Exploring the Role of Apigenin in Neuroinflammation: Insights and Implications
Abstract
:1. Introduction
2. Apigenin
2.1. Chemistry
2.2. Sources
3. Neuroinflammation
3.1. Blood–Brain Barrier
3.2. Microglia
3.3. Example of Neuroinflammation Process in Alzheimer’s Disease
4. Impact of Apigenin on Neuroinflammation in Pathologic Cases
4.1. Neurodegenerative Diseases
4.1.1. Multiple Sclerosis
4.1.2. Parkinson’s Disease
4.1.3. Alzheimer’s Disease
4.2. Cancer
4.2.1. Cardiovascular Diseases
4.2.2. Cognitive and Memory Disorders
4.2.3. Toxicity Related to Trace Metals and Other Chemicals
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Salehi, B.; Venditti, A.; Sharifi-Rad, M.; Kregiel, D.; Sharifi-Rad, J.; Durazzo, A.; Lucarini, M.; Santini, A.; Souto, E.B.; Novellino, E.; et al. The Therapeutic Potential of Apigenin. Int. J. Mol. Sci. 2019, 20, 1305. [Google Scholar] [CrossRef] [PubMed]
- Ksila, M.; Ghzaiel, I.; Yammine, A.; Nury, T.; Vejux, A.; Vervandier-Fasseur, D.; Latruffe, N.; Prost-Camus, E.; Meziane, S.; Masmoudi-Kouki, O.; et al. Chapter 7—Analysis of the Mitochondrial Status of Murine Neuronal N2a Cells Treated with Resveratrol and Synthetic Isomeric Resveratrol Analogs: Aza-Stilbenes. In Molecular Nutrition and Mitochondria; Ostojic, S.M., Ed.; Academic Press: Cambridge, MA, USA, 2023; pp. 195–211. ISBN 978-0-323-90256-4. [Google Scholar]
- Karakaya, S.; El, S.N. Quercetin, luteolin, apigenin and kaempferol contentsof some foods. Food Chem. 1999, 66, 289–292. [Google Scholar] [CrossRef]
- Cook, N.; Samman, S. Flavonoids—Chemistry Metabolism, Cardioprotectiveeffects, and Dietary Sources. J. Nutr. Biochem. 1996, 7, 66–76. [Google Scholar] [CrossRef]
- Giuntini, D.; Lazzeri, V.; Calvenzani, V.; Dall’Asta, C.; Galaverna, G.; Tonelli, C.; Petroni, K.; Ranieri, A. Flavonoid Profiling and Biosynthetic Gene Expression in Flesh and Peel of Two Tomato Genotypes Grown under UV-B-Depleted Conditions during Ripening. J. Agric. Food Chem. 2008, 56, 5905–5915. [Google Scholar] [CrossRef]
- Muñoz, C.; Sánchez-Sevilla, J.F.; Botella, M.A.; Hoffmann, T.; Schwab, W.; Valpuesta, V. Polyphenol Composition in the Ripe Fruits of Fragaria Species and Transcriptional Analyses of Key Genes in the Pathway. J. Agric. Food Chem. 2011, 59, 12598–12604. [Google Scholar] [CrossRef] [PubMed]
- Gurung, R.B.; Kim, E.-H.; Oh, T.-J.; Sohng, J.K. Enzymatic synthesis of apigenin glucosides by glucosyltransferase (YjiC) from Bacillus licheniformis DSM 13. Mol. Cells 2013, 36, 355–361. [Google Scholar] [CrossRef]
- Seijas, J.A.; Vázquez-Tato, M.P.; Carballido-Reboredo, R. Solvent-Free Synthesis of Functionalized Flavones under Microwave Irradiation. J. Org. Chem. 2005, 70, 2855–2858. [Google Scholar] [CrossRef]
- Verma, A.K.; Pratap, R. Chemistry of Biologically Important Flavones. Tetrahedron 2012, 68, 8523–8538. [Google Scholar] [CrossRef]
- Chauthe, S.K.; Sharma, R.J.; Aqil, F.; Gupta, R.C.; Singh, I.P. Quantitative NMR: An Applicable Method for Quantitative Analysis of Medicinal Plant Extracts and Herbal Products. Phytochem. Anal. 2012, 23, 689–696. [Google Scholar] [CrossRef]
- Chai, S.-H.; Howe, J.Y.; Wang, X.; Kidder, M.; Schwartz, V.; Golden, M.L.; Overbury, S.H.; Dai, S.; Jiang, D.-E. Graphitic Mesoporous Carbon as a Support of Promoted Rh Catalysts for Hydrogenation of Carbon Monoxide to Ethanol. Carbon 2012, 50, 1574–1582. [Google Scholar] [CrossRef]
- Keri, R.S.; Budagumpi, S.; Pai, R.K.; Balakrishna, R.G. Chromones as a Privileged Scaffold in Drug Discovery: A Review. Eur. J. Med. Chem. 2014, 78, 340–374. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Song, X.; He, J.; Zheng, X.; Wu, H. Synthetic Derivatives of Chrysin and Their Biological Activities. Med. Chem. Res. 2014, 23, 555–563. [Google Scholar] [CrossRef]
- Yammine, A.; Namsi, A.; Vervandier-Fasseur, D.; Mackrill, J.J.; Lizard, G.; Latruffe, N. Polyphenols of the Mediterranean Diet and Their Metabolites in the Prevention of Colorectal Cancer. Molecules 2021, 26, 3483. [Google Scholar] [CrossRef] [PubMed]
- Griffiths, K.; Aggarwal, B.B.; Singh, R.B.; Buttar, H.S.; Wilson, D.; De Meester, F. Food Antioxidants and Their Anti-Inflammatory Properties: A Potential Role in Cardiovascular Diseases and Cancer Prevention. Diseases 2016, 4, 28. [Google Scholar] [CrossRef] [PubMed]
- Živković, U.; Avramov, S.; Miljković, D.; Barišić Klisarić, N.; Tubić, L.; Mišić, D.; Šiler, B.; Tarasjev, A. Genetic and Environmental Factors Jointly Impact Leaf Phenolic Profiles of Iris variegata L. Plants 2021, 10, 1599. [Google Scholar] [CrossRef] [PubMed]
- Bhagwat, S.; Haytowitz, D.B.; Holden, J.M. USDA Database for the Flavonoid Content of Selected Foods Release 3.1; US Department of Agriculture: Beltsville, MD, USA, 2011. [Google Scholar]
- Miean, K.H.; Mohamed, S. Flavonoid (Myricetin, Quercetin, Kaempferol, Luteolin, and Apigenin) Content of Edible Tropical Plants. J. Agric. Food Chem. 2001, 49, 3106–3112. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Chen, W.; Li, M.; Zhang, F.; Chen, K.; Chen, W. A Review of the Ethnopharmacology, Phytochemistry, Pharmacology, and Quality Control of Scutellaria barbata D. Don. J. Ethnopharmacol. 2020, 254, 112260. [Google Scholar] [CrossRef] [PubMed]
- Basile, A.; Sorbo, S.; Giordano, S.; Ricciardi, L.; Ferrara, S.; Montesano, D.; Castaldo Cobianchi, R.; Vuotto, M.L.; Ferrara, L. Antibacterial and Allelopathic Activity of Extract from Castanea Sativa Leaves. Fitoterapia 2000, 71 (Suppl. S1), S110–S116. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Yu, L.; Chen, G. Determination of Flavonoids in Portulaca Oleracea L. by Capillary Electrophoresis with Electrochemical Detection. J. Pharm. Biomed. Anal. 2006, 41, 493–499. [Google Scholar] [CrossRef]
- Rigano, D.; Formisano, C.; Basile, A.; Lavitola, A.; Senatore, F.; Rosselli, S.; Bruno, M. Antibacterial Activity of Flavonoids and Phenylpropanoids from Marrubium globosum ssp. libanoticum. Phytother. Res. 2007, 21, 395–397. [Google Scholar] [CrossRef]
- Martini, N.D.; Katerere, D.R.; Eloff, J.N. Biological Activity of Five Antibacterial Flavonoids from Combretum erythrophyllum (Combretaceae). J. Ethnopharmacol. 2004, 93, 207–212. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Wang, L.; Gao, G.; Liao, M.; Xiao, P. Studies on flavonoids from Aquilegia oxysepala Trautv. et Mey. Zhongguo Zhong Yao Za Zhi 1999, 24, 158–160, 191. [Google Scholar]
- Barbarić, M.; Mišković, K.; Bojić, M.; Lončar, M.B.; Smolčić-Bubalo, A.; Debeljak, Z.; Medić-Šarić, M. Chemical Composition of the Ethanolic Propolis Extracts and Its Effect on HeLa Cells. J. Ethnopharmacol. 2011, 135, 772–778. [Google Scholar] [CrossRef]
- Pan, X.; Tan, N.; Zeng, G.; Zhang, Y.; Jia, R. Amentoflavone and Its Derivatives as Novel Natural Inhibitors of Human Cathepsin B. Bioorg. Med. Chem. 2005, 13, 5819–5825. [Google Scholar] [CrossRef]
- Menaceur, C.; Gosselet, F.; Fenart, L.; Saint-Pol, J. The Blood-Brain Barrier, an Evolving Concept Based on Technological Advances and Cell-Cell Communications. Cells 2021, 11, 133. [Google Scholar] [CrossRef]
- Ciofi, P. The Arcuate Nucleus as a Circumventricular Organ in the Mouse. Neurosci. Lett. 2011, 487, 187–190. [Google Scholar] [CrossRef] [PubMed]
- Mullier, A.; Bouret, S.G.; Prevot, V.; Dehouck, B. Differential Distribution of Tight Junction Proteins Suggests a Role for Tanycytes in Blood-Hypothalamus Barrier Regulation in the Adult Mouse Brain. J. Comp. Neurol. 2010, 518, 943–962. [Google Scholar] [CrossRef] [PubMed]
- Ciofi, P.; Garret, M.; Lapirot, O.; Lafon, P.; Loyens, A.; Prévot, V.; Levine, J.E. Brain-Endocrine Interactions: A Microvascular Route in the Mediobasal Hypothalamus. Endocrinology 2009, 150, 5509–5519. [Google Scholar] [CrossRef]
- Gosselet, F.; Saint-Pol, J.; Fenart, L. Effects of Oxysterols on the Blood-Brain Barrier: Implications for Alzheimer’s Disease. Biochem. Biophys. Res. Commun. 2014, 446, 687–691. [Google Scholar] [CrossRef]
- Zarrouk, A.; Vejux, A.; Mackrill, J.; O’Callaghan, Y.; Hammami, M.; O’Brien, N.; Lizard, G. Involvement of Oxysterols in Age-Related Diseases and Ageing Processes. Ageing Res. Rev. 2014, 18, 148–162. [Google Scholar] [CrossRef]
- Ginhoux, F.; Lim, S.; Hoeffel, G.; Low, D.; Huber, T. Origin and Differentiation of Microglia. Front. Cell. Neurosci. 2013, 7, 45. [Google Scholar] [CrossRef] [PubMed]
- Del Rio-Hortega, P. Are the Glia with Very Few Processes Homologous with Schwann Cells? By Pío Del Río-Hortega. 1922. Clin. Neuropathol. 2012, 31, 460–462. [Google Scholar] [PubMed]
- Alliot, F.; Godin, I.; Pessac, B. Microglia Derive from Progenitors, Originating from the Yolk Sac, and Which Proliferate in the Brain. Dev. Brain Res. 1999, 117, 145–152. [Google Scholar] [CrossRef] [PubMed]
- Ginhoux, F.; Prinz, M. Origin of Microglia: Current Concepts and Past Controversies. Cold Spring Harb. Perspect. Biol. 2015, 7, a020537. [Google Scholar] [CrossRef]
- Ling, E.A. Electron-Microscopic Identification of Amoeboid Microglia in the Spinal Cord of Newborn Rats. Acta Anat. 1976, 96, 600–609. [Google Scholar] [CrossRef]
- Imamoto, K.; Leblond, C.P. Radioautographic Investigation of Gliogenesis in the Corpus Callosum of Young Rats. II. Origin of Microglial Cells. J. Comp. Neurol. 1978, 180, 139–163. [Google Scholar] [CrossRef] [PubMed]
- Ginhoux, F.; Greter, M.; Leboeuf, M.; Nandi, S.; See, P.; Gokhan, S.; Mehler, M.F.; Conway, S.J.; Ng, L.G.; Stanley, E.R.; et al. Fate Mapping Analysis Reveals That Adult Microglia Derive from Primitive Macrophages. Science 2010, 330, 841–845. [Google Scholar] [CrossRef] [PubMed]
- Kierdorf, K.; Erny, D.; Goldmann, T.; Sander, V.; Schulz, C.; Perdiguero, E.G.; Wieghofer, P.; Heinrich, A.; Riemke, P.; Hölscher, C.; et al. Microglia Emerge from Erythromyeloid Precursors via Pu.1- and Irf8-Dependent Pathways. Nat. Neurosci. 2013, 16, 273–280. [Google Scholar] [CrossRef]
- Beers, D.R.; Henkel, J.S.; Xiao, Q.; Zhao, W.; Wang, J.; Yen, A.A.; Siklos, L.; McKercher, S.R.; Appel, S.H. Wild-Type Microglia Extend Survival in PU.1 Knockout Mice with Familial Amyotrophic Lateral Sclerosis. Proc. Natl. Acad. Sci. USA 2006, 103, 16021–16026. [Google Scholar] [CrossRef]
- Carson, M.J.; Thrash, J.C.; Walter, B. The Cellular Response in Neuroinflammation: The Role of Leukocytes, Microglia and Astrocytes in Neuronal Death and Survival. Clin. Neurosci. Res. 2006, 6, 237–245. [Google Scholar] [CrossRef]
- Yang, T.-T.; Lin, C.; Hsu, C.-T.; Wang, T.-F.; Ke, F.-Y.; Kuo, Y.-M. Differential Distribution and Activation of Microglia in the Brain of Male C57BL/6J Mice. Brain Struct. Funct. 2013, 218, 1051–1060. [Google Scholar] [CrossRef] [PubMed]
- Kreutzberg, G.W. Microglia: A Sensor for Pathological Events in the CNS. Trends Neurosci. 1996, 19, 312–318. [Google Scholar] [CrossRef] [PubMed]
- Paolicelli, R.C.; Sierra, A.; Stevens, B.; Tremblay, M.-E.; Aguzzi, A.; Ajami, B.; Amit, I.; Audinat, E.; Bechmann, I.; Bennett, M.; et al. Microglia States and Nomenclature: A Field at Its Crossroads. Neuron 2022, 110, 3458–3483. [Google Scholar] [CrossRef] [PubMed]
- Colton, C.A. Heterogeneity of Microglial Activation in the Innate Immune Response in the Brain. J. Neuroimmune Pharmacol. 2009, 4, 399–418. [Google Scholar] [CrossRef] [PubMed]
- Hirai, T.; Uchida, K.; Nakajima, H.; Guerrero, A.R.; Takeura, N.; Watanabe, S.; Sugita, D.; Yoshida, A.; Johnson, W.E.B.; Baba, H. The Prevalence and Phenotype of Activated Microglia/Macrophages within the Spinal Cord of the Hyperostotic Mouse (Twy/Twy) Changes in Response to Chronic Progressive Spinal Cord Compression: Implications for Human Cervical Compressive Myelopathy. PLoS ONE 2013, 8, e64528. [Google Scholar] [CrossRef] [PubMed]
- Remington, L.T.; Babcock, A.A.; Zehntner, S.P.; Owens, T. Microglial Recruitment, Activation, and Proliferation in Response to Primary Demyelination. Am. J. Pathol. 2007, 170, 1713–1724. [Google Scholar] [CrossRef] [PubMed]
- Orihuela, R.; McPherson, C.A.; Harry, G.J. Microglial M1/M2 Polarization and Metabolic States. Br. J. Pharmacol. 2016, 173, 649–665. [Google Scholar] [CrossRef] [PubMed]
- Biber, K.; Neumann, H.; Inoue, K.; Boddeke, H.W.G.M. Neuronal “On” and “Off” Signals Control Microglia. Trends Neurosci. 2007, 30, 596–602. [Google Scholar] [CrossRef]
- Galic, M.A.; Riazi, K.; Pittman, Q.J. Cytokines and Brain Excitability. Front. Neuroendocrinol. 2012, 33, 116–125. [Google Scholar] [CrossRef]
- Kaisho, T.; Akira, S. Toll-like Receptor Function and Signaling. J. Allergy Clin. Immunol. 2006, 117, 979–987; quiz 988. [Google Scholar] [CrossRef]
- Hanke, M.L.; Kielian, T. Toll-like Receptors in Health and Disease in the Brain: Mechanisms and Therapeutic Potential. Clin. Sci. 2011, 121, 367–387. [Google Scholar] [CrossRef] [PubMed]
- Olson, J.K.; Miller, S.D. Microglia Initiate Central Nervous System Innate and Adaptive Immune Responses through Multiple TLRs. J. Immunol. 2004, 173, 3916–3924. [Google Scholar] [CrossRef] [PubMed]
- Perry, V.H.; O’Connor, V. The Role of Microglia in Synaptic Stripping and Synaptic Degeneration: A Revised Perspective. ASN Neuro 2010, 2, e00047. [Google Scholar] [CrossRef] [PubMed]
- Blinzinger, K.; Kreutzberg, G. Displacement of Synaptic Terminals from Regenerating Motoneurons by Microglial Cells. Z. Zellforsch. Mikrosk. Anat. 1968, 85, 145–157. [Google Scholar] [CrossRef]
- Yasojima, K.; Schwab, C.; McGeer, E.G.; McGeer, P.L. Human Neurons Generate C-Reactive Protein and Amyloid P: Upregulation in Alzheimer’s Disease. Brain Res. 2000, 887, 80–89. [Google Scholar] [CrossRef] [PubMed]
- Hovden, H.; Frederiksen, J.L.; Pedersen, S.W. Immune System Alterations in Amyotrophic Lateral Sclerosis. Acta Neurol. Scand. 2013, 128, 287–296. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Chen, H.; Ding, Q.; Xie, Z.-H.; Chen, L.; Diao, L.; Wang, P.; Gan, L.; Crair, M.C.; Tian, N. The Immune Protein CD3ζ Is Required for Normal Development of Neural Circuits in the Retina. Neuron 2010, 65, 503–515. [Google Scholar] [CrossRef]
- Haynes, S.E.; Hollopeter, G.; Yang, G.; Kurpius, D.; Dailey, M.E.; Gan, W.-B.; Julius, D. The P2Y12 Receptor Regulates Microglial Activation by Extracellular Nucleotides. Nat. Neurosci. 2006, 9, 1512–1519. [Google Scholar] [CrossRef]
- Ohsawa, K.; Irino, Y.; Sanagi, T.; Nakamura, Y.; Suzuki, E.; Inoue, K.; Kohsaka, S. P2Y12 Receptor-Mediated Integrin-β1 Activation Regulates Microglial Process Extension Induced by ATP. Glia 2010, 58, 790–801. [Google Scholar] [CrossRef]
- Liang, K.J.; Lee, J.E.; Wang, Y.D.; Ma, W.; Fontainhas, A.M.; Fariss, R.N.; Wong, W.T. Regulation of Dynamic Behavior of Retinal Microglia by CX3CR1 Signaling. Investig. Ophthalmol. Vis. Sci. 2009, 50, 4444–4451. [Google Scholar] [CrossRef]
- Béchade, C.; Cantaut-Belarif, Y.; Bessis, A. Microglial Control of Neuronal Activity. Front. Cell. Neurosci. 2013, 7, 32. [Google Scholar] [CrossRef] [PubMed]
- Taupin, P.; Gage, F.H. Adult Neurogenesis and Neural Stem Cells of the Central Nervous System in Mammals. J. Neurosci. Res. 2002, 69, 745–749. [Google Scholar] [CrossRef] [PubMed]
- Aarum, J.; Sandberg, K.; Haeberlein, S.L.B.; Persson, M.A.A. Migration and Differentiation of Neural Precursor Cells Can Be Directed by Microglia. Proc. Natl. Acad. Sci. USA 2003, 100, 15983–15988. [Google Scholar] [CrossRef] [PubMed]
- Davalos, D.; Grutzendler, J.; Yang, G.; Kim, J.V.; Zuo, Y.; Jung, S.; Littman, D.R.; Dustin, M.L.; Gan, W.-B. ATP Mediates Rapid Microglial Response to Local Brain Injury In Vivo. Nat. Neurosci. 2005, 8, 752–758. [Google Scholar] [CrossRef] [PubMed]
- Dibaj, P.; Nadrigny, F.; Steffens, H.; Scheller, A.; Hirrlinger, J.; Schomburg, E.D.; Neusch, C.; Kirchhoff, F. NO Mediates Microglial Response to Acute Spinal Cord Injury under ATP Control In Vivo. Glia 2010, 58, 1133–1144. [Google Scholar] [CrossRef]
- Bolmont, T.; Haiss, F.; Eicke, D.; Radde, R.; Mathis, C.A.; Klunk, W.E.; Kohsaka, S.; Jucker, M.; Calhoun, M.E. Dynamics of the Microglial/Amyloid Interaction Indicate a Role in Plaque Maintenance. J. Neurosci. 2008, 28, 4283–4292. [Google Scholar] [CrossRef] [PubMed]
- Rappert, A.; Bechmann, I.; Pivneva, T.; Mahlo, J.; Biber, K.; Nolte, C.; Kovac, A.D.; Gerard, C.; Boddeke, H.W.G.M.; Nitsch, R.; et al. CXCR3-Dependent Microglial Recruitment Is Essential for Dendrite Loss after Brain Lesion. J. Neurosci. 2004, 24, 8500–8509. [Google Scholar] [CrossRef] [PubMed]
- Krstic, D.; Knuesel, I. Deciphering the Mechanism Underlying Late-Onset Alzheimer Disease. Nat. Rev. Neurol. 2013, 9, 25–34. [Google Scholar] [CrossRef] [PubMed]
- von Bernhardi, R.; Cornejo, F.; Parada, G.E.; Eugenín, J. Role of TGFβ Signaling in the Pathogenesis of Alzheimer’s Disease. Front. Cell. Neurosci. 2015, 9, 426. [Google Scholar] [CrossRef]
- Singh, D. Astrocytic and Microglial Cells as the Modulators of Neuroinflammation in Alzheimer’s Disease. J. Neuroinflamm. 2022, 19, 206. [Google Scholar] [CrossRef]
- Shi, Y.; Manis, M.; Long, J.; Wang, K.; Sullivan, P.M.; Remolina Serrano, J.; Hoyle, R.; Holtzman, D.M. Microglia Drive APOE-Dependent Neurodegeneration in a Tauopathy Mouse Model. J. Exp. Med. 2019, 216, 2546–2561. [Google Scholar] [CrossRef]
- Leng, F.; Edison, P. Neuroinflammation and Microglial Activation in Alzheimer Disease: Where Do We Go from Here? Nat. Rev. Neurol. 2021, 17, 157–172. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; He, Y.; Han, J.; Wei, W.; Chen, F. Blood-Brain Barrier Dysfunction and Alzheimer’s Disease: Associations, Pathogenic Mechanisms, and Therapeutic Potential. Front. Aging Neurosci. 2023, 15, 1258640. [Google Scholar] [CrossRef]
- Mushtaq, Z.; Sadeer, N.B.; Hussain, M.; Mahwish; Alsagaby, S.A.; Imran, M.; Mumtaz, T.; Umar, M.; Tauseef, A.; Al Abdulmonem, W.; et al. Therapeutical Properties of Apigenin: A Review on the Experimental Evidence and Basic Mechanisms. Int. J. Food Prop. 2023, 26, 1914–1939. [Google Scholar] [CrossRef]
- Lee, C.-Y.; Chan, K.-H. Personalized Use of Disease-Modifying Therapies in Multiple Sclerosis. Pharmaceutics 2024, 16, 120. [Google Scholar] [CrossRef]
- Lassmann, H.; Bradl, M. Multiple Sclerosis: Experimental Models and Reality. Acta Neuropathol. 2017, 133, 223–244. [Google Scholar] [CrossRef] [PubMed]
- Sagar, D.; Lamontagne, A.; Foss, C.A.; Khan, Z.K.; Pomper, M.G.; Jain, P. Dendritic Cell CNS Recruitment Correlates with Disease Severity in EAE via CCL2 Chemotaxis at the Blood-Brain Barrier through Paracellular Transmigration and ERK Activation. J. Neuroinflamm. 2012, 9, 245. [Google Scholar] [CrossRef]
- Yoon, M.S.; Lee, J.S.; Choi, B.M.; Jeong, Y.I.; Lee, C.M.; Park, J.H.; Moon, Y.; Sung, S.C.; Lee, S.K.; Chang, Y.H.; et al. Apigenin inhibits immunostimulatory function of dendritic cells: Implication of immunotherapeutic adjuvant. Mol. Pharmacol. 2006, 70, 1033–1044. [Google Scholar] [CrossRef] [PubMed]
- Nicholas, C.; Batra, S.; Vargo, M.A.; Voss, O.H.; Gavrilin, M.A.; Wewers, M.D.; Guttridge, D.C.; Grotewold, E.; Doseff, A.I. Apigenin Blocks Lipopolysaccharide-Induced Lethality in Vivo and Proinflammatory Cytokines Expression by Inactivating NF-κB through the Suppression of P65 Phosphorylation. J. Immunol. 2007, 179, 7121–7127. [Google Scholar] [CrossRef]
- Lee, J.H.; Zhou, H.Y.; Cho, S.Y.; Kim, Y.S.; Lee, Y.S.; Jeong, C.S. Anti-inflammatory mechanisms of apigenin: Inhibition of cyclooxygenase-2 expression, adhesion of monocytes to human umbilical vein endothelial cells, and expression of cellular adhesion molecules. Arch. Pharm. Res. 2007, 30, 1318–1327. [Google Scholar] [CrossRef]
- Liang, Y.C.; Tsai, S.H.; Tsai, D.C.; Lin-Shiau, S.Y.; Lin, J.K. Suppression of Inducible Cyclooxygenase and Nitric Oxide Synthase through Activation of Peroxisome Proliferator-Activated Receptor-Gamma by Flavonoids in Mouse Macrophages. FEBS Lett. 2001, 496, 12–18. [Google Scholar] [CrossRef] [PubMed]
- Ha, S.K.; Lee, P.; Park, J.A.; Oh, H.R.; Lee, S.Y.; Park, J.H.; Lee, E.H.; Ryu, J.H.; Lee, K.R.; Kim, S.Y. Apigenin Inhibits the Production of NO and PGE2 in Microglia and Inhibits Neuronal Cell Death in a Middle Cerebral Artery Occlusion-Induced Focal Ischemia Mice Model. Neurochem. Int. 2008, 52, 878–886. [Google Scholar] [CrossRef] [PubMed]
- Ginwala, R.; McTish, E.; Raman, C.; Singh, N.; Nagarkatti, M.; Nagarkatti, P.; Sagar, D.; Jain, P.; Apigenin, K.Z.K.; Flavonoid, N. Attenuates EAE Severity Through the Modulation of Dendritic Cell and Other Immune Cell Functions. J. Neuroimmune Pharmacol. 2016, 11, 36–47. [Google Scholar] [CrossRef] [PubMed]
- Ginwala, R.; Bhavsar, R.; Moore, P.; Bernui, M.; Singh, N.; Bearoff, F.; Nagarkatti, M.; Khan, Z.K.; Jain, P. Apigenin Modulates Dendritic Cell Activities and Curbs Inflammation via RelB Inhibition in the Context of Neuroinflammatory Diseases. J. Neuroimmune Pharmacol. 2021, 16, 403–424. [Google Scholar] [CrossRef] [PubMed]
- Oyaizu, M. Studies on Products of Browning Reaction. Antioxidative Activities of Products of Browning Reaction Prepared from Glucosamine. Jpn. J. Nutr. Diet. 1986, 44, 307–315. [Google Scholar] [CrossRef]
- Amarowicz, R.; Troszyńska, A.; Shahidi, F. Antioxidant activity of almond seed extract and its fractions. J. Food Lipids 2005, 12, 344–358. [Google Scholar] [CrossRef]
- Anusha, C.; Sumathi, T.; Joseph, L.D. Protective Role of Apigenin on Rotenone Induced Rat Model of Parkinson’s Disease: Suppression of Neuroinflammation and Oxidative Stress Mediated Apoptosis. Chem. Biol. Interact. 2017, 269, 67–79. [Google Scholar] [CrossRef] [PubMed]
- Patel, M.; Singh, S. Apigenin Attenuates Functional and Structural Alterations via Targeting NF-kB/Nrf2 Signaling Pathway in LPS-Induced Parkinsonism in Experimental Rats: Apigenin Attenuates LPS-Induced Parkinsonism in Experimental Rats. Neurotox. Res. 2022, 40, 941–960. [Google Scholar] [CrossRef]
- Yarim, G.F.; Kazak, F.; Yarim, M.; Sozmen, M.; Genc, B.; Ertekin, A.; Gokceoglu, A. Apigenin Alleviates Neuroinflammation in a Mouse Model of Parkinson’s Disease. Int. J. Neurosci. 2022. [Google Scholar] [CrossRef]
- Vejandla, B.; Savani, S.; Appalaneni, R.; Veeravalli, R.S.; Gude, S.S. Alzheimer’s Disease: The Past, Present, and Future of a Globally Progressive Disease. Cureus 2024, 16, e51705. [Google Scholar] [CrossRef]
- Kang, S.S.; Lee, J.Y.; Choi, Y.K. Neuroprotective Effects of Flavones on Hydrogen Peroxide-Induced Apoptosis in SH-SY5Y Neuroblostoma Cells. Bioorg. Med. Chem. Lett. 2004, 14, 2261–2264. [Google Scholar] [CrossRef] [PubMed]
- Dourado, N.S.; Souza, C.D.S.; Almeida, M.M.A.; Silva, A.; Dos Santos, B.L.; Silva, V.D.A.; Assis, A.M.; Silva, J.S.; Souza, D.O.; Costa, M.F.D.; et al. Neuroimmunomodulatory and Neuroprotective Effects of the Flavonoid Apigenin in In Vitro Models of Neuroinflammation Associated with Alzheimer’s Disease. Front. Aging Neurosci. 2020, 12, 119. [Google Scholar] [CrossRef] [PubMed]
- Popović, M.; Caballero-Bleda, M.; Benavente-García, O.; Castillo, J. The Flavonoid Apigenin Delays Forgetting of Passive Avoidance Conditioning in Rats. J. Psychopharmacol. 2014, 28, 498–501. [Google Scholar] [CrossRef] [PubMed]
- Mao, X.Y.; Yu, J.; Liu, Z.Q.; Zhou, H.H. Apigenin Attenuates Diabetes-Associated Cognitive Decline in Rats via Suppressing Oxidative Stress and Nitric Oxide Synthase Pathway. Int. J. Clin. Exp. Med. 2015, 8, 15506–15513. [Google Scholar]
- Chen, L.; Xie, W.; Xie, W.; Zhuang, W.; Jiang, C.; Liu, N. Apigenin Attenuates Isoflurane-Induced Cognitive Dysfunction via Epigenetic Regulation and Neuroinflammation in Aged Rats. Arch. Gerontol. Geriatr. 2017, 73, 29–36. [Google Scholar] [CrossRef]
- Zhao, L.; Wang, J.L.; Liu, R.; Li, X.X.; Li, J.F.; Zhang, L. Neuroprotective, Anti-Amyloidogenic and Neurotrophic Effects of Apigenin in an Alzheimer’s Disease Mouse Model. Molecules 2013, 18, 9949–9965. [Google Scholar] [CrossRef] [PubMed]
- Gyengesi, E.; Rangel, A.; Ullah, F.; Liang, H.; Niedermayer, G.; Asgarov, R.; Venigalla, M.; Gunawardena, D.; Karl, T.; Münch, G. Chronic Microglial Activation in the GFAP-IL6 Mouse Contributes to Age-Dependent Cerebellar Volume Loss and Impairment in Motor Function. Front. Neurosci. 2019, 13, 303. [Google Scholar] [CrossRef] [PubMed]
- Campbell, I.L.; Abraham, C.R.; Masliah, E.; Kemper, P.; Inglis, J.D.; Oldstone, M.B.; Mucke, L. Neurologic Disease Induced in Transgenic Mice by Cerebral Overexpression of Interleukin 6. Proc. Natl. Acad. Sci. USA 1993, 90, 10061–10065. [Google Scholar] [CrossRef]
- Ullah, F.; Asgarov, R.; Venigalla, M.; Liang, H.; Niedermayer, G.; Munch, G.; Gyengesi, E. Effects of a Solid Lipid Curcumin Particle Formulation on Chronic Activation of Microglia and Astroglia in the GFAP-IL6 Mouse Model. Sci. Rep. 2020, 10, 2365. [Google Scholar] [CrossRef] [PubMed]
- Chesworth, R.; Gamage, R.; Ullah, F.; Sonego, S.; Millington, C.; Fernandez, A.; Liang, H.; Karl, T.; Münch, G.; Niedermayer, G.; et al. Spatial Memory and Microglia Activation in a Mouse Model of Chronic Neuroinflammation and the Anti-Inflammatory Effects of Apigenin. Front. Neurosci. 2021, 15, 699329. [Google Scholar] [CrossRef]
- Shahwan, M.; Anwar, S.; Yadav, D.K.; Khan, M.S.; Shamsi, A. Experimental and Computational Insights into the Molecular Interactions between Human Transferrin and Apigenin: Implications of Natural Compounds in Targeting Neuroinflammation. ACS Omega 2023, 8, 46967–46976. [Google Scholar] [CrossRef] [PubMed]
- Sevastre-Berghian, A.C.; Ielciu, I.; Bab, T.; Olah, N.K.; Neculicioiu, V.S.; Toma, V.A.; Sevastre, B.; Mocan, T.; Hanganu, D.; Bodoki, A.E.; et al. Betula pendula Leaf Extract Targets the Interplay between Brain Oxidative Stress, Inflammation, and NFkB Pathways in Amyloid Aβ1–42-Treated Rats. Antioxidants 2023, 12, 2110. [Google Scholar] [CrossRef] [PubMed]
- Boopathi, S.; Mendonca, E.; Gandhi, A.; Rady, A.; Darwish, N.M.; Arokiyaraj, S.; Kumar, T.T.A.; Pachaiappan, R.; Guru, A.; Arockiaraj, J. Exploring the Combined Effect of Exercise and Apigenin on Aluminium-Induced Neurotoxicity in Zebrafish. Mol. Neurobiol. 2024. [Google Scholar] [CrossRef] [PubMed]
- Costa, C.; Soares, R.; Reis-Filho, J.S.; Leitao, D.; Amendoeira, I.; Schmitt, F.C. Cyclo-Oxygenase 2 Expression Is Associated with Angiogenesis and Lymph Node Metastasis in Human Breast Cancer. J. Clin. Pathol. 2002, 55, 429–434. [Google Scholar] [CrossRef] [PubMed]
- Tahanian, E.; Sanchez, L.A.; Shiao, T.C.; Roy, R.; Annabi, B. Flavonoids Targeting of IκB Phosphorylation Abrogates Carcinogen-Induced MMP-9 and COX-2 Expression in Human Brain Endothelial Cells. Drug Des. Dev. Ther. 2011, 5, 299–309. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Qi, Y.; Xu, Y.; Han, X.; Peng, J.; Liu, K.; Sun, C.K. Protective Effect of Flavonoid-Rich Extract from Rosa laevigata Michx on Cerebral Ischemia-Reperfusion Injury through Suppression of Apoptosis and Inflammation. Neurochem. Int. 2013, 63, 522–532. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Zhang, P.; Xu, L.H.; Gao, K.; Zhang, J.L.; Yao, M.N.; Li, R.L.; Guo, C.; Wang, J.W.; Wu, Q.X. Ethanol Extract of Verbena officinalis Alleviates MCAO-Induced Ischaemic Stroke by Inhibiting IL17A Pathway-Regulated Neuroinflammation. Phytomedicine 2024, 123, 155237. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez, R.G.; Hirsch, J.A.; Koroshetz, W.J.; Lev, M.H.; Schaefer, P. Acute Ischemic Stroke: Imaging and Intervention. AJNR Am. J. Neuroradiol. 2007, 28, 1622–1623. [Google Scholar] [CrossRef]
- Ionita, R.; Postu, P.A.; Mihasan, M.; Gorgan, D.L.; Hancianu, M.; Cioanca, O.; Hritcu, L. Ameliorative Effects of Matricaria chamomilla L. Hydroalcoholic Extract on Scopolamine-Induced Memory Impairment in Rats: A Behavioral and Molecular Study. Phytomedicine 2018, 47, 113–120. [Google Scholar] [CrossRef]
- Godos, J.; Ferri, R.; Castellano, S.; Angelino, D.; Mena, P.; Del Rio, D.; Caraci, F.; Galvano, F.; Grosso, G. Specific Dietary (Poly)Phenols Are Associated with Sleep Quality in a Cohort of Italian Adults. Nutrients 2020, 12, 1226. [Google Scholar] [CrossRef]
- Cavalier, A.N.; Clayton, Z.S.; Wahl, D.; Hutton, D.A.; McEntee, C.M.; Seals, D.R.; LaRocca, T.J. Protective Effects of Apigenin on the Brain Transcriptome with Aging. Mech. Ageing Dev. 2024, 217, 111889. [Google Scholar] [CrossRef] [PubMed]
- Almeer, R.; Alyami, N.M. The Protective Effect of Apigenin against Inorganic Arsenic Salt-Induced Toxicity in PC12 Cells. Environ. Sci. Pollut. Res. Int. 2023, 30, 106625–106635. [Google Scholar] [CrossRef] [PubMed]
- Zhao, F.; Dang, Y.; Zhang, R.; Jing, G.; Liang, W.; Xie, L.; Li, Z. Apigenin Attenuates Acrylonitrile-Induced Neuro-Inflammation in Rats: Involved of Inactivation of the TLR4/NF-κB Signaling Pathway. Int. Immunopharmacol. 2019, 75, 105697. [Google Scholar] [CrossRef] [PubMed]
Pathologies | Apigenin (Forms) | Dose | Models | Mechanisms | Ref. |
---|---|---|---|---|---|
Multiple sclerosis | Apigenin (Sigma Aldrich (St. Louis, MO, USA)) | 5, 10, and 20 µM | LPS-induced dendritic cells | Suppression of CD80, CD86, and major histocompatibility complex class I and II molecules, expressions on DCs Impairment of LPS-induced IL-12 expression | [80] |
Apigenin (Sigma Aldrich) | 0, 1 and 25 µM | LPS-stimulated human monocytes, mouse macrophages | Inhibition in vivo of LPS-induced TNF and the mortality induced by lethal doses of LPS | [81] | |
Reducing power of apigenin (according to the method of Oyaizu [87] and Amarowicz et al. [88] | 0–20 µM | RAW 264.7 macrophage cells | Blocking NO-mediated COX-2 expression and monocyte adherence | [82] | |
Apigenin (Sigma Aldrich) | 10 µM | LPS-activated macrophages | Inhibition of inducible COX and inducible NO synthase promoter activities (action by PPAR) | [83] | |
Apigenin solutions (supplier not specified) | 1, 5, and 10 µM | BV-2 murine microglia cell line | Inhibition of the production of nitric oxide and prostaglandin E(2) by suppressing the expression of inducible NO synthase and COX-2 protein | [84] | |
Apigenin (R&D System (Minneapolis, MN, USA)) | 40 mg/kg body weight | Experimental C57BL/6 autoimmune encephalomyelitis progression and relapse |
Decrease expression of α4 integrin and CLEC12A on splenic DCs
Increase in immune cell retention in the periphery compared to untreated EAE mice | [85] | |
Apigenin (Sigma-Aldrich) | 20 µM, 3 h | Dendritic cells isolated from PBMC | Shift of Th1- and Th17-type DC-modulated T-cell responses towards Treg-directed responses (decreased expression of T-bet, IFN-γ (Th1), and IL-17 (Th17) and increased expression of IL-10, TGF-β, and FoxP3 (Treg) in cells from normal human donors and EAE mice) | [86] |
Pathologies | Apigenin (Forms) | Dose | Models | Mechanisms | Ref. |
---|---|---|---|---|---|
Parkinson’s Disease | Apigenin (Sigma Aldrich) | 20 mg/kg ip | Rat model of PD induced by rotenone |
Attenuation of the upregulation of NF-κB gene expression.
Prevention of the neuroinflammation in substantia nigra pars compacta. Inhibition of the release of pro-inflammatory cytokines TNF- α and IL-6 and pro-inflammatory enzyme iNOS-1. | [89] |
Apigenin (Chemscene (St. Louis, MO, USA)) |
Oral administration of AGN (25 and 50 mg/kg; p.o.) alone
AGN (25 mg/kg; p.o.) in combination | LPS experimental model of rats |
Decreased levels of nitrite, MDA, SOD, TNF-α, IL-1β, IL-6, and caspase-1.
Increased levels of CAT, GSH, and complex-I. Modulation of NF-kB and Nrf2 signaling pathway. | [90] | |
supplier not specified | 50 mg/kg apigenin, 5 days | C57BL/6 mice treated by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine | Reversion of the changes in expressions and concentrations of TNF-α, IL-1β, IL-6, IL-10, and TGF-β. | [91] |
Pathologies | Apigenin (Forms) | Dose | Models | Mechanisms | Ref. |
---|---|---|---|---|---|
Alzheimer’s Disease | Isolated from the flowers of Chrysanthemum boreale | 10 μM, 8 h | SH-SY5Y neuronal cells | Inhibition of caspase-3 activity. | [93] |
Apigenin (Sigma–Aldrich) | 1 µM, 24 h | Glial cells and neurons were obtained from the brain hemispheres of Wistar rats |
Reduce microglial activation
Modulation of the mRNA expression of inflammatory cytokines, and reduced expression of OX42, IL-6, and gp130. Increase in the expression of brain-derived neurotrophic factor. | [94] | |
Apigenin (Nutrafur S.A. (Alcantarilla, Spain)) | 20 mg/kg intraperitoneally | Male Wistar rats | Improve long-term memory. | [95] | |
Apigenin (Sigma–Aldrich) | 10, 20 and 40 mg/kg i.p | Male Wistar rats injected intraperitoneally with Streptozotocin | Decrease in MDA content, increase in SOD activity and GSH levels. | [96] | |
Apigenin (Sigma–Aldrich) | 25–100 mg/kg | 22-month-old male Sprague Dawley rats |
Restore histone acetylation and BDNF signaling.
Suppression of isoflurane exposure induced upregulation of pro-inflammatory cytokines and NFκB signaling pathway. | [97] | |
Huike Botanical Development Company (Xi’an, China) | oral gavage 5 days/week at a dose of 40 mg/kg body weight once a day | APP/PS1 double transgenic mice | Restore neurotrophic ERK/CREB/BDNF pathway in the cerebral cortex. Down-regulation of BACE1 and β-CTF levels, the relief of Aβ deposition. Decrease in insoluble Aβ levels | [98] | |
Apigenin (Nutrafur S.A.) | 110 mg/kg per day | C57BL/6 and GFAP-IL6 heterozygous mice | Decrease in the number of Iba-1+ microglia in the hippocampus of GFAP-IL6 mice and change in microglial morphology. | [102] | |
Apigenin (Sigma-Aldrich) | X | Molecular docking | Binding of apigenin with human transferrin. Stability of human transferrin–apigenin complex. Targeting neuroinflammation by apigenin in the context of iron homeostasis. | [103] | |
Apigenin contained in B. pendula leaf extract | 200 mg/kg b.w. of B. pendula leaf extract | Wistar rats with intracerebroventricular injection of Aβ1-42 | Decrease in inflammation (cytokines: tumor necrosis factor-α (TNF-α), Interleukin 1β (IL-1β), and cyclooxygenase-2 (COX 2)) in plasma and hippocampus homogenates. | [104] | |
Apigenin (Sigma-Aldrich) | 25 mg/kg | Zebrafish treated with aluminum | Neutralization increased expression of genes related to neuroinflammation. | [105] |
Pathologies | Apigenin (Forms) | Dose | Models | Mechanisms | Ref. |
---|---|---|---|---|---|
Cancer | Combination of PMA and apigenin (Sigma Aldrich) | 30 µM of the tested molecules | Human brain microvascular endothelial cells | Inhibition of MMP-9 increase induced by PMA. Reduction in BBB disruption via inhibition of NF-κB signaling pathway. | [107] |
Cardiovascular disease | Apigenin solutions (supplier not specified) | 1, 5, and 10 µM | Primary microglia (1-day-old Spraque-Dawley rats) + LPS | Reduction in NO production and iNOS protein levels in dose-dependent manners. | [84] |
BV-2 cells (murine microglial cells) + LPS | Reduction in NO production and iNOS protein levels in dose-dependent manners. Inhibition of PGE2 caused by reduction in COX-2 expression. Slight reduction in COX-1 expression. Inhibition of JNK and p38 MAPK phosphorylation. | ||||
Apigenin solutions (supplier not specified) | Oral administration (20 mg/kg) 30 min after MCAO | Adult male ICR mice with MCAO—sacrifice 22, 5 h after reperfusion | Reduction in the infarct volume. Decrease in the number of OX-42-positive cells. | [84] | |
Flavonoid-rich extract (FRE) from Rosa laevigata Michx. fruit (Yunnan Qiancaoyuan Pharmaceutical Company Co., Ltd. (Yunnan, China)) | 50, 100, and 200 mg/kg of FRE | Male Sprague Dawley rats with MCAO |
Decrease in the expressions of NF-κB, iNOS, MMP-9, COX-2, TNF-α, IL-1β, IL-4, and IL-6.
Down-regulated the levels of p-JNK, p-ERK, and p-p38 in MAPK pathways. Anti-inflammatory properties of FRE. | [108] | |
VO Ex | 200, 400, 800 mg/kg with 0.22 ± 0.01 mg/g of VO Ex | Adult male Sprague Dawley rats with MCAO | Reduction in the infarct volume, structural damage, and neuronal death. Inhibition of IL17A, IL1β, MMP9 and MMP3 mRNA levels. Decrease in IL-7, IL-6, and TNF-α protein expression. | [109] | |
Apigenin (Baoji Chenguang Biotechnology Co., Ltd. (Baoji, China)) | 6.25, 12.5, 25, 50, and 100 μM for 4 h before OGD/R | Primary rat astrocytes for cell viability assay or with OGD/R | Improvement of the cell viability with the OGD/R injury group. | ||
VALAH | Verbenalin (75 μM), acteoside (50 μM), luteolin (6.25 μM), apigenin (6.25 μM), and hispidulin (12.5 μM) | Primary rat astrocytes for cell viability assay or with OGD/R | Increase the cell survival rate in a dose-dependent manner. Inhibition of IL17A upregulation. Decrease in IL1-β, IL6, MMP9, and TNF-α protein expression levels. |
Pathologies | Apigenin (Forms) | Dose | Models | Mechanisms | Ref. |
---|---|---|---|---|---|
Cognitive and memory disorders | Apigenin (Sigma Aldrich) | 25, 50, and 100 mg/kg | 22-month-old male Sprague Dawley rats treated with isoflurane | Reduction in isoflurane induced neuroinflammation, restoring IL-2, IL-4, and IL-10 levels via modulation of the NF-κB inflammatory pathway | [97] |
Hydroalcoholic extract from M. chamomilla dry flowers (Apigenin-7-glucoside 927.62 mg/100 g dry flowers and Apigenin 377.64 mg/100 g dry flowers) | 25 or 75 mg/kg of hydroalcoholic extract | Male Wistar/25 rats (4 months old) treated with scopolamine | Reversal of decreased BDNF mRNA levels and increased IL1β mRNA levels in hippocampal tissue after scopolamine treatment | [111] | |
(Poly)phenol content of foods from the Phenol-Explorer database. | Adults living in southern Italy | Consumption of certain (poly)phenols associated with better sleep quality, possible involvement of neuroinflammation | [112] | ||
Apigenin (Fisher Scientific) | 0.5 mg/mL, in 0.2% carboxymethylcellulose, in drinking water for 6 weeks | Young and old C57BL/6N mice | Modulation of transcriptomic signatures of inflammation/immune activation Reversal of gene expression signatures related to inflammation and immune activation in the aging mouse brain | [113] | |
25 μM for 24 h | Primary human astrocytes | Reduced markers of senescence and inflammation in aging-like primary human astrocytes | |||
Toxicity related to trace metals and other chemicals | Apigenin (Sigma Aldrich) | 0.01–300 μM for 24 or 48 h | PC12 cell line derived from a pheochromocytoma of the rat adrenal medulla | Protection against iAs-induced neuroinflammation, oxidative stress, and apoptotic cell death via Nrf2 upregulation | [114] |
Apigenin (Shaanxi Ci Yuan Biotechnology Co., Ltd. (Xi’an, China)) | 117, 234, and 351 mg/kg | Rats treated with acetonitrile | Reduced oxidative stress, down-regulated the TLR4/NF-κB signaling pathway, decreased the levels of IL-6 and TNF-α, and inhibited mitochondria-mediated neuron apoptosis | [115] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Charrière, K.; Schneider, V.; Perrignon-Sommet, M.; Lizard, G.; Benani, A.; Jacquin-Piques, A.; Vejux, A. Exploring the Role of Apigenin in Neuroinflammation: Insights and Implications. Int. J. Mol. Sci. 2024, 25, 5041. https://doi.org/10.3390/ijms25095041
Charrière K, Schneider V, Perrignon-Sommet M, Lizard G, Benani A, Jacquin-Piques A, Vejux A. Exploring the Role of Apigenin in Neuroinflammation: Insights and Implications. International Journal of Molecular Sciences. 2024; 25(9):5041. https://doi.org/10.3390/ijms25095041
Chicago/Turabian StyleCharrière, Karine, Vincent Schneider, Manon Perrignon-Sommet, Gérard Lizard, Alexandre Benani, Agnès Jacquin-Piques, and Anne Vejux. 2024. "Exploring the Role of Apigenin in Neuroinflammation: Insights and Implications" International Journal of Molecular Sciences 25, no. 9: 5041. https://doi.org/10.3390/ijms25095041
APA StyleCharrière, K., Schneider, V., Perrignon-Sommet, M., Lizard, G., Benani, A., Jacquin-Piques, A., & Vejux, A. (2024). Exploring the Role of Apigenin in Neuroinflammation: Insights and Implications. International Journal of Molecular Sciences, 25(9), 5041. https://doi.org/10.3390/ijms25095041