Impact of Peripheral Hydrogen Bond on Electronic Properties of the Primary Acceptor Chlorophyll in the Reaction Center of Photosystem I
Abstract
:1. Introduction
2. Results
2.1. Generation and Characterization of the ΔpsaAB Recipient Strain
2.2. Generation of PsaA-Y692F, PsaB-Y667A, PsaB-Y667F, and PsaA-Y672F/PsaB-Y667F
2.3. Physiological Characterizations of PsaB-Y667A: Dramatic Effect
2.4. Physiological Characterizations of PsaA-Y692F, PsaB-Y667F, and PsaA-Y672F/PsaB-Y667F Show Weak Effect of Y → F Mutation
2.5. Spectroscopic Characterizations Show Minor Effect of Y → F Mutations
2.6. Energy Transfer and Primary Charge Separation Are Not Affected by Y → F Mutations
3. Discussion
4. Materials and Methods
4.1. Generation of a New ΔpsaAB Recipient Strain of Synechocystis sp. PCC 6803
4.2. Generation of the Site-Directed Variants and Transformation of the Designed Mutations into the ΔpsaAB and ΔpsaB Recipient Strains
4.3. Genomic DNAs Preparation of Synechocystis sp. PCC 6803
4.4. Growth of the Synechocystis sp. PCC 6803 Cells
4.5. Isolation of Thylakoid Membranes and Purification of PS I Complexes
4.6. Measurement of Cell Growth Rate and Quantitation of Chlorophyll and Carotenoid Content
4.7. Oxygen Evolution Measurements
4.8. UV Absorption Spectra of PS I Complexes
4.9. 77 K Fluorescence Spectroscopy of Whole Cells
4.10. (P700+–P700) Difference Spectra
4.11. Ultrafast Time-Resolved Optical Spectroscopy
4.12. Measuring (A0—A0) Spectra
4.13. Electronic Structure Calculations
4.14. Statistical Analyses
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chitnis, P.R. PHOTOSYSTEM I: Function and Physiology. Annu. Rev. Plant Biol. 2001, 52, 593–626. [Google Scholar] [CrossRef] [PubMed]
- Jordan, P.; Fromme, P.; Witt, H.T.; Klukas, O.; Saenger, W.; Krauss, N. Three-dimensional structure of cyanobacterial photosystem I at 2.5 A resolution. Nature 2001, 411, 909–917. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.; Wang, Y. Function and Structure of Cyanobacterial Photosystem I. In Photosynthesis: Structures, Mechanisms, and Applications; Najafpour, M.M., Moore, G.F., Hou, H.J.M., Allakhverdiev, S.I., Eds.; Advances in Photosynthesis and Respiration; Springer International Publishing: Berlin/Heidelberg, Germany, 2017; pp. 111–168. [Google Scholar]
- Chitnis, P.R. Photosystem I. Plant Physiol. 1996, 111, 661–669. [Google Scholar] [CrossRef] [PubMed]
- Savikhin, S. Ultrafast optical spectroscopy of photosystem I. In Photosystem I: The Light-Driven Plastocyanin: Ferredoxin Oxidoreductase; Golbeck, J.H., Ed.; Advances in Photosynthesis and Respiration; Springer: Dordrecht, The Netherlands, 2006; Volume 24, pp. 155–175. [Google Scholar]
- Fromme, P.; Bottin, H.; Krauss, N.; Setif, P. Crystallization and electron paramagnetic resonance characterization of the complex of photosystem I with its natural electron acceptor ferredoxin. Biophys. J. 2002, 83, 1760–1773. [Google Scholar] [CrossRef] [PubMed]
- Malavath, T.; Caspy, I.; Netzer-El, S.Y.; Klaiman, D.; Nelson, N. Structure and function of wild-type and subunit-depleted photosystem I in Synechocystis. Biochim. Biophys. Acta (BBA)—Bioenerg. 2018, 1859, 645–654. [Google Scholar] [CrossRef] [PubMed]
- Netzer-El, S.Y.; Caspy, I.; Nelson, N. Crystal Structure of Photosystem I Monomer From Synechocystis PCC 6803. Front. Plant Sci. 2019, 9, 1865. [Google Scholar] [CrossRef] [PubMed]
- Pan, X.; Ma, J.; Su, X.; Cao, P.; Chang, W.; Liu, Z.; Zhang, X.; Li, M. Structure of the maize photosystem I supercomplex with light-harvesting complexes I and II. Science 2018, 360, 1109–1113. [Google Scholar] [CrossRef] [PubMed]
- Suga, M.; Ozawa, S.-I.; Yoshida-Motomura, K.; Akita, F.; Miyazaki, N.; Takahashi, Y. Structure of the green algal photosystem I supercomplex with a decameric light-harvesting complex I. Nat. Plants 2019, 5, 626–636. [Google Scholar] [CrossRef] [PubMed]
- Zheng, L.; Li, Y.; Li, X.; Zhong, Q.; Li, N.; Zhang, K.; Zhang, Y.; Chu, H.; Ma, C.; Li, G.; et al. Structural and functional insights into the tetrameric photosystem I from heterocyst-forming cyanobacteria. Nat. Plants 2019, 5, 1087–1097. [Google Scholar] [CrossRef]
- Toporik, H.; Li, J.; Williams, D.; Chiu, P.-L.; Mazor, Y. The structure of the stress-induced photosystem I–IsiA antenna supercomplex. Nat. Struct. Mol. Biol. 2019, 26, 443–449. [Google Scholar] [CrossRef]
- Gisriel, C.; Coe, J.; Letrun, R.; Yefanov, O.M.; Luna-Chavez, C.; Stander, N.E.; Lisova, S.; Mariani, V.; Kuhn, M.; Aplin, S.; et al. Membrane protein megahertz crystallography at the European XFEL. Nat. Commun. 2019, 10, 5021. [Google Scholar] [CrossRef]
- Kölsch, A.; Radon, C.; Golub, M.; Baumert, A.; Bürger, J.; Mielke, T.; Lisdat, F.; Feoktystov, A.; Pieper, J.; Zouni, A.; et al. Current limits of structural biology: The transient interaction between cytochrome c6 and photosystem I. Curr. Res. Struct. Biol. 2020, 2, 171–179. [Google Scholar] [CrossRef] [PubMed]
- Gisriel, C.; Shen, G.; Kurashov, V.; Ho, M.-Y.; Zhang, S.; Williams, D.; Golbeck, J.H.; Fromme, P.; Bryant, D.A. The structure of Photosystem I acclimated to far-red light illuminates an ecologically important acclimation process in photosynthesis. Sci. Adv. 2020, 6, eaay6415. [Google Scholar] [CrossRef] [PubMed]
- Toporik, H.; Khmelnitskiy, A.; Dobson, Z.; Riddle, R.; Williams, D.; Lin, S.; Jankowiak, R.; Mazor, Y. The structure of a red-shifted photosystem I reveals a red site in the core antenna. Nat. Commun. 2020, 11, 5279. [Google Scholar] [CrossRef] [PubMed]
- Caspy, I.; Borovikova-Sheinker, A.; Klaiman, D.; Shkolnisky, Y.; Nelson, N. The structure of a triple complex of plant photosystem I with ferredoxin and plastocyanin. Nat. Plants 2020, 6, 1300–1305. [Google Scholar] [CrossRef]
- Wang, J.; Yu, L.J.; Wang, W.; Yan, Q.; Kuang, T.; Qin, X.; Shen, J.R. Structure of plant photosystem I-light harvesting complex I supercomplex at 2.4 Å resolution. J. Integr. Plant Biol. 2021, 63, 1367–1381. [Google Scholar] [CrossRef]
- Caspy, I.; Neumann, E.; Fadeeva, M.; Liveanu, V.; Savitsky, A.; Frank, A.; Kalisman, Y.L.; Shkolnisky, Y.; Murik, O.; Treves, H.; et al. Cryo-EM photosystem I structure reveals adaptation mechanisms to extreme high light in Chlorella ohadii. Nat. Plants 2021, 7, 1314–1322. [Google Scholar] [CrossRef]
- Caspy, I.; Schwartz, T.; Bayro-Kaiser, V.; Fadeeva, M.; Kessel, A.; Ben-Tal, N.; Nelson, N. Dimeric and high-resolution structures of Chlamydomonas Photosystem I from a temperature-sensitive Photosystem II mutant. Commun. Biol. 2021, 4, 1380. [Google Scholar] [CrossRef] [PubMed]
- Keable, S.M.; Kölsch, A.; Simon, P.S.; Dasgupta, M.; Chatterjee, R.; Subramanian, S.K.; Hussein, R.; Ibrahim, M.; Kim, I.-S.; Bogacz, I.; et al. Room temperature XFEL crystallography reveals asymmetry in the vicinity of the two phylloquinones in photosystem I. Sci. Rep. 2021, 11, 21787. [Google Scholar] [CrossRef]
- Dobson, Z.; Ahad, S.; Vanlandingham, J.; Toporik, H.; Vaughn, N.; Vaughn, M.; Williams, D.; Reppert, M.; Fromme, P.; Mazor, Y. The structure of photosystem I from a high-light-tolerant cyanobacteria. eLife 2021, 10, e67518. [Google Scholar] [CrossRef]
- Hamaguchi, T.; Kawakami, K.; Shinzawa-Itoh, K.; Inoue-Kashino, N.; Itoh, S.; Ifuku, K.; Yamashita, E.; Maeda, K.; Yonekura, K.; Kashino, Y. Structure of the far-red light utilizing photosystem I of Acaryochloris marina. Nat. Commun. 2021, 12, 2333. [Google Scholar] [CrossRef] [PubMed]
- Çoruh, O.; Frank, A.; Tanaka, H.; Kawamoto, A.; El-Mohsnawy, E.; Kato, T.; Namba, K.; Gerle, C.; Nowaczyk, M.M.; Kurisu, G. Cryo-EM structure of a functional monomeric Photosystem I from Thermosynechococcus elongatus reveals red chlorophyll cluster. Commun. Biol. 2021, 4, 304. [Google Scholar] [CrossRef]
- Su, X.; Cao, D.; Pan, X.; Shi, L.; Liu, Z.; Dall’Osto, L.; Bassi, R.; Zhang, X.; Li, M. Supramolecular assembly of chloroplast NADH dehydrogenase-like complex with photosystem I from Arabidopsis thaliana. Mol. Plant 2022, 15, 454–467. [Google Scholar] [CrossRef] [PubMed]
- Shen, L.; Tang, K.; Wang, W.; Wang, C.; Wu, H.; Mao, Z.; An, S.; Chang, S.; Kuang, T.; Shen, J.-R.; et al. Architecture of the chloroplast PSI–NDH supercomplex in Hordeum vulgare. Nature 2022, 601, 649–654. [Google Scholar] [CrossRef] [PubMed]
- Naschberger, A.; Mosebach, L.; Tobiasson, V.; Kuhlgert, S.; Scholz, M.; Perez-Boerema, A.; Ho, T.T.H.; Vidal-Meireles, A.; Takahashi, Y.; Hippler, M.; et al. Algal photosystem I dimer and high-resolution model of PSI-plastocyanin complex. Nat. Plants 2022, 8, 1191–1201. [Google Scholar] [CrossRef] [PubMed]
- Karapetyan, N.V.; Holzwarth, A.R.; Rögner, M. The photosystem I trimer of cyanobacteria: Molecular organization, excitation dynamics and physiological significance. FEBS Lett. 1999, 460, 395–400. [Google Scholar] [CrossRef] [PubMed]
- Gobets, B.; van Grondelle, R. Energy transfer and trapping in photosystem I. Biochim. Biophys. Acta 2001, 1507, 80–99. [Google Scholar] [CrossRef] [PubMed]
- Melkozernov, A.N. Excitation energy transfer in Photosystem I from oxygenic organisms. Photosynth. Res. 2001, 70, 129–153. [Google Scholar] [CrossRef]
- Savikhin, S.; Xu, W.; Soukoulis, V.; Chitnis, P.R.; Struve, W.S. Ultrafast primary processes in photosystem I of the cyanobacterium Synechocystis sp. PCC 6803. Biophys. J. 1999, 76, 3278–3288. [Google Scholar] [CrossRef]
- Dorra, D.; Fromme, P.; Karapetyan, N.V.; Holzwarth, A.R. Fluorescence Kinetics of Photosystem I: Multiple Fluorescence Components; Kluwer: Dordrecht, The Netherlands, 1998; pp. 587–590. [Google Scholar]
- Guergova-Kuras, M.; Boudreaux, B.; Joliot, A.; Joliot, P.; Redding, K. Evidence for two active branches for electron transfer in photosystem I. Proc. Natl. Acad. Sci. USA 2001, 98, 4437–4442. [Google Scholar] [CrossRef]
- Joliot, P.; Joliot, A. In vivo analysis of the electron transfer within photosystem I: Are the two phylloquinones involved? Biochemistry 1999, 38, 11130–11136. [Google Scholar] [CrossRef] [PubMed]
- Sétif, P.; Leibl, W. Functional Pattern of Photosystem I in Oxygen Evolving Organisms; The Royal Society of Chemistry: Cambridge, UK, 2007. [Google Scholar]
- Redding, K.; van der Est, A. The Directionality of Electron Transport in Photosystem I. In Photosystem I: The Light-Driven Plastocyanin: Ferredoxin Oxidoreductase; Advances in Photosynthesis and Respiration; Springer: Dordrecht, The Netherlands, 2006; Volume 24, pp. 413–437. [Google Scholar]
- Savikhin, S.; Jankowiak, R. Mechanism of primary charge separation in photosynthetic reaction centers. In The Biophysics of Photosynthesis; Golbeck, J.J.H., van der Est, A., Eds.; Springer: Dordrecht, The Netherlands, 2014; Volume 11, pp. 193–240. [Google Scholar]
- Brettel, K.; Leibl, W. Electron transfer in photosystem I. Biochim. Biophys. Acta 2001, 1507, 100–114. [Google Scholar] [CrossRef] [PubMed]
- Brettel, K.; Vos, M.H. Spectroscopic resolution of the picosecond reduction kinetics of the secondary electron acceptor A1 in photosystem I. FEBS Lett. 1999, 447, 315–317. [Google Scholar] [CrossRef] [PubMed]
- Marcuello, C.; de Miguel, R.; Martínez-Júlvez, M.; Gómez-Moreno, C.; Lostao, A. Mechanostability of the Single-Electron-Transfer Complexes of Anabaena Ferredoxin-NADP(+) Reductase. ChemPhysChem 2015, 16, 3161–3169. [Google Scholar] [CrossRef] [PubMed]
- Marco, P.; Elman, T.; Yacoby, I. Binding of ferredoxin NADP+ oxidoreductase (FNR) to plant photosystem I. Biochim. Biophys. Acta (BBA)—Bioenerg. 2019, 1860, 689–698. [Google Scholar] [CrossRef] [PubMed]
- Müller, M.G.; Slavov, C.; Luthra, R.; Redding, K.E.; Holzwarth, A.R. Independent initiation of primary electron transfer in the two branches of the photosystem I reaction center. Proc. Natl. Acad. Sci. USA 2010, 107, 4123–4128. [Google Scholar] [CrossRef] [PubMed]
- Giera, W.; Ramesh, V.M.; Webber, A.N.; van Stokkum, I.; van Grondelle, R.; Gibasiewicz, K. Effect of the P700 pre-oxidation and point mutations near A(0) on the reversibility of the primary charge separation in Photosystem I from Chlamydomonas reinhardtii. Biochim. Biophys. Acta 2010, 1797, 106–112. [Google Scholar] [CrossRef] [PubMed]
- Di Donato, M.; Stahl, A.D.; van Stokkum, I.H.M.; van Grondelle, R.; Groot, M.-L. Cofactors Involved in Light-Driven Charge Separation in Photosystem I Identified by Subpicosecond Infrared Spectroscopy. Biochemistry 2011, 50, 480–490. [Google Scholar] [CrossRef] [PubMed]
- Shelaev, I.V.; Gostev, F.E.; Mamedov, M.D.; Sarkisov, O.M.; Nadtochenko, V.A.; Shuvalov, V.A.; Semenov, A.Y. Femtosecond primary charge separation in Synechocystis sp. PCC 6803 photosystem I. Biochim. Biophys. Acta (BBA)—Bioenerg. 2010, 1797, 1410–1420. [Google Scholar] [CrossRef]
- Cherepanov, D.A.; Shelaev, I.V.; Gostev, F.E.; Nadtochenko, V.A.; Xu, W.; Golbeck, J.H.; Semenov, A.Y. Symmetry breaking in photosystem I: Ultrafast optical studies of variants near the accessory chlorophylls in the A- and B-branches of electron transfer cofactors. Photochem. Photobiol. Sci. 2021, 20, 1209–1227. [Google Scholar] [CrossRef]
- Cherepanov, D.A.; Shelaev, I.V.; Gostev, F.E.; Petrova, A.; Aybush, A.V.; Nadtochenko, V.A.; Xu, W.; Golbeck, J.H.; Semenov, A.Y. Primary charge separation within the structurally symmetric tetrameric Chl2APAPBChl2B chlorophyll exciplex in photosystem I. J. Photochem. Photobiol. B Biol. 2021, 217, 112154. [Google Scholar] [CrossRef] [PubMed]
- Mehler, A.H. Studies on reactions of illuminated chloroplasts. I. Mechanism of the reduction of oxygen and other Hill reagents. Arch. Biochem. 1951, 33, 65–77. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Hao, S.; Radle, M.; Xu, W.; Shelaev, I.; Nadtochenko, V.; Shuvalov, V.; Semenov, A.; Gordon, H.; van der Est, A.; et al. Evidence that histidine forms a coordination bond to the A(0A) and A(0B) chlorophylls and a second H-bond to the A(1A) and A(1B) phylloquinones in M688H(PsaA) and M668H(PsaB) variants of Synechocystis sp. PCC 6803. Biochim. Biophys. Acta 2014, 1837, 1362–1375. [Google Scholar] [CrossRef] [PubMed]
- Ramesh, V.M.; Gibasiewicz, K.; Lin, S.; Bingham, S.E.; Webber, A.N. Bidirectional electron transfer in photosystem I: Accumulation of A0- in A-side or B-side mutants of the axial ligand to chlorophyll A0. Biochemistry 2004, 43, 1369–1375. [Google Scholar] [CrossRef]
- Giera, W.; Gibasiewicz, K.; Ramesh, V.M.; Lin, S.; Webber, A. Electron transfer from A to A(1) in Photosystem I from Chlamydomonas reinhardtii occurs in both the A and B branch with 25–30-ps lifetime. Phys. Chem. Chem. Phys. 2009, 11, 5186–5191. [Google Scholar] [CrossRef] [PubMed]
- Fairclough, W.V.; Forsyth, A.; Evans, M.C.; Rigby, S.E.; Purton, S.; Heathcote, P. Bidirectional electron transfer in photosystem I: Electron transfer on the PsaA side is not essential for phototrophic growth in Chlamydomonas. Biochim. Biophys. Acta 2003, 1606, 43–55. [Google Scholar] [CrossRef] [PubMed]
- Berthold, T.; von Gromoff, E.D.; Santabarbara, S.; Stehle, P.; Link, G.; Poluektov, O.G.; Heathcote, P.; Beck, C.F.; Thurnauer, M.C.; Kothe, G. Exploring the electron transfer pathways in photosystem I by high-time-resolution electron paramagnetic resonance: Observation of the B-side radical pair P700(+)A1B(-) in whole cells of the deuterated green alga Chlamydomonas reinhardtii at cryogenic temperatures. J. Am. Chem. Soc. 2012, 134, 5563–5576. [Google Scholar] [CrossRef]
- Santabarbara, S.; Kuprov, I.; Fairclough, W.V.; Purton, S.; Hore, P.J.; Heathcote, P.; Evans, M.C. Bidirectional electron transfer in photosystem I: Determination of two distances between P700+ and A1- in spin-correlated radical pairs. Biochemistry 2005, 44, 2119–2128. [Google Scholar] [CrossRef] [PubMed]
- Cohen, R.O.; Shen, G.; Golbeck, J.H.; Xu, W.; Chitnis, P.R.; Valieva, A.I.; van der Est, A.; Pushkar, Y.; Stehlik, D. Evidence for asymmetric electron transfer in cyanobacterial photosystem I: Analysis of a methionine-to-leucine mutation of the ligand to the primary electron acceptor A0. Biochemistry 2004, 43, 4741–4754. [Google Scholar] [CrossRef]
- Dashdorj, N.; Xu, W.; Cohen, R.O.; Golbeck, J.H.; Savikhin, S. Asymmetric electron transfer in cyanobacterial Photosystem I: Charge separation and secondary electron transfer dynamics of mutations near the primary electron acceptor A0. Biophys. J. 2005, 88, 1238–1249. [Google Scholar] [CrossRef]
- van der Est, A.; Chirico, S.; Karyagina, I.; Cohen, R.; Shen, G.; Golbeck, J. Alteration of the Axial Met Ligand to Electron Acceptor A0 in Photosystem I: An Investigation of Electron Transfer at Different Temperatures by Multifrequency Time-Resolved and CW EPR. Appl. Magn. Reson. 2010, 37, 103–121. [Google Scholar] [CrossRef]
- Savitsky, A.; Gopta, O.; Mamedov, M.; Golbeck, J.; Tikhonov, A.; Möbius, K.; Semenov, A. Alteration of the Axial Met Ligand to Electron Acceptor A0 in Photosystem I: Effect on the Generation of Radical Pairs as Studied by W-band Transient EPR. Appl. Magn. Reson. 2010, 37, 85–102. [Google Scholar] [CrossRef]
- Santabarbara, S.; Kuprov, I.; Poluektov, O.; Casal, A.; Russell, C.A.; Purton, S.; Evans, M.C.W. Directionality of Electron-Transfer Reactions in Photosystem I of Prokaryotes: Universality of the Bidirectional Electron-Transfer Model. J. Phys. Chem. B 2010, 114, 15158–15171. [Google Scholar] [CrossRef]
- Gorka, M.; Gruszecki, E.; Charles, P.; Kalendra, V.; Lakshmi, K.V.; Golbeck, J.H. Two-dimensional HYSCORE spectroscopy reveals a histidine imidazole as the axial ligand to Chl3A in the M688HPsaA genetic variant of Photosystem I. Biochim. Biophys. Acta (BBA)—Bioenerg. 2021, 1862, 148424. [Google Scholar] [CrossRef]
- McConnell, M.D.; Sun, J.; Siavashi, R.; Webber, A.; Redding, K.E.; Golbeck, J.H.; van der Est, A. Species-dependent alteration of electron transfer in the early stages of charge stabilization in Photosystem I. Biochim. Biophys. Acta (BBA)—Bioenerg. 2015, 1847, 429–440. [Google Scholar] [CrossRef]
- Li, Y.; van der Est, A.; Lucas, M.G.; Ramesh, V.M.; Gu, F.; Petrenko, A.; Lin, S.; Webber, A.N.; Rappaport, F.; Redding, K. Directing electron transfer within Photosystem I by breaking H-bonds in the cofactor branches. Proc. Natl. Acad. Sci. USA 2006, 103, 2144–2149. [Google Scholar] [CrossRef]
- Kurashov, V.; Milanovsky, G.; Luo, L.; Martin, A.; Semenov, A.Y.; Savikhin, S.; Cherepanov, D.A.; Golbeck, J.H.; Xu, W. Conserved residue PsaB-Trp673 is essential for high-efficiency electron transfer between the phylloquinones and the iron-sulfur clusters in Photosystem I. Photosynth. Res. 2021, 148, 161–180. [Google Scholar] [CrossRef]
- Xu, W.; Chitnis, P.; Valieva, A.; van der Est, A.; Pushkar, Y.N.; Krzystyniak, M.; Teutloff, C.; Zech, S.G.; Bittl, R.; Stehlik, D.; et al. Electron transfer in cyanobacterial photosystem I: I. Physiological and spectroscopic characterization of site-directed mutants in a putative electron transfer pathway from A0 through A1 to FX. J. Biol. Chem. 2003, 278, 27864–27875. [Google Scholar] [CrossRef]
- Xu, W.; Chitnis, P.R.; Valieva, A.; van der Est, A.; Brettel, K.; Guergova-Kuras, M.; Pushkar, Y.N.; Zech, S.G.; Stehlik, D.; Shen, G.; et al. Electron transfer in cyanobacterial photosystem I: II. Determination of forward electron transfer rates of site-directed mutants in a putative electron transfer pathway from A0 through A1 to FX. J. Biol. Chem. 2003, 278, 27876–27887. [Google Scholar] [CrossRef]
- Kim, Y.; Mitchell, Z.; Lawrence, J.; Morozov, D.; Savikhin, S.; Slipchenko, L.V. Predicting Mutation-Induced Changes in the Electronic Properties of Photosynthetic Proteins from First Principles: The Fenna–Matthews–Olson Complex Example. J. Phys. Chem. Lett. 2023, 14, 7038–7044. [Google Scholar] [CrossRef]
- Setif, P.; Brettel, K. Forward electron transfer from phylloquinone A1 to iron-sulfur centers in spinach photosystem I. Biochemistry 1993, 32, 7846–7854. [Google Scholar] [CrossRef]
- Nelson, N.; Yocum, C.F. Structure and function of photosystems I and II. Annu. Rev. Plant Biol. 2006, 57, 521–565. [Google Scholar] [CrossRef]
- Allen, J.P.; Artz, K.; Lin, X.; Williams, J.C.; Ivancich, A.; Albouy, D.; Mattioli, T.A.; Fetsch, A.; Kuhn, M.; Lubitz, W. Effects of Hydrogen Bonding to a Bacteriochlorophyll−Bacteriopheophytin Dimer in Reaction Centers from Rhodobacter sphaeroides. Biochemistry 1996, 35, 6612–6619. [Google Scholar] [CrossRef]
- Webber, A.N.; Lubitz, W. P700: The primary electron donor of photosystem I. Biochim. Biophys. Acta 2001, 1507, 61–79. [Google Scholar] [CrossRef]
- Moser, C.C.; Keske, J.M.; Warncke, K.; Farid, R.S.; Dutton, P.L. Nature of biological electron transfer. Nature 1992, 355, 796–802. [Google Scholar] [CrossRef]
- Dutton, P.L.; Mosser, C.C. Quantum biomechanics of long-range electron transfer in protein: Hydrogen bonds and reorganization energies. Proc. Natl. Acad. Sci. USA 1994, 91, 10247–10250. [Google Scholar] [CrossRef]
- Srivastava, A.; Ahad, S.; Wat, J.H.; Reppert, M. Accurate prediction of mutation-induced frequency shifts in chlorophyll proteins with a simple electrostatic model. J. Chem. Phys. 2021, 155, 151102. [Google Scholar] [CrossRef]
- Saer, R.G.; Stadnytskyi, V.; Magdaong, N.C.; Goodson, C.; Savikhin, S.; Blankenship, R.E. Probing the excitonic landscape of the Chlorobaculum tepidum Fenna-Matthews-Olson (FMO) complex: A mutagenesis approach. Biochim. Biophys. Acta (BBA)—Bioenerg. 2017, 1858, 288–296. [Google Scholar] [CrossRef]
- Yang, M.; Damjanović, A.; Vaswani, H.M.; Fleming, G.R. Energy transfer in photosystem I of cyanobacteria Synechococcus elongatus: Model study with structure-based semi-empirical Hamiltonian and experimental spectral density. Biophys. J. 2003, 85, 140–158. [Google Scholar] [CrossRef]
- Lichtenthaler, H.K. [34] Chlorophylls and carotenoids: Pigments of photosynthetic biomembranes. In Methods in Enzymol; Academic Press: Cambridge, MA, USA, 1987; Volume 148, pp. 350–382. [Google Scholar]
- Savikhin, S.; Xu, W.; Chitnis, P.R.; Struve, W.S. Ultrafast primary processes in PS I from Synechocystis sp. PCC 6803: Roles of P700 and A(0). Biophys. J. 2000, 79, 1573–1586. [Google Scholar] [CrossRef]
- Terentyev, V.V.; Zharmukhamedov, S.K. Evolutionary Loss of the Ability of the Photosystem I Primary Electron Donor for the Redox Interaction with Mn-Bicarbonate Complexes. Biochemistry 2020, 85, 697–708. [Google Scholar] [CrossRef]
- Vassiliev, I.R.; Jung, Y.S.; Mamedov, M.D.; Semenov, A.; Golbeck, J.H. Near-IR absorbance changes and electrogenic reactions in the microsecond-to-second time domain in Photosystem I. Biophys. J. 1997, 72, 301–315. [Google Scholar] [CrossRef]
- Savikhin, S.; Xu, W.; Martinsson, P.; Chitnis, P.R.; Struve, W.S. Kinetics of charge separation and A0− → A1 electron transfer in photosystem I reaction centers. Biochemistry 2001, 40, 9282–9290. [Google Scholar] [CrossRef]
- Hastings, G.; Hoshina, S.; Webber, A.N.; Blankenship, R.E. Universality of energy and electron transfer processes in photosystem I. Biochemistry 1995, 34, 15512–15522. [Google Scholar] [CrossRef]
- Dasgupta, S.; Herbert, J.M. Using Atomic Confining Potentials for Geometry Optimization and Vibrational Frequency Calculations in Quantum-Chemical Models of Enzyme Active Sites. J. Phys. Chem. B 2020, 124, 1137–1147. [Google Scholar] [CrossRef]
- Chai, J.-D.; Head-Gordon, M. Long-range corrected hybrid density functionals with damped atom–atom dispersion corrections. Phys. Chem. Chem. Phys. 2008, 10, 6615–6620. [Google Scholar] [CrossRef]
- Epifanovsky, E.; Gilbert, A.T.B.; Feng, X.; Lee, J.; Mao, Y.; Mardirossian, N.; Pokhilko, P.; White, A.F.; Coons, M.P.; Dempwolff, A.L.; et al. Software for the frontiers of quantum chemistry: An overview of developments in the Q-Chem 5 package. J. Chem. Phys. 2021, 155, 084801. [Google Scholar] [CrossRef]
- Humphrey, W.; Dalke, A.; Schulten, K. VMD: Visual molecular dynamics. J. Mol. Graph. 1996, 14, 33–38. [Google Scholar] [CrossRef]
- Kim, Y.; Morozov, D.; Stadnytskyi, V.; Savikhin, S.; Slipchenko, L.V. Predictive First-Principles Modeling of a Photosynthetic Antenna Protein: The Fenna–Matthews–Olson Complex. J. Phys. Chem. Lett. 2020, 11, 1636–1643. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luo, L.; Martin, A.P.; Tandoh, E.K.; Chistoserdov, A.; Slipchenko, L.V.; Savikhin, S.; Xu, W. Impact of Peripheral Hydrogen Bond on Electronic Properties of the Primary Acceptor Chlorophyll in the Reaction Center of Photosystem I. Int. J. Mol. Sci. 2024, 25, 4815. https://doi.org/10.3390/ijms25094815
Luo L, Martin AP, Tandoh EK, Chistoserdov A, Slipchenko LV, Savikhin S, Xu W. Impact of Peripheral Hydrogen Bond on Electronic Properties of the Primary Acceptor Chlorophyll in the Reaction Center of Photosystem I. International Journal of Molecular Sciences. 2024; 25(9):4815. https://doi.org/10.3390/ijms25094815
Chicago/Turabian StyleLuo, Lujun, Antoine P. Martin, Elijah K. Tandoh, Andrei Chistoserdov, Lyudmila V. Slipchenko, Sergei Savikhin, and Wu Xu. 2024. "Impact of Peripheral Hydrogen Bond on Electronic Properties of the Primary Acceptor Chlorophyll in the Reaction Center of Photosystem I" International Journal of Molecular Sciences 25, no. 9: 4815. https://doi.org/10.3390/ijms25094815
APA StyleLuo, L., Martin, A. P., Tandoh, E. K., Chistoserdov, A., Slipchenko, L. V., Savikhin, S., & Xu, W. (2024). Impact of Peripheral Hydrogen Bond on Electronic Properties of the Primary Acceptor Chlorophyll in the Reaction Center of Photosystem I. International Journal of Molecular Sciences, 25(9), 4815. https://doi.org/10.3390/ijms25094815