Heat-Stress Impacts on Developing Bovine Oocytes: Unraveling Epigenetic Changes, Oxidative Stress, and Developmental Resilience
Abstract
:1. Introduction
2. Results
2.1. Effects of Heat Stress on Oocyte and Embryo Development
2.2. Effect of Heat Stress on Histone Modification
2.2.1. Effect of Heat Stress on the Expression Level of Histone H1 during Oocyte Development
2.2.2. Effect of Heat Stress on the Expression Level of Histone H2A during Oocyte Development
2.2.3. Effect of Heat Stress on the Expression Level of Histone H2B during Oocyte Development
2.2.4. Effect of Heat Stress on the Expression Level of Histone H4 during Oocyte Development
2.3. Effects of Heat Stress on DNA Methylation and DNA Hydroxymethylation
2.3.1. Effect of Heat Stress on the Expression Level of DNA Methylation during Oocyte Development
2.3.2. Effect of Heat Stress on the Expression Level of DNA Hydroxymethylation during Oocyte Development
2.4. Effect of Heat-Stress Treatment on ROS Levels in Oocytes
2.5. Effect of Heat-Stress Treatment on Mitochondrial Function in Bovine Oocytes
2.5.1. Effect of Heat-Stress Treatment on the ΔΨm in Bovine Oocytes
2.5.2. Effect of Heat-Stress Treatment on the Mitochondrial Distribution in Bovine Oocytes
2.5.3. Effect of Heat-Stress Treatment on the ATP Level in Bovine Oocytes
2.5.4. Effect of Heat-Stress Treatment on Mitochondrial DNA Copy Number in Bovine Oocytes
2.5.5. Effect of Heat-Stress Treatment on Mitophagy in Bovine Oocytes
2.6. Effect of Heat-Stress Treatment on Apoptosis in Bovine Oocytes
2.7. Effect of Heat-Stress Treatment on TZPs in Bovine Oocytes
2.8. Effects of Heat Stress on Gene Expression in Bovine Oocytes
2.9. Effect of Heat Stress on the Expression of Genes Related to Epigenetic Modifications in Bovine
2.9.1. Effect of Heat Stress on the Expression of Genes Related to Epigenetic Modifications in Bovine Oocytes
2.9.2. Effect of Heat Stress on the Expression of Genes Related to Epigenetic Modifications in Bovine Blastocysts
3. Discussion
4. Materials and Methods
4.1. In Vitro Maturation of Oocytes (IVM)
4.2. In Vitro Fertilization Experiments (IVF)
4.3. Immunofluorescence Analysis
4.4. Oxidative Stress in Oocytes
4.5. ΔΨm Examination of Oocytes
4.6. Mitochondrial-Distribution Examination of Oocytes
4.7. ATP Examination of Oocytes
4.8. Detection of Mitochondrial DNA Copy Number in Oocytes
4.9. Oocyte Apoptosis Assessment
4.10. Detection of Transzonal Projections in Oocytes
4.11. Quantitative Real-Time Polymerase Chain Reaction (q-PCR) of Candidate Genes
4.12. Experimental Design
4.13. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Feil, A.A.; Schreiber, D.; Haetinger, C.; Haberkamp, Â.M.; Kist, J.I.; Rempel, C.M.; Maehler, A.E.; Gomes, M.C.; da Silva, G.R. Sustainability in the dairy industry: A systematic literature review. Environ. Sci. Pollut. Res. Int. 2020, 27, 33527–33542. [Google Scholar] [CrossRef] [PubMed]
- Sangild, P.T.; Vonderohe, C.; Melendez Hebib, V.; Burrin, D.G. Potential benefits of bovine colostrum in pediatric nutrition and health. Nutrients 2021, 13, 2551. [Google Scholar] [CrossRef] [PubMed]
- Wankar, A.K.; Rindhe, S.N.; Doijad, N.S. Heat stress in dairy animals and current milk production trends, economics, and future perspectives: The global scenario. Trop. Anim. Health Prod. 2021, 53, 70. [Google Scholar] [CrossRef] [PubMed]
- Huber, E.; Notaro, U.S.; Recce, S.; Rodríguez, F.M.; Ortega, H.H.; Salvetti, N.R.; Rey, F. Fetal programming in dairy cows: Effect of heat stress on progeny fertility and associations with the hypothalamic-pituitary-adrenal axis functions. Anim. Reprod. Sci. 2020, 216, 106348. [Google Scholar] [CrossRef] [PubMed]
- Dovolou, E.; Giannoulis, T.; Nanas, I.; Amiridis, G.S. Heat stress: A serious disruptor of the reproductive physiology of dairy cows. Animals 2023, 13, 1846. [Google Scholar] [CrossRef] [PubMed]
- Naranjo-Gómez, J.S.; Uribe-García, H.F.; Herrera-Sánchez, M.P.; Lozano-Villegas, K.J.; Rodríguez-Hernández, R.; Rondón-Barragán, I.S. Heat stress on cattle embryo: Gene regulation and adaptation. Heliyon 2021, 7, e06570. [Google Scholar] [CrossRef] [PubMed]
- Aguiar, L.H.; Hyde, K.A.; Pedroza, G.H.; Denicol, A.C. Heat stress impairs in vitro development of preantral follicles of cattle. Anim. Reprod. Sci. 2020, 213, 106277. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Li, J.; Wang, F.; Xiao, J.; Wang, Y.; Yang, H.; Li, S.; Cao, Z. Heat stress on calves and heifers: A review. J. Anim. Sci. Biotechnol. 2020, 11, 79. [Google Scholar] [CrossRef]
- Sakatani, M. Effects of heat stress on bovine preimplantation embryos produced in vitro. J. Reprod. Dev. 2017, 63, 347–352. [Google Scholar] [CrossRef]
- Cebrian-Serrano, A.; Salvador, I.; Raga, E.; Dinnyes, A.; Silvestre, M.A. Beneficial effect of melatonin on blastocyst in vitro production from heat-stressed bovine oocytes. Reprod. Domest. Anim. 2013, 48, 738–746. [Google Scholar] [CrossRef]
- de Barros, F.R.O.; Paula-Lopes, F.F. Cellular and epigenetic changes induced by heat stress in bovine preimplantation embryos. Mol. Reprod. Dev. 2018, 85, 810–820. [Google Scholar] [CrossRef] [PubMed]
- McManus, C.M.; Faria, D.A.; Lucci, C.M.; Louvandini, H.; Pereira, S.A.; Paiva, S.R. Heat stress effects on sheep: Are hair sheep more heat resistant? Theriogenology 2020, 155, 157–167. [Google Scholar] [CrossRef] [PubMed]
- Lian, W.; Gao, D.; Huang, C.; Zhong, Q.; Hua, R.; Lei, M. Heat stress impairs maternal endometrial integrity and results in embryo implantation failure by regulating transport-related gene expression in Tongcheng pigs. Biomolecules 2022, 12, 388. [Google Scholar] [CrossRef] [PubMed]
- Wan, X.; He, X.; Liu, Q.; Duan, P.; Li, H. Frequent and mild scrotal heat stress impairs embryo development, implantation and offspring sex ratio in mice. Reprod. Biomed. Online 2020, 40, 617–626. [Google Scholar] [CrossRef] [PubMed]
- El-Ratel, I.T.; Gabr, A.A. Effect of spirulina and vitamin E on reproduction and in vitro embryo production in heat-stressed rabbits. Pak. J. Biol. Sci. 2019, 22, 545–553. [Google Scholar] [CrossRef] [PubMed]
- Marei, W.F.A.; Leroy, J.L.M.R. Cellular stress responses in oocytes: Molecular changes and clinical implications. Adv. Exp. Med. Biol. 2022, 1387, 171–189. [Google Scholar]
- Stamperna, K.; Giannoulis, T.; Nanas, I.; Kalemkeridou, M.; Dadouli, K.; Moutou, K.; Amiridis, G.S.; Dovolou, E. Short term temperature elevation during IVM affects embryo yield and alters gene expression pattern in oocytes, cumulus cells and blastocysts in cattle. Theriogenology 2020, 156, 36–45. [Google Scholar] [CrossRef] [PubMed]
- Abdelatty, A.M.; Iwaniuk, M.E.; Potts, S.B.; Gad, A. Influence of maternal nutrition and heat stress on bovine oocyte and embryo development. Int. J. Vet. Sci. Med. 2018, 6, S1–S5. [Google Scholar] [CrossRef]
- Miętkiewska, K.; Kordowitzki, P.; Pareek, C.S. Effects of heat stress on bovine oocytes and early embryonic development-an update. Cells 2022, 11, 4073. [Google Scholar] [CrossRef]
- Wang, M.; Ibeagha-Awemu, E.M. Impacts of epigenetic processes on the health and productivity of livestock. Front. Genet. 2021, 11, 613636. [Google Scholar] [CrossRef]
- van Esch, B.C.A.M.; Porbahaie, M.; Abbring, S.; Garssen, J.; Potaczek, D.P.; Savelkoul, H.F.J.; van Neerven, R.J.J. The impact of milk and its components on epigenetic programming of immune function in early life and beyond: Implications for allergy and asthma. Front. Immunol. 2020, 11, 2141. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Zhang, L.; Deng, T.; Zou, P.; Wang, Y.; Quan, F.; Zhang, Y. Effects of oocyte vitrification on epigenetic status in early bovine embryos. Theriogenology 2016, 86, 868–878. [Google Scholar] [CrossRef] [PubMed]
- Halušková, J.; Holečková, B.; Staničová, J. DNA methylation studies in cattle. J. Appl. Genet. 2021, 62, 121–136. [Google Scholar] [CrossRef] [PubMed]
- Lin, L.; Li, Q.; Zhang, L.; Zhao, D.; Dai, Y.; Li, N. Aberrant epigenetic changes and gene expression in cloned cattle dying around birth. BMC Dev. Biol. 2008, 8, 14. [Google Scholar] [CrossRef]
- Wu, X.; Li, Y.; Xue, L.; Wang, L.; Yue, Y.; Li, K.; Bou, S.; Li, G.P.; Yu, H. Multiple histone site epigenetic modifications in nuclear transfer and in vitro fertilized bovine embryos. Zygote 2011, 19, 31–45. [Google Scholar] [CrossRef] [PubMed]
- Herrmann, D.; Dahl, J.A.; Lucas-Hahn, A.; Collas, P.; Niemann, H. Histone modifications and mRNA expression in the inner cell mass and trophectoderm of bovine blastocysts. Epigenetics 2013, 8, 281–289. [Google Scholar] [CrossRef] [PubMed]
- Doherty, R.; O’ Farrelly, C.; Meade, K.G. Comparative epigenetics: Relevance to the regulation of production and health traits in cattle. Anim. Genet. 2014, 45 (Suppl. 1), 3–14. [Google Scholar] [CrossRef] [PubMed]
- Roth, Z.; Hansen, P.J. Involvement of apoptosis in disruption of developmental competence of bovine oocytes by heat shock during maturation. Biol. Reprod. 2004, 71, 1898–1906. [Google Scholar] [CrossRef] [PubMed]
- Wolfenson, D.; Roth, Z. Impact of heat stress on cow reproduction and fertility. Anim. Front. 2018, 9, 32–38. [Google Scholar] [CrossRef]
- Golestanfar, A.; Niasari-Naslaji, A.; Jafarpour, F.; Rouhollahi, S.; Rezaei, N.; Menezo, Y.; Dattilo, M.; Nasr-Esfahani, M.H. Metabolic enhancement of the one carbon metabolism (OCM) in bovine oocytes IVM increases the blastocyst rate: Evidences for a OCM checkpoint. Sci. Rep. 2022, 12, 20629. [Google Scholar] [CrossRef]
- Fu, G.; Ghadam, P.; Sirotkin, A.; Khochbin, S.; Skoultchi, A.I.; Clarke, H.J. Mouse oocytes and early embryos express multiple histone H1 subtypes. Biol. Reprod. 2003, 68, 1569–1576. [Google Scholar] [CrossRef]
- Li, S.; Shi, Y.; Dang, Y.; Hu, B.; Xiao, L.; Zhao, P.; Wang, S.; Zhang, K. Linker histone H1FOO is required for bovine preimplantation development by regulating lineage specification and chromatin structure. Biol. Reprod. 2022, 107, 1425–1438. [Google Scholar] [CrossRef]
- Yun, Y.; An, P.; Ning, J.; Zhao, G.M.; Yang, W.; Lei, A.M. H1foo is essential for in vitro meiotic maturation of bovine oocytes. Zygote 2015, 23, 416–425. [Google Scholar] [CrossRef]
- Tanaka, M.; Hennebold, J.D.; Macfarlane, J.; Adashi, E.Y. A mammalian oocyte-specific linker histone gene H1oo: Homology with the genes for the oocyte-specific cleavage stage histone (cs-H1) of sea urchin and the B4/H1M histone of the frog. Development 2001, 128, 655–664. [Google Scholar] [CrossRef] [PubMed]
- Funaya, S.; Ooga, M.; Suzuki, M.G.; Aoki, F. Linker histone H1FOO regulates the chromatin structure in mouse zygotes. FEBS Lett. 2018, 592, 2414–2424. [Google Scholar] [CrossRef]
- Martínez-Frías, M.L. Can our understanding of epigenetics assist with primary prevention of congenital defects? J. Med. Genet. 2010, 4, 73–80. [Google Scholar] [CrossRef] [PubMed]
- Borsuk, E.; Michalkiewicz, J.; Kubiak, J.Z.; Kloc, M. Histone Modifications in Mouse Pronuclei and Consequences for Embryo Development. Results Probl. Cell. Differ. 2022, 70, 397–415. [Google Scholar]
- Wang, W.L.; Anderson, L.C.; Nicklay, J.J.; Chen, H.; Gamble, M.J.; Shabanowitz, J.; Hunt, D.F.; Shechter, D. Phosphorylation and arginine methylation mark histone H2A prior to deposition during Xenopus laevis development. Epigenetics Chromatin 2014, 7, 22. [Google Scholar] [CrossRef] [PubMed]
- Nashun, B.; Akiyama, T.; Suzuki, M.G.; Aoki, F. Dramatic replacement of histone variants during genome remodeling in nuclear-transferred embryos. Epigenetics 2011, 6, 1489–1497. [Google Scholar] [CrossRef] [PubMed]
- Wu, B.J.; Dong, F.L.; Ma, X.S.; Wang, X.G.; Lin, F.; Liu, H.L. Localization and expression of histone H2A variants during mouse oogenesis and preimplantation embryo development. Genet. Mol. Res. 2014, 13, 5929–5939. [Google Scholar] [CrossRef]
- Bettegowda, A.; Patel, O.V.; Ireland, J.J.; Smith, G.W. Quantitative analysis of messenger RNA abundance for ribosomal protein L-15, cyclophilin-A, phosphoglycerokinase, beta-glucuronidase, glyceraldehyde 3-phosphate dehydrogenase, beta-actin, and histone H2A during bovine oocyte maturation and early embryogenesis in vitro. Mol. Reprod. Dev. 2006, 73, 267–278. [Google Scholar] [PubMed]
- Vigneault, C.; Gilbert, I.; Sirard, M.A.; Robert, C. Using the histone H2a transcript as an endogenous standard to study relative transcript abundance during bovine early development. Mol. Reprod. Dev. 2007, 74, 703–715. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, A.; Matsumoto, H.; Nagayama, K.; Kitano, M.; Hirose, S.; Tanaka, H.; Mori, E.; Yamakawa, N.; Yasumoto, J.; Yuki, K.; et al. Evidence for the involvement of double-strand breaks in heat-induced cell killing. Cancer Res. 2004, 64, 8839–8845. [Google Scholar] [CrossRef] [PubMed]
- Rogakou, E.P.; Sekeri-Pataryas, K.E. A biochemical marker for differentiation is present in an in vitro aging cell system. Biochem. Biophys. Res. Commun. 1993, 196, 1274–1279. [Google Scholar] [CrossRef]
- Rinaldo, C.; Moncada, A.; Gradi, A.; Ciuffini, L.; D’Eliseo, D.; Siepi, F.; Prodosmo, A.; Giorgi, A.; Pierantoni, G.M.; Trapasso, F.; et al. HIPK2 controls cytokinesis and prevents tetraploidization by phosphorylating histone H2B at the midbody. Mol. Cell 2012, 47, 87–98. [Google Scholar] [CrossRef] [PubMed]
- de la Barre, A.E.; Angelov, D.; Molla, A.; Dimitrov, S. The N-terminus of histone H2B, but not that of histone H3 or its phosphorylation, is essential for chromosome condensation. EMBO J. 2001, 20, 6383–6393. [Google Scholar] [CrossRef] [PubMed]
- Joo, H.Y.; Jones, A.; Yang, C.; Zhai, L.; Smith, A.D.; Zhan, Z.; Chandrasekharan, M.B.; Sun, Z.W.; Renfrow, M.B.; Wang, Y.; et al. Regulation of histone H2A and H2B deubiquitination and Xenopus development by USP12 and USP46. J. Biol. Chem. 2011, 286, 7190–7201. [Google Scholar] [CrossRef] [PubMed]
- Wiekowski, M.; Miranda, M.; Nothias, J.Y.; DePamphilis, M.L. Changes in histone synthesis and modification at the beginning of mouse development correlate with the establishment of chromatin mediated repression of transcription. J. Cell Sci. 1997, 110, 1147–1158. [Google Scholar] [CrossRef] [PubMed]
- Rozinek, J.; Muller, S.; Courtens, J.L. Immunocytochemical localization of histones H2B, H3 and H4 in pronuclei and four-cell stages of porcine embryos. Prelim. Results Reprod. Nutr. Dev. 1989, 29, 577–587. [Google Scholar] [CrossRef]
- Kafer, G.R.; Lehnert, S.A.; Pantaleon, M.; Kaye, P.L.; Moser, R.J. Expression of genes coding for histone variants and histone-associated proteins in pluripotent stem cells and mouse preimplantation embryos. Gene. Expr. Patterns 2010, 10, 299–305. [Google Scholar] [CrossRef]
- Izumi, Y.; Matsuo, K.; Yokoya, A. Secondary structural analyses of histone H2A-H2B proteins extracted from heated cells. Chirality 2023, 35, 165–171. [Google Scholar] [CrossRef] [PubMed]
- Freeman, L.; Kurumizaka, H.; Wolffe, A.P. Functional domains for assembly of histones H3 and H4 into the chromatin of Xenopus embryos. Proc. Natl. Acad. Sci. USA 1996, 93, 12780–12785. [Google Scholar] [CrossRef] [PubMed]
- Ghule, P.N.; Xie, R.L.; Colby, J.L.; Rivera-Pérez, J.A.; Jones, S.N.; Lian, J.B.; Stein, J.L.; van Wijnen, A.J.; Stein, G.S. Maternal expression and early induction of histone gene transcription factor Hinfp sustains development in pre-implantation embryos. Dev. Biol. 2016, 419, 311–320. [Google Scholar] [CrossRef] [PubMed]
- Endo, T.; Imai, A.; Shimaoka, T.; Kano, K.; Naito, K. Histone exchange activity and its correlation with histone acetylation status in porcine oocytes. Reproduction 2011, 141, 397–405. [Google Scholar] [CrossRef] [PubMed]
- Tessadori, F.; Giltay, J.C.; Hurst, J.A.; Massink, M.P.; Duran, K.; Vos, H.R.; van Es, R.M.; Deciphering Developmental Disorders Study; Scott, R.H.; van Gassen, K.L.I.; et al. Germline mutations affecting the histone H4 core cause a developmental syndrome by altering DNA damage response and cell cycle control. Nat. Genet. 2017, 49, 1642–1646. [Google Scholar] [CrossRef]
- Zhu, L.; Marjani, S.L.; Jiang, Z. The epigenetics of gametes and early embryos and potential long-range consequences in livestock species-filling in the picture with epigenomic analyses. Front. Genet. 2021, 12, 557934. [Google Scholar] [CrossRef] [PubMed]
- Park, J.S.; Jeong, Y.S.; Shin, S.T.; Lee, K.K.; Kang, Y.K. Dynamic DNA methylation reprogramming: Active demethylation and immediate remethylation in the male pronucleus of bovine zygotes. Dev. Dyn. 2007, 236, 2523–2533. [Google Scholar] [CrossRef] [PubMed]
- Dobbs, K.B.; Rodriguez, M.; Sudano, M.J.; Ortega, M.S.; Hansen, P.J. Dynamics of DNA methylation during early development of the preimplantation bovine embryo. PLoS ONE 2013, 8, e66230. [Google Scholar] [CrossRef] [PubMed]
- Hu, W.; Marchesi, D.; Qiao, J.; Feng, H.L. Effect of slow freeze versus vitrification on the oocyte: An animal model. Fertil. Steril. 2012, 98, 752–760. [Google Scholar] [CrossRef] [PubMed]
- Wossidlo, M.; Nakamura, T.; Lepikhov, K.; Marques, C.J.; Zakhartchenko, V.; Boiani, M.; Arand, J.; Nakano, T.; Reik, W.; Walter, J. 5-Hydroxymethylcytosine in the mammalian zygote is linked with epigenetic reprogramming. Nat. Commun. 2011, 2, 241. [Google Scholar] [CrossRef]
- Li, Y.; O’Neill, C. 5’-Methylcytosine and 5'-hydroxymethylcytosine each provide epigenetic information to the mouse zygote. PLoS ONE 2013, 8, e63689. [Google Scholar] [CrossRef] [PubMed]
- Salvaing, J.; Aguirre-Lavin, T.; Boulesteix, C.; Lehmann, G.; Debey, P.; Beaujean, N. 5-Methylcytosine and 5-hydroxymethylcytosine spatiotemporal profiles in the mouse zygote. PLoS ONE 2012, 7, e38156. [Google Scholar] [CrossRef] [PubMed]
- Ruzov, A.; Tsenkina, Y.; Serio, A.; Dudnakova, T.; Fletcher, J.; Bai, Y.; Chebotareva, T.; Pells, S.; Hannoun, Z.; Sullivan, G.; et al. Lineage-specific distribution of high levels of genomic 5-hydroxymethylcytosine in mammalian development. Cell Res. 2011, 21, 1332–1342. [Google Scholar] [CrossRef]
- Inoue, A.; Shen, L.; Dai, Q.; He, C.; Zhang, Y. Generation and replication-dependent dilution of 5fC and 5caC during mouse preimplantation development. Cell Res. 2011, 21, 1670–1676. [Google Scholar] [CrossRef] [PubMed]
- Diaz, F.A.; Gutierrez-Castillo, E.J.; Foster, B.A.; Hardin, P.T.; Bondioli, K.R.; Jiang, Z. Evaluation of seasonal heat stress on transcriptomic profiles and global DNA methylation of bovine oocytes. Front. Genet. 2021, 12, 699920. [Google Scholar] [CrossRef] [PubMed]
- Petrussa, L.; Van de Velde, H.; De Rycke, M. Similar kinetics for 5-methylcytosine and 5-hydroxymethylcytosine during human preimplantation development in vitro. Mol. Reprod. Dev. 2016, 83, 594–605. [Google Scholar] [CrossRef] [PubMed]
- Roth, Z. Symposium review: Reduction in oocyte developmental competence by stress is associated with alterations in mitochondrial function. J. Dairy Sci. 2018, 101, 3642–3654. [Google Scholar] [CrossRef] [PubMed]
- Yaacobi-Artzi, S.; Shimoni, C.; Kalo, D.; Hansen, P.J.; Roth, Z. Melatonin slightly alleviates the effect of heat shock on bovine oocytes and resulting blastocysts. Theriogenology 2020, 158, 477–489. [Google Scholar] [CrossRef] [PubMed]
- Roth, Z. PHYSIOLOGY AND ENDOCRINOLOGY SYMPOSIUM: Cellular and molecular mechanisms of heat stress related to bovine ovarian function. J. Anim. Sci. 2015, 93, 2034–2044. [Google Scholar] [CrossRef]
- Gonzalez-Rivas, P.A.; Chauhan, S.S.; Ha, M.; Fegan, N.; Dunshea, F.R.; Warner, R.D. Effects of heat stress on animal physiology, metabolism, and meat quality: A review. Meat Sci. 2020, 162, 108025. [Google Scholar] [CrossRef]
- Nabenishi, H.; Takagi, S.; Kamata, H.; Nishimoto, T.; Morita, T.; Ashizawa, K.; Tsuzuki, Y. The role of mitochondrial transition pores on bovine oocyte competence after heat stress, as determined by effects of cyclosporin A. Mol. Reprod. Dev. 2012, 79, 31–40. [Google Scholar] [CrossRef] [PubMed]
- May-Panloup, P.; Boucret, L.; Chao de la Barca, J.M.; Desquiret-Dumas, V.; Ferré-L’Hotellier, V.; Morinière, C.; Descamps, P.; Procaccio, V.; Reynier, P. Ovarian ageing: The role of mitochondria in oocytes and follicles. Hum. Reprod. Update 2016, 22, 725–743. [Google Scholar] [CrossRef] [PubMed]
- Van Blerkom, J. Mitochondrial function in the human oocyte and embryo and their role in developmental competence. Mitochondrion 2011, 11, 797–813. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, R.M.; Chiaratti, M.R.; Macabelli, C.H.; Rodrigues, C.A.; Ferraz, M.L.; Watanabe, Y.F.; Smith, L.C.; Meirelles, F.V.; Baruselli, P.S. The infertility of repeat-breeder cows during summer is associated with decreased mitochondrial DNA and increased expression of mitochondrial and apoptotic genes in oocytes. Biol. Reprod. 2016, 94, 66. [Google Scholar] [CrossRef] [PubMed]
- Gendelman, M.; Roth, Z. Incorporation of coenzyme Q10 into bovine oocytes improves mitochondrial features and alleviates the effects of summer thermal stress on developmental competence. Biol. Reprod. 2012, 87, 118. [Google Scholar]
- Jin, X.; Wang, K.; Wang, L.; Liu, W.; Zhang, C.; Qiu, Y.; Liu, W.; Zhang, H.; Zhang, D.; Yang, Z.; et al. RAB7 activity is required for the regulation of mitophagy in oocyte meiosis and oocyte quality control during ovarian aging. Autophagy 2022, 18, 643–660. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.H.; Park, J.H.; Kim, E.Y.; Ko, J.J.; Park, K.S.; Lee, K.A. The role of Rad51 in safeguarding mitochondrial activity during the meiotic cell cycle in mammalian oocytes. Sci. Rep. 2016, 28, 34110. [Google Scholar] [CrossRef] [PubMed]
- Mizushima, N.; Yoshimori, T.; Ohsumi, Y. The role of Atg proteins in autophagosome formation. Annu. Rev. Cell. Dev. Biol. 2011, 27, 107–132. [Google Scholar] [CrossRef]
- Kalo, D.; Roth, Z. Involvement of the sphingolipid ceramide in heat-shock-induced apoptosis of bovine oocytes. Reprod. Fertil. Dev. 2011, 23, 876–888. [Google Scholar] [CrossRef]
- Lord, T.; Nixon, B.; Jones, K.T.; Aitken, R.J. Melatonin prevents postovulatory oocyte aging in the mouse and extends the window for optimal fertilization in vitro. Biol. Reprod. 2013, 88, 67. [Google Scholar] [CrossRef]
- Clarke, H.J. Regulation of germ cell development by intercellular signaling in the mammalian ovarian follicle. Wiley. Interdiscip. Rev. Dev. Biol. 2018, 7, e294. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Albertini, D.F. The road to maturation: Somatic cell interaction and self-organization of the mammalian oocyte. Nat. Rev. Mol. Cell Biol. 2013, 14, 141–152. [Google Scholar] [CrossRef] [PubMed]
- Mora, J.M.; Fenwick, M.A.; Castle, L.; Baithun, M.; Ryder, T.A.; Mobberley, M. Characterization and significance of adhesion and junction-related proteins in mouse ovarian follicles. Biol. Reprod. 2012, 86, 153. [Google Scholar] [CrossRef] [PubMed]
- Baena, V.; Terasaki, M. Three-dimensional organization of transzonal projections and other cytoplasmic extensions in the mouse ovarian follicle. Sci. Rep. 2019, 9, 1262. [Google Scholar] [CrossRef] [PubMed]
- Macaulay, A.D.; Gilbert, I.; Caballero, J.; Barreto, R.; Fournier, E.; Tossou, P.; Sirard, M.A.; Clarke, H.J.; Khandjian, É.W.; Richard, F.J.; et al. The gametic synapse: RNA transfer to the bovine oocyte. Biol. Reprod. 2014, 91, 90. [Google Scholar] [CrossRef] [PubMed]
- Tseng, J.K.; Chen, C.H.; Chou, P.C.; Yeh, S.P.; Ju, J.C. Influences of follicular size on parthenogenetic activation and in vitro heat shock on the cytoskeleton in cattle oocytes. Reprod. Domest. Anim. 2004, 39, 146–153. [Google Scholar] [CrossRef] [PubMed]
- Cajas, Y.N.; Cañón-Beltrán, K.; Ladrón de Guevara, M.; Millán de la Blanca, M.G.; Ramos-Ibeas, P.; Gutiérrez-Adán, A.; Rizos, D.; González, E.M. Antioxidant nobiletin enhances oocyte maturation and subsequent embryo development and quality. Int. J. Mol. Sci. 2020, 21, 5340. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.H.; Oh, H.J.; Kim, M.J.; Kim, G.A.; Choi, Y.B.; Jo, Y.K.; Setyawan, E.M.N.; Lee, B.C. Oocyte maturation-related gene expression in the canine oviduct, cumulus cells, and oocytes and effect of co-culture with oviduct cells on in vitro maturation of oocytes. J. Assist. Reprod. Genet. 2017, 34, 929–938. [Google Scholar] [CrossRef] [PubMed]
- Gendelman, M.; Roth, Z. In vivo vs. in vitro models for studying the effects of elevated temperature on the GV-stage oocyte, subsequent developmental competence and gene expression. Anim. Reprod. Sci. 2012, 134, 125–134. [Google Scholar] [CrossRef]
- Souza-Cácares, M.B.; Fialho, A.L.L.; Silva, W.A.L.; Cardoso, C.J.T.; Pöhland, R.; Martins, M.I.M.; Melo-Sterza, F.A. Oocyte quality and heat shock proteins in oocytes from bovine breeds adapted to the tropics under different conditions of environmental thermal stress. Theriogenology 2019, 130, 103–110. [Google Scholar] [CrossRef]
- Carabatsos, M.J.; Sellitto, C.; Goodenough, D.A.; Albertini, D.F. Oocyte-granulosa cell heterologous gap junctions are required for the coordination of nuclear and cytoplasmic meiotic competence. Dev. Biol. 2000, 226, 167–179. [Google Scholar] [CrossRef] [PubMed]
- Yao, J.; Ren, X.; Ireland, J.J.; Coussens, P.M.; Smith, T.P.; Smith, G.W. Generation of a bovine oocyte cDNA library and microarray: Resources for identification of genes important for follicular development and early embryogenesis. Physiol. Genom. 2004, 19, 84–92. [Google Scholar] [CrossRef] [PubMed]
- Gassmann, R.; Carvalho, A.; Henzing, A.J.; Ruchaud, S.; Hudson, D.F.; Honda, R.; Nigg, E.A.; Gerloff, D.L.; Earnshaw, W.C. Borealin: A novel chromosomal passenger required for stability of the bipolar mitotic spindle. J. Cell Biol. 2004, 166, 179–191. [Google Scholar] [CrossRef] [PubMed]
- Sampath, S.C.; Ohi, R.; Leismann, O.; Salic, A.; Pozniakovski, A.; Funabiki, H. The chromosomal passenger complex is required for chromatin-induced microtubule stabilization and spindle assembly. Cell 2004, 118, 187–202. [Google Scholar] [CrossRef] [PubMed]
- Morales Dalanezi, F.; Mogollon Garcia, H.D.; de Andrade Ferrazza, R.; Fagali Franchi, F.; Kubo Fontes, P.; de Souza Castilho, A.C.; Gouveia Nogueira, M.F.; Dos Santos Schmidt, E.M.; Sartori, R.; Pinheiro Ferreira, J.C. Extracellular vesicles of follicular fluid from heat-stressed cows modify the gene expression of in vitro-matured oocytes. Anim. Reprod. Sci. 2019, 205, 94–104. [Google Scholar] [CrossRef] [PubMed]
- Gunning, P.W.; Ghoshdastider, U.; Whitaker, S.; Popp, D.; Robinson, R.C. The evolution of compositionally and functionally distinct actin filaments. J. Cell Sci. 2015, 128, 2009–2019. [Google Scholar] [CrossRef] [PubMed]
- Wei, X.; Sijie, Y.; Weibin, Z.; Qing, X.; Jie, Z.; Xiangdong, Z. Cytoskeleton genes expression and survival rate comparison between immature and mature yak oocyte after OPS vitrification. Anim. Biotechnol. 2018, 29, 247–251. [Google Scholar] [CrossRef]
- Macabelli, C.H.; Ferreira, R.M.; Gimenes, L.U.; de Carvalho, N.A.; Soares, J.G.; Ayres, H.; Ferraz, M.L.; Watanabe, Y.F.; Watanabe, O.Y.; Sangalli, J.R.; et al. Reference gene selection for gene expression analysis of oocytes collected from dairy cattle and buffaloes during winter and summer. PLoS ONE 2014, 9, e93287. [Google Scholar] [CrossRef] [PubMed]
- Adebayo, M.; Singh, S.; Singh, A.P.; Dasgupta, S. Mitochondrial fusion and fission: The fine-tune balance for cellular homeostasis. FASEB J. 2021, 35, e21620. [Google Scholar] [CrossRef]
- Youle, R.J.; van der Bliek, A.M. Mitochondrial fission, fusion, and stress. Science 2012, 337, 1062–1065. [Google Scholar] [CrossRef]
- Osellame, L.D.; Blacker, T.S.; Duchen, M.R. Cellular and molecular mechanisms of mitochondrial function. Best. Pract. Res. Clin. Endocrinol. Metab. 2012, 26, 711–723. [Google Scholar] [CrossRef] [PubMed]
- Rambold, A.S.; Kostelecky, B.; Elia, N.; Lippincott-Schwartz, J. Tubular network formation protects mitochondria from autophagosomal degradation during nutrient starvation. Proc. Natl. Acad. Sci. USA 2011, 108, 10190–10195. [Google Scholar] [CrossRef] [PubMed]
- Liot, G.; Bossy, B.; Lubitz, S.; Kushnareva, Y.; Sejbuk, N.; Bossy-Wetzel, E. Complex II inhibition by 3-NP causes mitochondrial fragmentation and neuronal cell death via an NMDA- and ROS-dependent pathway. Cell Death Differ. 2009, 16, 899–909. [Google Scholar] [CrossRef] [PubMed]
- Brand, M.D.; Nicholls, D.G. Assessing mitochondrial dysfunction in cells. Biochem. J. 2011, 435, 297–312. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.L.; Wang, H.L.; Jiang, L.Z.; Qian, Y.; Yang, C.X.; Chang, W.W.; Zhong, J.F.; Xing, G.D. Heat stress induces apoptosis through disruption of dynamic mitochondrial networks in dairy cow mammary epithelial cells. Vitr. Cell. Dev. Biol. Anim. 2020, 56, 322–331. [Google Scholar] [CrossRef] [PubMed]
- Zeng, H.F.; Xu, J.; Wang, X.L.; Li, S.J.; Han, Z.Y. Nicotinamide mononucleotide alleviates heat stress-induced oxidative stress and apoptosis in BMECs through reducing mitochondrial damage and endoplasmic reticulum stress. Ecotoxicol. Environ. Saf. 2022, 235, 113441. [Google Scholar] [CrossRef] [PubMed]
- Golding, M.C.; Westhusin, M.E. Analysis of DNA (cytosine 5) methyltransferase mRNA sequence and expression in bovine preimplantation embryos, fetal and adult tissues. Gene Expr. Patterns 2003, 3, 551–558. [Google Scholar] [CrossRef] [PubMed]
- Pavani, K.C.; Baron, E.; Correia, P.; Lourenço, J.; Bettencourt, B.F.; Sousa, M.; da Silva, F.M. Gene expression, oocyte nuclear maturation and developmental competence of bovine oocytes and embryos produced after in vivo and in vitro heat shock. Zygote 2016, 24, 748–759. [Google Scholar] [CrossRef]
- Urrego, R.; Bernal-Ulloa, S.M.; Chavarría, N.A.; Herrera-Puerta, E.; Lucas-Hahn, A.; Herrmann, D.; Winkler, S.; Pache, D.; Niemann, H.; Rodriguez-Osorio, N. Satellite DNA methylation status and expression of selected genes in Bos indicus blastocysts produced in vivo and in vitro. Zygote 2017, 25, 131–140. [Google Scholar] [CrossRef]
- Brackett, B.G.; Oliphant, G. Capacitation of rabbit spermatozoa in vitro. Biol. Reprod. 1975, 12, 260–274. [Google Scholar] [CrossRef]
- Rahimi, G.; Isachenko, E.; Sauer, H.; Isachenko, V.; Wartenberg, M.; Hescheler, J.; Mallmann, P.; Nawroth, F. Effect of different vitrification protocols for human ovarian tissue on reactive oxygen species and apoptosis. Reprod. Fertil. Dev. 2003, 15, 343–349. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Kim, D.; Son, J.; Kim, D.; Jeon, E.; Jung, D.; Han, M.; Ha, S.; Hwang, S.; Choi, I. Effects of heat stress on conception in Holstein and Jersey cattle and oocyte maturation in vitro. J. Anim. Sci. Technol. 2023, 65, 324–335. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.M.; Wang, N.; Hao, H.S.; Li, C.Y.; Zhao, Y.H.; Yan, C.L.; Wang, H.Y.; Du, W.H.; Wang, D.; Liu, Y.; et al. Melatonin improves the fertilization capacity and developmental ability of bovine oocytes by regulating cytoplasmic maturation events. J. Pineal Res. 2018, 64, 212445. [Google Scholar] [CrossRef] [PubMed]
- Aiken, C.E.; Tarry-Adkins, J.L.; Penfold, N.C.; Dearden, L.; Ozanne, S.E. Decreased ovarian reserve, dysregulation of mitochondrial biogenesis, and increased lipid peroxidation in female mouse offspring exposed to an obesogenic maternal diet. FASEB J. 2016, 30, 1548–1556. [Google Scholar] [CrossRef] [PubMed]
Groups | No. of Oocytes | No. of Mature Oocytes (%) | No. of Cleavage Embryos (%) | No. of Blastocysts (%) |
---|---|---|---|---|
Control | 810 | 84.07 ± 7.52% (681/810) a | 80.32 ± 1.75% (547/681) a | 42.05 ± 1.06% (230/547) a |
Heat stress | 1484 | 61.99 ± 5.46% (920/1484) b | 58.91 ± 2.95% (542/920) b | 23.25 ± 1.56% (126/542) b |
Genes | Primer Sequences (5′-3′) | Size (bp) | GenBank Accession No. |
---|---|---|---|
GAPDH | F: AAGGTCGGAGTGAACGGATTC | 90 | NM_001034034.2 |
R: ATTGATGGCGACGATGTCCA | |||
GDF9 | F: GACTCCTCAGTGCCAAGACC | 195 | NM_174681.2 |
R: CAGGTGCACGGCATTTACAC | |||
BMP15 | F: CCTAGGGAAAACCGCACCAT | 93 | NM_001031752.1 |
R: TATGTGCCAGGAGCCTCTGA | |||
MAPK1 | F: CCGTGACCTCAAACCTTCCA | 187 | NM_175793.2 |
R: GATGGACTTGGTGTAGCCCTTG | |||
HSP70 | F: GGGGAGGACTTCGACAACAG | 192 | NM_203322.3 |
R: GAAGTCGATGCCCTCGAACA | |||
GJA4 | F: CTCCGGCCGACTTGCG | 186 | NM_001083738.1 |
R: CCAGGCCCAGGATGAGAATG | |||
RPL15 | F: CGTCAGGATATTCGCCGCTT | 136 | XM_005226176.3 |
R: TACTTGTAGGCGCCCATGTC | |||
CDCA8 | F: AGTGCAAATGCGATCCAAGC | 185 | NM_001083652.1 |
R: TATCCAAGTCCGCTGTTGCT | |||
ACTB | F: AAGGACCTCTACGCCAACAC | 154 | NC_037352.1 |
R: CACGCCTATCTGCACCGTC | |||
CK8 | F: CAGCAAATGTTTGCGGAATGAATG | 71 | NM_001256282.2 |
R: GAACCAGGCGGAGATCCCTTC | |||
MFN1 | F: AAAGGCTCACTTGGACCACC | 144 | NM_001206508.1 |
R: AAGTGGTTGCCATTTCCTGTTG | |||
MFN2 | F: AGGCTAGGAAGGTGAAGTAACTCAG | 181 | NM_001190269.1 |
R: TGGTACAACTGGAACAGAGGAAA | |||
OPA1 | F: GCCTGACATTGTGTGGGAGA | 160 | NM_001192961.1 |
R: TCCAGGTGAACCTGTGGTG | |||
FIS1 | F: CTGTGGAGGACCTGCTGAAAT | 143 | NM_001034784.2 |
R: CAGAGCAAGGCCTTTACGGA | |||
DRP1 | F: CCAAGTGCATGAGCAGAACC | 171 | NM_134850.3 |
R: AGATTGACCGGCTTCACTGG | |||
ATG5 | F: ACATCTTAGGGTTGGTGGTACA | 83 | NC_037336.1 |
R: AAGGGGTGACCAAAGGTAGC | |||
BECN1 | F: GCTGAAACCAGGAGAGACCC | 117 | NM_001033627.2 |
R: GTGGACATCATCCTGGCTGG | |||
DNMT1 | F: AGTGGGGGACTGTGTTTCTG | 218 | XM_015471992.2 |
R: TGCTGTGGATGTACGAGAGC | |||
DNMT3A | F: AGCACAACGGAGAAGCCTAA | 245 | NM_001206502.2 |
R: CAGCAGATGGTGCAGTAGGA | |||
DNMT3B | F: GAGAATAAGACGCGGAGACG | 146 | NM_181813.2 |
R: ACATCCGAAGCCATTTGTTC | |||
Histone H2A | F: GCGGTCTTGGAGTACCTGAC | 204 | BF076713.1 |
R: AGTCTTCTTCGGGAGCAACA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feng, X.; Li, C.; Zhang, H.; Zhang, P.; Shahzad, M.; Du, W.; Zhao, X. Heat-Stress Impacts on Developing Bovine Oocytes: Unraveling Epigenetic Changes, Oxidative Stress, and Developmental Resilience. Int. J. Mol. Sci. 2024, 25, 4808. https://doi.org/10.3390/ijms25094808
Feng X, Li C, Zhang H, Zhang P, Shahzad M, Du W, Zhao X. Heat-Stress Impacts on Developing Bovine Oocytes: Unraveling Epigenetic Changes, Oxidative Stress, and Developmental Resilience. International Journal of Molecular Sciences. 2024; 25(9):4808. https://doi.org/10.3390/ijms25094808
Chicago/Turabian StyleFeng, Xiaoyi, Chongyang Li, Hang Zhang, Peipei Zhang, Muhammad Shahzad, Weihua Du, and Xueming Zhao. 2024. "Heat-Stress Impacts on Developing Bovine Oocytes: Unraveling Epigenetic Changes, Oxidative Stress, and Developmental Resilience" International Journal of Molecular Sciences 25, no. 9: 4808. https://doi.org/10.3390/ijms25094808
APA StyleFeng, X., Li, C., Zhang, H., Zhang, P., Shahzad, M., Du, W., & Zhao, X. (2024). Heat-Stress Impacts on Developing Bovine Oocytes: Unraveling Epigenetic Changes, Oxidative Stress, and Developmental Resilience. International Journal of Molecular Sciences, 25(9), 4808. https://doi.org/10.3390/ijms25094808