear and Non-Linear Optical Parameters
2.3. Circular Birefringence and Specific Rotation via Channeled Spectra Approach
3. Materials and Methods
3.1. Materials
3.2. Characterization
3.3. Theoretical Background
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhou, C.; Sun, X.; Han, J. Chiral conducting polymer nanomaterials: Synthesis and applications in enantioselective recognition. Mater. Chem. Front. 2020, 4, 2499–2516. [Google Scholar] [CrossRef]
- Moein, M.M. Advancements of chiral molecularly imprinted polymers in separation and sensor fields: A review of the last decade. Talanta 2021, 224, 121794. [Google Scholar] [CrossRef]
- Ahmed, W.; Karabaliev, M.; Gao, C. Taking chiral polymers toward immune regulation. J. Polym. Sci. 2022, 60, 2213–2224. [Google Scholar] [CrossRef]
- Miao, T.; Cheng, X.; Guo, Y.; Zhang, G.; Zhang, W. Preparation of chiral polymers: Precise chirality transfer from natural species to achiral artificial polymers. Giant 2023, 14, 100161. [Google Scholar] [CrossRef]
- Denmark, S.E. Dynamically Chiral Helical Polymers: A New Frontier in Asymmetric Catalysis? ACS Cent. Sci. 2019, 5, 1117–1119. [Google Scholar] [CrossRef]
- Lu, X.-B.; Ren, W.-M.; Wu, G.-P. CO2 Copolymers from Epoxides: Catalyst Activity, Product Selectivity, and Stereochemistry Control. Acc. Chem. Res. 2012, 45, 1721–1735. [Google Scholar] [CrossRef]
- Ritcey, A.M.; Gray, D.G. Optical rotatory dispersion from liquid crystalline solutions and films of hydroxypropylcellulose. Liq. Cryst. 1989, 6, 717–726. [Google Scholar] [CrossRef]
- Fujiki, M.; Koe, J.R. Optically active silicon-containing polymers. In Silicon-Containing Polymers; Jones, R.J., Ando, W., Chojnowski, J., Eds.; Springer: Dordrecht, The Netherlands, 2000; pp. 643–665. [Google Scholar]
- Shen, Y.; Wang, Y.; Hamley, I.W.; Qi, W.; Su, R.; He, Z. Chiral self-assembly of peptides: Toward the design of supramolecular polymers with enhanced chemical and biological functions. Prog. Polym. Sci. 2021, 123, 101469. [Google Scholar] [CrossRef]
- Han, X.; Zhang, J.; Huang, J.; Wu, X.; Yuan, D.; Liu, Y.; Cui, Y. Chiral induction in covalent organic frameworks. Nat. Commun. 2018, 9, 1294. [Google Scholar] [CrossRef]
- Rahman, M.; Almalki, W.H.; Afzal, O.; Alfawaz Altamimi, A.S.; Najib Ullah, S.N.M.; Abul Barkat, M.; Beg, S. Chiral-engineered supraparticles: Emerging tools for drug delivery. Drug Discov. Today 2023, 28, 103420. [Google Scholar] [CrossRef]
- Song, I.; Ahn, J.; Shang, X.; Oh, J.H. Optoelectronic Property Modulation in Chiral Organic Semiconductor/Polymer Blends. ACS Appl. Mater. Interfaces 2020, 12, 49926–49934. [Google Scholar] [CrossRef]
- Yashima, E.; Maeda, K.; Iida, H.; Furusho, Y.; Nagai, K. Helical Polymers: Synthesis, Structures, and Functions. Chem. Rev. 2009, 109, 6102–6211. [Google Scholar] [CrossRef]
- Kumar, S.; Demappa, T.; Sannappa, J. Influence of KI salt concentration on the hydroxypropyl methylcellulose films: Optical study. Opt. Mater. Amst. 2022, 129, 112474. [Google Scholar] [CrossRef]
- Erlander, S.R.; Tobin, R. The effect of aqueous salt solutions on the conformation and thermal motion of molecules and polymers such as starch. Makromol. Chem. 1968, 111, 212–225. [Google Scholar] [CrossRef]
- Golub, M.A.; Pickett, E.E. Effect of temperature and pH on the optical rotation of proteins. J. Polym. Sci. 1954, 13, 427–440. [Google Scholar] [CrossRef]
- Klabunovskii, Y.I. Temperature dependence of the optical rotatory dispersion of (−)-polymenthylmethacrylate. Polym. Sci. USSR 1966, 8, 1509–1514. [Google Scholar] [CrossRef]
- Koralewski, M.; Bodek, K.H.; Wachowski, T. Temperature and metal ions influence on optical properties of chitosan in aqueous solution. Polish Chitin Soc. Monogr. 2007, XII, 79–86. [Google Scholar]
- Buntjakov, A.S.; Averyanova, V.M. The structure of solutions and films of cellulose acetate. J. Polym. Sci. Part C Polym. Symp. 1972, 38, 109–120. [Google Scholar] [CrossRef]
- Werbowyj, R.S.; Gray, D.G. Optical properties of hydroxypropyl cellulose liquid crystals. I. Cholesteric pitch and polymer concentration. Macromolecules 1984, 17, 1512–1520. [Google Scholar] [CrossRef]
- Dintzis, F.R.; Tobin, R.; Babcock, G.E. Amylose optical rotation in some mixed solvent systems. Biopolymers 1971, 10, 379–389. [Google Scholar] [CrossRef]
- Haghdani, S.; Hoff, B.H.; Koch, H.; Åstrand, P.-O. Solvent Effects on Optical Rotation: On the Balance between Hydrogen Bonding and Shifts in Dihedral Angles. J. Phys. Chem. A 2017, 121, 4765–4777. [Google Scholar] [CrossRef] [PubMed]
- Pop, V.; Dorohoi, D.; Cringeanu, E. A new method for determining birefringence dispersion. J. Macromol. Sci. Part B 1994, 33, 373–385. [Google Scholar] [CrossRef]
- Barzic, A.I.; Dimitriu, D.G.; Dorohoi, D.O. New method for determining the optical rotatory dispersion of hydroxypropyl cellulose polymer solutions in water. Polym. Eng. Sci. 2015, 55, 1077–1081. [Google Scholar] [CrossRef]
- Cosutchi, A.I.; Dimitriu, D.G.; Zelinschi, C.B.; Breaban, I.; Dorohoi, D.O. Optical activity of transparent polymer layers characterized by spectral means. J. Mol. Struct. 2015, 1090, 39–43. [Google Scholar] [CrossRef]
- Traub, W.A. Constant-dispersion grism spectrometer for channeled spectra. JOSA A 1990, 7, 1779–1791. [Google Scholar] [CrossRef]
- Wang, Y.-F.; Wang, T.-T.; Liang, J.-W.; Wang, Y.-S.; Laude, V. Channeled spectrum in the transmission of phononic crystal waveguides. J. Sound Vib. 2018, 437, 410–421. [Google Scholar] [CrossRef]
- Dorohoi, D.O.; Postolache, M.; Nechifor, C.D.; Dimitriu, D.G.; Albu, R.M.; Stoica, I.; Barzic, A.I. Review on Optical Methods Used to Characterize the Linear Birefringence of Polymer Materials for Various Applications. Molecules 2023, 28, 2955. [Google Scholar] [CrossRef] [PubMed]
- Yi, Z.; Zhu, L.; Xu, Y.; Jiang, J.; Zhu, B. Polypropylene Glycol: The Hydrophilic Phenomena in the Modification of Polyethersulfone Membranes. Ind. Eng. Chem. Res. 2011, 50, 11297–11305. [Google Scholar] [CrossRef]
- Baev, A.; Prasad, P.N. Chiral polymer photonics. Opt. Mater. Express 2017, 7, 2432. [Google Scholar] [CrossRef]
- Kauranen, M.; Verbiest, T.; Maki, J.J.; Persoons, A. Nonlinear optical properties of chiral polymers. Synth. Met. 1996, 81, 117–120. [Google Scholar] [CrossRef]
- Barzic, A.I.; Dimitriu, D.G.; Dorohoi, D.O. Optical Rotatory Dispersion of Poly(propylene oxide) in Benzene Solution Determined from Channeled Spectra. Int. J. Polym. Anal. Charact. 2015, 20, 565–571. [Google Scholar] [CrossRef]
- Barton, A.F.M. Solubility parameters. Chem. Rev. 1975, 75, 731–753. [Google Scholar] [CrossRef]
- Stefanis, E.; Panayiotou, C. Prediction of Hansen Solubility Parameters with a New Group-Contribution Method. Int. J. Thermophys. 2008, 29, 568–585. [Google Scholar] [CrossRef]
- Rohindra, D.R.; Lata, R.A.; Coll, R.K. A simple experiment to determine the activation energy of the viscous flow of polymer solutions using a glass capillary viscometer. Eur. J. Phys. 2012, 33, 1457–1464. [Google Scholar] [CrossRef]
- Ferry, J.D.; Foster, E.L.; Browning, G.V.; Sawyer, W.M. Viscosities of concentrated polyvinyl acetate solutions in various solvents. J. Colloid Sci. 1951, 6, 377–388. [Google Scholar] [CrossRef]
- Rablen, P.R.; Miller, D.A.; Bullock, V.R.; Hutchinson, P.H.; Gorman, J.A. Solvent Effects on the Barrier to C−N Bond Rotation in N, N-Dimethylaminoacrylonitrile. J. Am. Chem. Soc. 1999, 121, 218–226. [Google Scholar] [CrossRef]
- Zhu, H.-J.; Ren, J.; Pittman, C.U. Matrix model to predict specific optical rotations of acyclic chiral molecules. Tetrahedron 2007, 63, 2292–2314. [Google Scholar] [CrossRef]
- Zhu, H.-J. Organic Stereochemistry. Experimental and Computational Methods; Wiley-VCH: Weinheim, Germany, 2015. [Google Scholar]
- Hezaveh, S.; Samanta, S.; Milano, G.; Roccatano, D. Molecular dynamics simulation study of solvent effects on conformation and dynamics of polyethylene oxide and polypropylene oxide chains in water and in common organic solvents. J. Chem. Phys. 2012, 136, 124901. [Google Scholar] [CrossRef]
- Ferry, J. Viscoelastic Properties of Polymers, 3rd ed.; John Wiley & Sons: New York, NY, USA, 1980. [Google Scholar]
- Jensen, M.K.; Bach, A.; Hassager, O.; Skov, A.L. Linear rheology of cross-linked polypropylene oxide as a pressure sensitive adhesive. Int. J. Adhes. Adhes. 2009, 29, 687–693. [Google Scholar] [CrossRef]
- Jabeen, F.; Chen, M.; Rasulev, B.; Ossowski, M.; Boudjouk, P. Refractive indices of diverse data set of polymers: A computational QSPR based study. Comput. Mater. Sci. 2017, 137, 215–224. [Google Scholar] [CrossRef]
- Borah, D.J.; Mostako, A.T.T. Investigation on dispersion parameters of Molybdenum Oxide thin films via Wemple–DiDomenico (WDD) single oscillator model. Appl. Phys. A 2020, 126, 818. [Google Scholar] [CrossRef]
- Soliman, T.S.; Vshivkov, S.A.; Elkalashy, S.I. Structural, linear and nonlinear optical properties of Ni nanoparticles—Polyvinyl alcohol nanocomposite films for optoelectronic applications. Opt. Mater. 2020, 107, 110037. [Google Scholar] [CrossRef]
- Dezhahang, Z.; Poopari, M.R.; Hernández, F.E.; Diaz, C.; Xu, Y. Diastereomeric preference of a triply axial chiral binaphthyl based molecule: A concentration dependent study by chiroptical spectroscopies. Phys. Chem. Chem. Phys. 2014, 16, 12959–12967. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Zhang, C.; Zhang, W.; Cui, Z.; Fu, P.; Liu, M.; Pang, X.; Zhao, Q. Optical Activity of Homochiral Polyamides in Solution and Solid State: Structural Function for Chiral Induction. ACS Omega 2018, 3, 2463–2469. [Google Scholar] [CrossRef] [PubMed]
- Dutt, G.B. Molecular Rotation as a Tool for Exploring Specific Solute–Solvent Interactions. ChemPhysChem 2005, 6, 413–418. [Google Scholar] [CrossRef]
- Kumata, Y.; Furukawa, J.; Fueno, T. The Effect of Solvents on the Optical Rotation of Poly(propylene Oxide). Bull. Chem. Soc. Jpn. 1970, 43, 3663–3666. [Google Scholar] [CrossRef]
- Makitra, R.G.; Midyana, G.G.; Pal’chikova, E.Y. The influence of medium on optical rotation of propylene oxide and polypropylene oxide. Russ. J. Phys. Chem. A 2011, 85, 983–986. [Google Scholar] [CrossRef]
- Gotlib, Y.Y.; Darinskii, A.A. Dipole radical polymerization and internal rotation in polymers. The potential barriers of internal rotation for polymethylacrylate. Polym. Sci. USSR 1965, 7, 1914–1920. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; et al. Gaussian, Inc., Wallingford CT. 2016. Available online: https://gaussian.com/citation/ (accessed on 23 April 2024).
- Adamo, C.; Barone, V. Toward reliable density functional methods without adjustable parameters: The PBE0 model. J. Chem. Phys. 1999, 110, 6158–6170. [Google Scholar] [CrossRef]
- Isac, D.L.; Airinei, A.; Maftei, D.; Humelnicu, I.; Mocci, F.; Laaksonen, A.; Pinteală, M. On the Charge-Transfer Excitations in Azobenzene Maleimide Compounds: A Theoretical Study. J. Phys. Chem. A 2019, 123, 5525–5536. [Google Scholar] [CrossRef]
- Airinei, A.; Isac, D.L.; Homocianu, M.; Cojocaru, C.; Hulubei, C. Solvatochromic analysis and DFT computational study of an azomaleimide derivative. J. Mol. Liq. 2017, 240, 476–485. [Google Scholar] [CrossRef]
- Airinei, A.; Isac, D.L.; Fifere, N.; Maftei, D.; Rusu, E. Computational and experimental investigation of photoresponsive behavior of 4,4′-dihydroxyazobenzene diglycidyl ether. Results Chem. 2023, 5, 100709. [Google Scholar] [CrossRef]
- Isac, D.L.; Airinei, A.; Homocianu, M.; Fifere, N.; Cojocaru, C.; Hulubei, C. Photochromic properties of some azomaleimide derivatives and DFT quantum chemical study of thermal cis-trans isomerization pathways. J. Photochem. Photobiol. A Chem. 2020, 390, 112300. [Google Scholar] [CrossRef]
System | Flow Behavior Index | Consistency Index (Pa.sn) |
---|---|---|
PPO/p-dioxane | 0.42 | 0.48 |
PPO/Ethyl acetate | 0.39 | 0.19 |
PPO/Chloroform | 0.81 | 0.07 |
PPO/Carbon disulfide | 0.73 | 0.02 |
PPO/Benzonitrile | 0.44 | 0.34 |
System | Ed (eV) | E0 (eV) | Eg (eV) | n0 | χ(1) | χ(3) (e.s.u.) | nnl (e.s.u.) |
---|---|---|---|---|---|---|---|
PPO/p-dioxane | 6.005 | 6.455 | 3.228 | 1.389 | 0.074 | 5.107 × 10−15 | 1.385 × 10−13 |
PPO/Ethyl acetate | 5.924 | 7.339 | 3.669 | 1.344 | 0.064 | 2.894 × 10−15 | 8.118 × 10−14 |
PPO/Chloroform | 10.957 | 10.529 | 5.265 | 1.428 | 0.082 | 7.996 × 10−15 | 2.109 × 10−13 |
PPO/Carbon disulfide | 14.899 | 9.699 | 4.849 | 1.592 | 0.122 | 3.797 × 10−14 | 8.984 × 10−13 |
PPO/Benzonitrile | 9.578 | 8.156 | 4.078 | 1.476 | 0.093 | 1.297 × 10−14 | 3.315 × 10−13 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zara, A.; Albu, R.M.; Stoica, I.; Barzic, A.I.; Dimitriu, D.G.; Dorohoi, D.O. New Insights on Solvent-Induced Changes in Refractivity and Specific Rotation of Poly(propylene oxide) Systems Extracted from Channeled Spectra. Int. J. Mol. Sci. 2024, 25, 4682. https://doi.org/10.3390/ijms25094682
Zara A, Albu RM, Stoica I, Barzic AI, Dimitriu DG, Dorohoi DO. New Insights on Solvent-Induced Changes in Refractivity and Specific Rotation of Poly(propylene oxide) Systems Extracted from Channeled Spectra. International Journal of Molecular Sciences. 2024; 25(9):4682. https://doi.org/10.3390/ijms25094682
Chicago/Turabian StyleZara, Alexandru, Raluca Marinica Albu, Iuliana Stoica, Andreea Irina Barzic, Dan Gheorghe Dimitriu, and Dana Ortansa Dorohoi. 2024. "New Insights on Solvent-Induced Changes in Refractivity and Specific Rotation of Poly(propylene oxide) Systems Extracted from Channeled Spectra" International Journal of Molecular Sciences 25, no. 9: 4682. https://doi.org/10.3390/ijms25094682
APA StyleZara, A., Albu, R. M., Stoica, I., Barzic, A. I., Dimitriu, D. G., & Dorohoi, D. O. (2024). New Insights on Solvent-Induced Changes in Refractivity and Specific Rotation of Poly(propylene oxide) Systems Extracted from Channeled Spectra. International Journal of Molecular Sciences, 25(9), 4682. https://doi.org/10.3390/ijms25094682