The First Reciprocal Activities of Chiral Peptide Pharmaceuticals: Thymogen and Thymodepressin, as Examples
Abstract
:1. Introduction
2. Dipeptides and Dipeptidases
2.1. Immunotropic Drugs
2.2. Immunosuppressive Drugs
2.2.1. Calcineurin Inhibitors
2.2.2. Glucocorticoids
2.2.3. mTOR Inhibitors
2.2.4. Protein Drugs
3. Chirality and Peptide Reciprocal Activity
4. Biological Activity of Glu-Trp Isomers
4.1. Thymogen
4.2. Thymodepressin
5. Discussion
6. Conclusions and Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Takahashi, K.; Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006, 126, 663–676. [Google Scholar] [CrossRef] [PubMed]
- Terkelsen, T.; Mikkelsen, N.S.; Bak, E.N.; Vad-Nielsen, J.; Blechingberg, J.; Weiss, S.; Drue, S.O.; Andersen, H.; Andresen, B.S.; Bak, R.O.; et al. CRISPR activation to characterize splice-altering variants in easily accessible cells. Am. J. Hum. Genet. 2024, 111, 309–322. [Google Scholar] [CrossRef] [PubMed]
- Deigin, V.I.; Semenets, T.N.; Zamulaeva, I.A.; Maliutina, Y.V.; Selivanova, E.I.; Saenko, A.S.; Semina, O.V. The effects of the EW dipeptide optical and chemical isomers on the CFU-S population in intact and irradiated mice. Int. Immunopharmacol. 2007, 7, 375–382. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Wang, N.; Zhang, W.; Cheng, X.; Yan, Z.; Shao, G.; Wang, X.; Wang, R.; Fu, C. Therapeutic peptides: Current applications and future directions. Signal Transduct. Target. Ther. 2022, 7, 48. [Google Scholar] [CrossRef] [PubMed]
- Craik, D.J.; Fairlie, D.P.; Liras, S.; Price, D. The future of peptide-based drugs. Chem. Biol. Drug Des. 2013, 81, 136–147. [Google Scholar] [CrossRef] [PubMed]
- Agyei, D.; Ahmed, I.; Akram, Z.; Iqbal, M.N.; Michael, K.; Danquah, M.K. Protein and Peptide Biopharmaceuticals: An Overview. Protein Pept. Lett. 2017, 24, 94–101. [Google Scholar] [CrossRef] [PubMed]
- Davenport, A.P.; Scully, C.C.G.; de Graaf, C.; Brown, A.J.H.; Maguire, J.J. Advances in therapeutic peptides targeting G protein-coupled receptors. Nat. Rev. Drug Discov. 2020, 19, 389–413. [Google Scholar] [CrossRef] [PubMed]
- Brayden, D.J.; Hill, T.A.; Fairlie, D.P.; Maher, S.; Mrsny, R.J. Systemic delivery of peptides by the oral route: Formulation and medicinal chemistry approaches. Adv. Drug Deliv. Rev. 2020, 157, 2–36. [Google Scholar] [CrossRef]
- Lander, A.J.; Jin, Y.; Luk, L.Y.P. D-Peptide and D-Protein Technology: Recent Advances, Challenges, and Opportunities. Chem. Biochem. 2023, 24, e202200537. [Google Scholar] [CrossRef]
- Schumacher, T.N.; Mayr, L.M.; Minor, D.L., Jr.; Milhollen, M.A.; Burgess, M.W.; Kim, P.S. Identification of D-peptide ligands through mirror-image phage display. Science 1996, 271, 1854–1857. [Google Scholar] [CrossRef]
- Peplow, M.A. Conversation with Ting Zhu. ACS Cent. Sci. 2018, 4, 783–784. [Google Scholar] [CrossRef] [PubMed]
- Ling, J.-J.; Fan, C.; Qin, H.; Wang, M.; Chen, J.; Wittung-Stafshede, P.; Zhu, T.F. Mirror-Image 5S Ribonucleoprotein Complexes. Angew. Chem. Int. Ed. 2020, 59, 3724. [Google Scholar] [CrossRef] [PubMed]
- Ogasawara, Y.; Dairi, T. Peptide Epimerization Machineries Found in Microorganisms. Front. Microbiol. 2018, 9, 156. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Jiang, W.; Liu, X.; Wang, J.; Zhang, B.; Fan, C.; Liu, L.; Pena-Alcantara, G.; Ling, J.J.; Chen, J.; et al. Mirror-Image Gene Transcription and Reverse Transcription. Chem 2019, 5, 848–857. [Google Scholar] [CrossRef]
- Barrett, A.J.; Neil, D.; Rawlings, J.; Woessner, F. Handbook of Proteolytic Enzymes, 3rd ed.; Academic Press: New York, NY, USA, 2012; ISBN 9780123822208. [Google Scholar]
- Lau, J.L.; Dunn, M.K. Therapeutic peptides: Historical perspectives, current development trends, and future directions. Bioorg. Med. Chem. 2018, 26, 2700–2707. [Google Scholar] [CrossRef]
- Hanson, H.T.; Smith, E.L. The application of peptides containing beta-alanine to the study of the specificity of various peptidases. J. Biol. Chem. 1948, 175, 833–848. [Google Scholar] [CrossRef] [PubMed]
- Morel, P.; Guinand, M.; Vacheron, M.-J.; Michel, G. Biologically active glycopeptides from Actinomadura R 39. I. Continuous glycotri- and glyco-tetrapeptides preparation with immobilized DD-carboxypeptidase from Streptomyces albus G. Biotechnol. Appl. Biochem. 1986, 8, 404–413. [Google Scholar]
- Josefsson, L.; Lindberg, T. Intestinal dipeptidases. IX. Studies on dipeptidases of the human intestinal mucosa. Acta Physiol. Scand. 1967, 21, 1965–1966. [Google Scholar] [CrossRef] [PubMed]
- Sadikali, F. Dipeptidase deficiency and malabsorption of glycylglycine in disease states. Gut 1971, 12, 276–283. [Google Scholar] [CrossRef]
- Räder, B.; Weinmüller, A.F.; Reichart, M.; Schumacher-Klinger, F.; Merzbach, A.; Gilon, S.; Hoffman, C.; Kessler, H. Orally Active Peptides: Is There a Magic Bullet? Angew. Chem. Int. Ed. 2018, 57, 14414–14438. [Google Scholar] [CrossRef]
- Peakman, M.; Buckland, M.S. The Immunity. Clinical Medicine, 10th ed.; Elsevier: Philadelphia, PA, USA, 2021; Chapter 3. [Google Scholar]
- Cronin, D.C.; Faust, T.W.; Brady, L.; Conjeevaram, H.; Jain, S.; Gupta, P.; Millis, J.M. Modern immunosuppression. Clin. Liver Dis. 2000, 4, 619–655. [Google Scholar] [CrossRef] [PubMed]
- Hussain, Y.; Khan, H. Encyclopedia of Infection and Immunity Immunosuppressive. In Drugs; Elsevier Inc.: Amsterdam, The Netherlands, 2022; pp. 726–738. [Google Scholar] [CrossRef]
- Caine, R.Y.; Rolles, K.; White, D.J.; Thiru, S.; Evans, D.B.; McMaster, P.; Dunn, D.C.; Craddock, G.N.; Henderson, R.G.; Aziz, S.; et al. Cyclosporin A initially as the only immunosuppressant. Lancet 1979, 2, 1033–1036. [Google Scholar] [CrossRef] [PubMed]
- Schreiber, S.L.; Crabtree, G.R. The mechanism of action of cyclosporin A and FK506. Immunol. Today 1992, 13, 136–142. [Google Scholar] [CrossRef] [PubMed]
- Tapia, C.; Nessel, T.A.; Zito, P.M. Cyclosporine; StatPearls Publishing: Treasure Island, FL, USA, 2024. [Google Scholar]
- Fung, J.J. Tacrolimus and transplantation: A decade in review. Transplantation 2004, 77, S41–S43. [Google Scholar] [CrossRef] [PubMed]
- Plosker, G.L.; Foster, R.H. Tacrolimus: A further update of its pharmacology and therapeutic use in the management of organ transplantation. Drugs 2000, 59, 323–389. [Google Scholar] [CrossRef] [PubMed]
- Penninga, L.; Moller, C.H.; Gustafsson, F.; Steinbrüchel, D.A.; Gluud, C. Tacrolimus versus Cyclosporine as primary immunosuppression after heart transplantation: Systematic review with meta-analyses and trial sequential analyses of randomized trials. Eur. J. Clin. Pharmacol. 2010, 66, 1177–1187. [Google Scholar] [CrossRef] [PubMed]
- Rhen, T.; Cidlowski, J.A. Antiinflammatory action of glucocorticoids–new mechanisms for old drugs. N. Engl. J. Med. 2005, 353, 1711–1723. [Google Scholar] [CrossRef] [PubMed]
- Boumpas, D.T.; Chrousos, G.P.; Wilder, R.L.; Cupps, T.R.; Balow, J.E. Glucocorticoid therapy for immune-mediated diseases: Basic and clinical correlates. Ann. Intern. Med. 1993, 119, 1198–1208. [Google Scholar] [CrossRef] [PubMed]
- Curtis, J.R.; Westfall, A.O.; Allison, J.; Bijlsma, J.W.; Freeman, A.; George, V.; Kovac, S.H.; Spettell, C.M.; Saag, K.G. Population-based assessment of adverse events associated with long-term glucocorticoid use. Arthritis Rheum. 2006, 55, 420–426. [Google Scholar] [CrossRef]
- Strueber, M.; Warnecke, G.; Fuge, J.; Simon, A.R.; Zhang, R.; Welte, T.; Haverich, A.; Gottlieb, J. Everolimus Versus Mycophenolate Mofetil De Novo After Lung Transplantation: A Prospective, Randomized, Open-Label Trial. Am. J. Transplant. 2016, 16, 3171–3180. [Google Scholar] [CrossRef]
- Berger, T.; Elovaara, I.; Fredrikson, S.; McGuigan, C.; Moiola, L.; Myhr, K.M.; Oreja-Guevara, C.; Stoliarov, I.; Zettl, U.K. Alemtuzumab use in clinical practice: Recommendations from European multiple sclerosis experts. CNS Drugs 2017, 31, 33–50. [Google Scholar] [CrossRef] [PubMed]
- Tandan, R.; Hehir, M.K.; Waheed, W.; Howard, D.B. Rituximab treatment of myasthenia gravis: A systematic review. Muscle Nerve 2017, 56, 185–196. [Google Scholar] [CrossRef] [PubMed]
- Rudnicka, D.; Oszmiana, A.; Finch, D.K.; Strickland, I.; Schofield, D.J.; Lowe, D.C.; Sleeman, M.A.; Davis, D.M. Rituximab causes a polarization of B cells that augments its therapeutic function in NK-cell–mediated antibody-dependent cellular cytotoxicity. Blood 2013, 121, 4694–4702. [Google Scholar] [CrossRef] [PubMed]
- Azrieh, B.; Alsaud, A.; Obeidat, K.; Ashour, A.; Elebbi, S.; Mohamed, S.F.; Abdelaty, M.A.; Akkari, A.; Elbuzidi, A.A.; Yassin, M.A. Rituximab twice weekly for refractory thrombocytopenic purpura in a critically ill patient with acute respiratory distress syndrome. Case Rep. Oncol. 2020, 13, 153–157. [Google Scholar] [CrossRef] [PubMed]
- Ollier, L.; Tieulie, N.; Sanderson, F.; Heudier, P.; Giordanengo, V.; Fuzibet, J.G.; Nicand, E. Chronic hepatitis after hepatitis E virus infection in a patient with non-Hodgkin lymphoma taking rituximab. Ann. Intern. Med. 2009, 150, 430–431. [Google Scholar] [CrossRef] [PubMed]
- Magliocca, J.F.; Knechtle, S.J. Alemtuzumab (Campath-1H)’s evolving role in immunosuppressive organ transplantation therapy. Transpl. Int. 2006, 19, 705–714. [Google Scholar] [CrossRef]
- Benvenuto, L.J.; Anderson, M.R.; Arcasoy, S.M. New frontiers in immunosuppression. J. Thorac. Dis. 2018, 10, 3141–3155. [Google Scholar] [CrossRef] [PubMed]
- Yong, C.; Wentao, M. The origin of biological homochirality along with the origin of life. PLoS Comput. Biol. 2020, 16, 10075921007614. [Google Scholar]
- Morozov, V.G.; Khavinson, V.K. Natural, and synthetic thymic peptides as therapeutics for immune dysfunction. Int. J. Immunopharmacol. 1997, 19, 501–505. [Google Scholar] [CrossRef]
- Deigin, V.I.; Poverenny, A.M.; Semina, O.V.; Semenets, T.N. Reciprocal effect of optical isomerism of EW-dipeptides on the immune response. Immunol. Lett. 1999, 67, 41–46. [Google Scholar] [CrossRef]
- Bada, J. Origins of homochirality. Nature 1995, 374, 594–595. [Google Scholar] [CrossRef] [PubMed]
- Cronin, J.; Reisse, J. Chirality and the Origin of Homochirality. In Lectures in Astrobiology. Advances in Astrobiology and Biogeophysics; Springer: Berlin/Heidelberg, Germany, 2005; pp. 473–515. [Google Scholar]
- Saha, D.; Kharbanda, A.; Yan, W.; Lakkaniga, N.R.; Frett, B.; Li, H.-Y. The Exploration of Chirality for Improved Draggability within the Human Genome. J. Med. Chem. 2020, 63, 441–469. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Fang, X.; Yang, Y.; Wang, C. Peptide-Enabled Targeted Delivery Systems for Therapeutic Applications. Front. Bioeng. Biotechnol. 2021, 9, 701504. [Google Scholar] [CrossRef] [PubMed]
- Zhang, N.-N.; Shen, Z.-L.; Gao, S.-Y.; Peng, F.; Cao, Z.-J.; Wang, Y. Synthesis and Plasmonic Chiroptical Properties of Double-Helical Gold Nanorod Enantiomers. Adv. Opt. Mater. 2023, 2, 2203119. [Google Scholar] [CrossRef]
- Ni, B.; Mychinko, M.; Gómez-Grana, S.; Morales-Vidal, J.; Obelleiro-Liz, M.; Heyvaert, W.; Vila-Liarte, D.; Zhuo, X.; Albrecht, W.; Zheng, G.; et al. Chiral Seeded Growth of Gold Nanorods into Fourfold Twisted Nanoparticles with Plasmonic Optical Activity. Adv. Mater. 2023, 35, 2208299. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Zhao, J.; Hao, C.; Hu, S.; Chen, C.; Guo, J.; Xu, L.; Sun, M.; Xu, C.; Kuang, H. The Development of Chiral Nanoparticles to Target NK Cells and CD8+ T Cells for Cancer Immunotherapy. Adv. Mater. 2022, 34, 2109354. [Google Scholar] [CrossRef]
- Xu, L.; Wang, X.; Wang, W.; Sun, M.; Choi, W.J.; Kim, J.-Y.; Hao, C.; Li, S.; Qu, A.; Lu, M.; et al. Enantiomer-Dependent Immunological Response to Chiral Nanoparticles. Nature 2022, 601, 366–373. [Google Scholar] [CrossRef] [PubMed]
- Levin, A.; Hakala, T.A.; Schneider, L.; Bernardes, G.J.L.; Gazit, E.; Knowles, T.P.J. Biomimetic Peptide Self-Assembly for Functional Materials. Nat. Rev. Chem. 2020, 4, 615–634. [Google Scholar] [CrossRef]
- Yan, J.; Feng, W.; Kim, J.-Y.; Lu, J.; Kumar, P. Self-Assembly of Chiral Nanoparticles into Semiconductor Helices with Tunable Near-Infrared Optical Activity. Chem. Mater. 2020, 32, 476–488. [Google Scholar] [CrossRef]
- Abdullahi, M.; Wang, L.; Siddig, O.; Di, B.; Li, B. D-Amino Acids and D-Amino Acid-Containing Peptides: Potential Disease Biomarkers and Therapeutic Targets? Biomolecules 2021, 11, 1716. [Google Scholar] [CrossRef]
- Vargesson, N. Thalidomide-induced teratogenesis: History and mechanisms. Birth Defect. Res. C Embryo Today 2015, 105, 140–156. [Google Scholar] [CrossRef] [PubMed]
- Nhàn, N.T.T.; Yamada, T.; Yamada, K.H. Peptide-Based Agents for Cancer Treatment: Current Applications and Future Directions. Int. J. Mol. Sci. 2023, 24, 12931. [Google Scholar] [CrossRef] [PubMed]
- Richter, K.; Egger, R.; Kreil, G. D-alanine in the frog skin peptide dermorphin is derived from L-alanine in the precursor. Science 1987, 238, 200–202. [Google Scholar] [CrossRef] [PubMed]
- Ollivaux, C.; Soyez, D.; Toullec, J.Y. Biogenesis of D-amino acid-containing peptides/proteins: Where, when, and how? J. Pept. Sci. 2014, 20, 595–612. [Google Scholar] [CrossRef] [PubMed]
- Koehbach, J.; Gruber, C.W.; Becker, C.; Kreil, D.P.; Jilek, A. MALDI TOF/TOF-Based Approach for the Identification of d- Amino Acids in Biologically Active Peptides and Proteins. J. Proteome Res. 2016, 15, 1487–1496. [Google Scholar] [CrossRef] [PubMed]
- Grishin, D.V.; Zhdanov, D.D.; Pokrovskaya, M.V.; Sokolov, N.N. D-amino acids in nature, agriculture, and biomedicine. Front. Life Sci. 2020, 13, 11–22. [Google Scholar] [CrossRef]
- Wang, Y.; Tay, A. Advances in Enantiomer- Dependent Nanotherapeutics. ACS Nano 2023, 17, 9850–9869. [Google Scholar] [CrossRef] [PubMed]
- Schulz-Knappe, P.; Schrader, M.; Zucht, H.-D. The peptidomics concept. Comb. Chem. High Throughput Screen. 2005, 8, 697–704. [Google Scholar] [CrossRef] [PubMed]
- Baig, M.H.; Ahmad, K.; Saeed, M.; Alharbi, A.M.; Barreto, G.E.; Ashraf, G.M.; Choi, I. Peptide-based therapeutics and their use for the treatment of neurodegenerative and other diseases. Biomed. Pharmacother. 2018, 103, 574–581. [Google Scholar] [CrossRef]
- Khavinson, V.; Linkova, N.; Dyatlova, A.; Kuznik, B.; Umnov, R. Peptides: Prospects for Use in the Treatment of COVID-19. Molecules 2020, 25, 4389. [Google Scholar] [CrossRef]
- Deigin, V.I.; Poluektova, E.A.; Beniashvili, A.G.; Kozin, S.A.; Poluektov, Y.M. Development of Peptide Biopharmaceuticals in Russia. Pharmaceutics 2022, 14, 716. [Google Scholar] [CrossRef] [PubMed]
- Semina, O.V.; Semenets, T.N.; Deigin, V.I.; Korotkov, A.M.; Poverenny, A.M. Effect of the peptide of thymus original (synthetic peptide) on hemopoietic cell progenitors in intact and irradiated animals. Immunol. Lett. 1996, 51, 137–140. [Google Scholar] [CrossRef] [PubMed]
- Deigin, V.I.; Poverenny, A.M.; Semina, O.V.; Semenets, T.N. Stimulation and suppression of the immune response and hemopoiesis by novel natural and synthetic peptides. In Peptides for the New Millennium. American Peptide Symposia; Springer: Dordrecht, The Netherlands, 2002. [Google Scholar]
- Poverenny, A.M.; Semina, O.V.; Semenets, T.N.; Yarilin, A.A. The probable mechanism of spleen colony formation suppression with rabbit antimouse brain antiserum. Exp. Hematol. 1980, 8, 1216–1221. [Google Scholar] [PubMed]
- Semina, O.V.; Semenets, T.N.; Deĭgin, V.I.; Korotkov, A.M.; Poverennyĭ, A.M. The replacement of accessory T-lymphocytes by synthetic peptides during the formation of splenic hematopoietic colonies. Biull Eksp. Biol. Med. 1993, 116, 298–299. [Google Scholar] [CrossRef] [PubMed]
- Poverennyĭ, A.M.; Vinogradova, I.E.; Deĭgin, V.I. Hemoregulatory synthetic peptides. Ter. Arkh. 2000, 72, 74–76. [Google Scholar] [PubMed]
- Zhukova, G.V.; Schikhlyarova, A.I.; Barteneva, T.A.; Shevchenko, A.N.; Zakharyuta, F.M. Effect of Thymalin on the Tumor and Thymus under Conditions of Activation Therapy in vivo. Bull. Exp. Biol. Med. 2018, 165, 80–83. [Google Scholar] [CrossRef] [PubMed]
- Semenets, T.N.; Semina, O.V.; Vinogradova, Y.E.; Deigin, V.I.; Poverenny, M. Use of synthetic immunomodulatory peptides to restore hematopoiesis in mice after the cytostatic cytosine arabinoside (Ara-C). Immunology 2000, 6, 20–22. [Google Scholar]
- Semina, O.V.; Semenets, T.N.; Deigin, V.I.; Korotkov, A.M.; Vinogradova, Y.E.; Poverenny, A.M. Stimulation with Thymogen (EW), a dipeptide that has immunoprotective properties to restore hematopoiesis in irradiated and cytostatic-exposed mice. Immunology 1997, 1, 33–35. [Google Scholar]
- Vinogradova, Y.E.; Deigin, V.I.; Korotkov, A.M.; Semina, O.V.; Sements, T.N.; Poverenny, A.M. Use of Thymogen for the treatment of patients with diseases of the blood system. The influence of Thymogen on the granulocytic lineage of hematopoiesis in patients with hematopoietic depression. Russ. J. Oncol. 1999, 2, 45–48. [Google Scholar]
- Vinogradova, I.E.; Shinkarkina, A.P.; Vinogradov, D.L.; Poverennyı, A.M. Characteristics of a clinical course of immune cytopenia with a high titer of autoantibodies to the microsomal antigen of the thyroid gland. Ter. Arkh. 2004, 76, 81–85. [Google Scholar]
- Avolio, F.; Martinotti, S.; Khavinson, V.K.; Esposito, J.E.; Giambuzzi, G.; Marino, A.; Mironova, E.; Pulcini, R.; Robuffo, I.; Bologna, G.; et al. Peptides Regulating Proliferative Activity and Inflammatory Pathways in the Monocyte/Macrophage THP-1 Cell Line. Int. J. Mol. Sci. 2022, 23, 3607. [Google Scholar] [CrossRef] [PubMed]
- Khavinson, V.K. Peptides and Aging. Neuro Endocrinol. Lett. 2002, 23, 11–144. [Google Scholar] [PubMed]
- Deigin, V.; Linkova, N.; Volpina, O. Advancement from Small Peptide Pharmaceuticals to Orally Active Piperazine-2,5-dion-Based Cyclopeptides. Int. J. Mol. Sci. 2023, 24, 13534. [Google Scholar] [CrossRef] [PubMed]
- Shi, B.; Zhao, J.; Xu, Z.; Chen, C.; Xu, L.; Xu, C.; Sun, M.; Kuang, H. Chiral Nanoparticles Force Neural Stem Cell Differentiation to Alleviate Alzheimer’s Disease. Adv. Sci. 2022, 9, 2202475. [Google Scholar] [CrossRef] [PubMed]
- Poverenny, A.M.; Semina, O.V.; Vinogradova, Y.E.; Semenets, T.N.; Zamulaeva, I.A.; Saenko, A.S.; Deigin, V.I. D-EW dipeptide (Thymodepressin)—New prospects in treating graft-versus-host disease. In VI Regional European Congress of the International Society of Blood Transfusion; Jerusalem, Israel, 1999; p. 125. Available online: https://www.isbtweb.org/ (accessed on 5 March 2024).
- Vladimirskaya, E.B.; Osipova, Y.E.; Kaznacheev, K.S.; Ivanova, K.A.; Deigin, V.I.; Rumyantsev, A.G. The effect of Thymodepressin on the proliferation of human hematopoietic progenitor cells. Hematol. Transfusiol. 1999, 44, 11–14. [Google Scholar]
- Becker, A.J.; Mc, C.E.; Till, J.E. Cytological demonstration of the clonal nature of spleen colonies derived from transplanted mouse marrow cells. Nature 1963, 197, 452–454. [Google Scholar] [CrossRef] [PubMed]
- Boyer, S.W.; Rajendiran, S.; Beaudin, A.E.; Smith-Berdan, S.; Muthuswamy, P.K.; Perez-Cunningham, J.; Martin, E.W.; Cheung, C.; Tsang, H.; Landon, M.; et al. Clonal and quantitative in vivo assessment of hematopoietic stem cell differentiation reveals strong erythroid potential of multipotent cells. Stem Cell Rep. 2019, 12, 801–815. [Google Scholar] [CrossRef] [PubMed]
- Semina, O.V.; Semenets, T.N.; Zamulaeva, I.A.; Selivanova, E.I.; Iljina, T.P.; Maliutina, Y.V.; Semin, D.Y.; Deigin, V.I.; Saenko, A.S. Dipeptide gamma-d-Glu-d-Trp (thymodepressin) inhibits migration of CD34+ cells from the bone marrow into peripheral blood during tumor growth. Bull. Exp. Biol. Med. 2008, 146, 96–99. [Google Scholar] [CrossRef] [PubMed]
- Vinogradova, J.E.; Zamulaeva, I.A.; Pavlov, V.V.; Selivanova, E.I.; Deĭgin, V.I.; Smirnova, S.G.; Orlova, N.V.; Saenko, A.S. Application of thymodepressin for treating autoimmune cytopenia. Ter. Arkh. 2002, 74, 64–67. [Google Scholar]
- Yilmaz, D.E.; Kirschner, K.; Demirci, H.; Himmerkus, N.; Bachmann, S.; Mutig, K. Immunosuppressive calcineurin inhibitor Cyclosporine A induces proapoptotic endoplasmic reticulum stress in renal tubular cells. J. Biol. Chem. 2022, 298, 101589. [Google Scholar] [CrossRef]
- Bundick, R.V.; Craggs, R.I.; Holness, E. The impact of cyclosporin A, FK506, and rapamycin on the murine chronic graft-versus-host response—an in vivo model of Th2-like activity. Exp. Immunol. 1995, 99, 467–472. [Google Scholar] [CrossRef] [PubMed]
- Poverenny, A.M.; Semina, O.V.; Semenets, T.N.; Zamulaeva, I.A.; Selivanova, E.I.; Deigin, V.I. Thymodepressin, inhibiting the development of the graft-versus-host reaction. Immunology 2002, 2, 102–104. [Google Scholar]
- Ponticelli, C.; Glassock, R.J. Prevention of complications from conventional immunosuppressants: A critical review. J. Nephrol. 2019, 32, 851–870. [Google Scholar] [CrossRef] [PubMed]
- Semina, O.V.; Semenets, T.N.; Zamulaeva, I.A.; Selivanova, E.I.; Malyutina, Y.V.; Semin, Y.A.; Deigin, V.I.; Saenko, A.S. Influence of optical isomers of synthetic EW peptides on the colony-forming ability of bone marrow in vivo. Bull. Exp. Bol. Med. 2005, 140, 335–338. [Google Scholar]
- Dyadkin, V.Y.; Shamov, B.A. The experimental application of Thymodepressin in patients with psoriasis. Dermatology 2003, 1, 36. [Google Scholar]
- Isaeva, T.A. Thymodepressin in psoriasis treatment. Dermatology 2003, 1, 44. [Google Scholar]
- Vinogradov, D.L.; Vinogradova, Y.E. Churg-Strauss Syndrome Accompanied by Autoimmune Thrombocytopenia. 20 years of Experience. Arch. Inner Med. 2015, 4, 69–72. [Google Scholar]
- Nielsen, J.B.; Hultman, P. Mercury-induced autoimmunity in mice. Environ. Health Perspect. 2002, 110, 877–881. [Google Scholar] [CrossRef] [PubMed]
- Deigin, V.I.; Vinogradova, J.E.; Vinogradov, D.L.; Krasilshchikova, M.S.; Ivanov, V.T. Thymodepressin—Unforeseen Immunosuppressor. Molecules 2021, 26, 6550. [Google Scholar] [CrossRef]
- Krasilshchikova, M.; Leonov, V.; Zatsepina, O.; Deigin, V. Immunosuppressor studies of Thymodepressin in the experimental autoimmune model. Immunology 2009, 5, 290–294. [Google Scholar]
- Nickoloff, B.J.; Nestle, F.O. Recent insights into the immunopathogenesis of psoriasis provide new therapeutic opportunities. J. Clin. Investig. 2004, 113, 1664–1675. [Google Scholar] [CrossRef] [PubMed]
- Novikov, A.I.; Zubareva, E.Y.; Okhlopkov, V.A.; Gorodilov, R.V.; Kononov, A.V. N Dynamics of clinical and immunomorphological indicators of the psoriatic process under therapy with Thymodepressin. Omsk. Sci. Bull. 2006, 3, 3–8. [Google Scholar]
- Korotkii, N.G.; Kubylinskii, A.A.; Tikhomirov, A.A.; Udzhukhu, V.I.; Sharova, N.M. New, highly effective drugs in the treatment of psoriasis. Russ. J. Dermatol. Venereol. 2014, 1293, 77–81. [Google Scholar]
- Shakhtmeister, I.Y.; Mursalov, M.N.; Milov, V.V. Thymodepressin in the complex treatment of psoriatic arthritis. Clin. Pharmacol. Ther. 2001, 10, 63. [Google Scholar]
- Sapuntsova, S.G.; Lebed’ko, O.A.; Shchetkina, M.V.; Fleyshman, M.Y.; Kozulin, E.A.; Timoshin, S.S. Status of free-radical oxidation and proliferation processes in patients with atopic dermatitis and lichen planus. Bull. Exp. Biol. Med. 2011, 150, 690–692. [Google Scholar] [CrossRef]
- Sapuntsova, S.G.; Mel’nikova, N.P.; Deigin, V.I.; Kozulin, E.A.; Timoshin, S.S. Proliferative processes in the epidermis of patients with atopic dermatitis treated with thymodepressin. Bull. Exp. Biol. Med. 2002, 133, 488–490. [Google Scholar] [CrossRef] [PubMed]
- Korotky, N.G.; Sharova, N.M.; Prokusheva, T.V.; Gudkov, T.A. Use of Tymodepressin in Treating Limited Scleroderma in Children; Clinical Dermatology and Venereology: Moscow, Russia, 2006. [Google Scholar]
- Vinogradova, Y.E.; Vinogradov, D.L.; Poverennyĭ, A.M.; Tsyb, A.F. Autoimmune thyroiditis in patients with hematologic diseases. Ter. Arkh. 1994, 66, 65–68. [Google Scholar] [PubMed]
- Sinha, A.; Mann, M. A guide to mass spectrometry-based proteomics. Biochemist 2020, 42, 64–69. [Google Scholar] [CrossRef]
- Deigin, V.; Ksenofontova, O.; Yatskin, O.; Goryacheva, A.; Ignatova, A.; Feofanov, A.; Ivanov, V. Novel platform for the preparation of synthetic orally active peptidomimetics with hemoregulating activity. II. Hemosuppressor activity of 2, 5-diketopiperazine-based. Int. Immunopharmacol. 2020, 81, 106185. [Google Scholar] [CrossRef]
- Deigin, V.; Ksenofontova, O.; Khrushchev, A.; Yatskin, O.; Goryacheva, A.; Ivanov, V. Chemical Platform for the Preparation of Synthetic Orally Active Peptidomimetics with Hemoregulating Activity. ChemMedChem 2016, 11, 1974–1977. [Google Scholar] [CrossRef]
- Deigin, V.; Premyslova, M.; Yatskin, O.; Volpina, O. Evaluation of Neuroprotective and Adjuvant Activities of Diketopiperazine-Based Peptidomimetics. ChemistrySelect 2023, 8, e202204076. [Google Scholar] [CrossRef]
- Mu, Z.; Shen, T.; Deng, H.; Zeng, B.; Huang, C.; Mao, Z.; Xie, Y.; Pei, Y.; Guo, L.; Hu, R.; et al. Enantiomer-Dependent Supramolecular Immunosuppressive Modulation for Tissue Reconstruction. ACS Nano 2024, 18, 5051–5067. [Google Scholar] [CrossRef] [PubMed]
Tissue | Sampling Time after H3-Thymodepressin Injection (h) | |||||||
---|---|---|---|---|---|---|---|---|
Blood | 47 | 50 | 34 | 18 | 6 | 5 | 3 | 0.7 |
Blood plasma | 75 | 75 | 54 | 26 | 7 | 6 | 4 | 0.7 |
Bone marrow | 300 | 475 | 250 | 162 | 112 | 125 | 75 | 30 |
Kidneys | 90 | 170 | 120 | 63 | 20 | 15 | 6 | 1 |
Liver | 24 | 55 | 43 | 25 | 10 | 6.5 | 4 | 0.6 |
Lymph nodes | 15 | 30 | 15 | 12 | 4 | 4 | 3 | 1 |
Thymus | 14 | 25 | 17 | 9 | 5 | 4 | 3 | 1 |
Spleen | 12 | 22 | 15 | 9 | 6 | 6 | 4 | 1 |
Brain | 6 | 6 | 6 | 6 | 4 | 3 | 3 | 1 |
Tissue | tmax (h) | Cmax (ng/g or ng/mL) | Cmax organ/Cmax blood | C 24 h (% of Cmax) | AUC 72 h (ng h/g) | AUC 72 h organ/AUC 72 h blood | MRT (h) | |
Blood | 0.25 | 990 | 1 | 6 | 4600 | 1 | 17.3 | |
Blood plasma | 0.083 | 1500 | 1.5 | 4.6 | 5600 | 1.2 | 15.5 | |
Bone marrow | 0.25 | 9500 | 9.5 | 16 | 103,800 | 22.6 | 23.0 | |
Kidneys | 0.25 | 3450 | 3.45 | 3.5 | 11,700 | 2.5 | 12.9 | |
Liver | 0.25 | 1100 | 1.1 | 7.3 | 6000 | 1.3 | 15.8 | |
Lymph nodes | 0.25 | 500 | 0.5 | 10 | 3800 | 0.8 | 23.5 | |
Thymus | 0.25 | 500 | 0.5 | 12 | 3900 | 0.85 | 22.4 | |
Spleen | 0.25 | 430 | 0.43 | 16.3 | 4500 | 0.98 | 21.4 | |
Brain | 0.25 | 120 | 0.12 | 41.6 | 3200 | 0.7 | 28.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deigin, V.; Linkova, N.; Vinogradova, J.; Vinogradov, D.; Polyakova, V.; Medvedev, D.; Krasichkov, A.; Volpina, O. The First Reciprocal Activities of Chiral Peptide Pharmaceuticals: Thymogen and Thymodepressin, as Examples. Int. J. Mol. Sci. 2024, 25, 5042. https://doi.org/10.3390/ijms25095042
Deigin V, Linkova N, Vinogradova J, Vinogradov D, Polyakova V, Medvedev D, Krasichkov A, Volpina O. The First Reciprocal Activities of Chiral Peptide Pharmaceuticals: Thymogen and Thymodepressin, as Examples. International Journal of Molecular Sciences. 2024; 25(9):5042. https://doi.org/10.3390/ijms25095042
Chicago/Turabian StyleDeigin, Vladislav, Natalia Linkova, Julia Vinogradova, Dmitrii Vinogradov, Victoria Polyakova, Dmitrii Medvedev, Alexander Krasichkov, and Olga Volpina. 2024. "The First Reciprocal Activities of Chiral Peptide Pharmaceuticals: Thymogen and Thymodepressin, as Examples" International Journal of Molecular Sciences 25, no. 9: 5042. https://doi.org/10.3390/ijms25095042
APA StyleDeigin, V., Linkova, N., Vinogradova, J., Vinogradov, D., Polyakova, V., Medvedev, D., Krasichkov, A., & Volpina, O. (2024). The First Reciprocal Activities of Chiral Peptide Pharmaceuticals: Thymogen and Thymodepressin, as Examples. International Journal of Molecular Sciences, 25(9), 5042. https://doi.org/10.3390/ijms25095042