Next Article in Journal
Correction: Abou-ElNaga et al. Novel Nano-Therapeutic Approach Actively Targets Human Ovarian Cancer Stem Cells after Xenograft into Nude Mice. Int. J. Mol. Sci. 2017, 18, 813
Previous Article in Journal
Pathophysiology and Management Strategies for Post-Stroke Spasticity: An Update Review
Previous Article in Special Issue
Rabbit and Human Angiotensin-Converting Enzyme-2: Structure and Electric Properties
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Review

Alveolar Macrophages in Viral Respiratory Infections: Sentinels and Saboteurs of Lung Defense

1
Department of Pathology, University of Veterinary Medicine Hannover, 30559 Hannover, Germany
2
Center for Systems Neuroscience (ZSN), 30559 Hannover, Germany
*
Author to whom correspondence should be addressed.
Int. J. Mol. Sci. 2025, 26(1), 407; https://doi.org/10.3390/ijms26010407
Submission received: 9 December 2024 / Revised: 2 January 2025 / Accepted: 3 January 2025 / Published: 5 January 2025

Abstract

:
Respiratory viral infections continue to cause pandemic and epidemic outbreaks in humans and animals. Under steady-state conditions, alveolar macrophages (AlvMϕ) fulfill a multitude of tasks in order to maintain tissue homeostasis. Due to their anatomic localization within the deep lung, AlvMϕ are prone to detect and react to inhaled viruses and thus play a role in the early pathogenesis of several respiratory viral infections. Here, detection of viral pathogens causes diverse antiviral and proinflammatory reactions. This fact not only makes them promising research targets, but also suggests them as potential targets for therapeutic and prophylactic approaches. This review aims to give a comprehensive overview of the current knowledge about the role of AlvMϕ in respiratory viral infections of humans and animals.

1. Introduction

Global pandemics have made humanity aware of the devastating threat caused by respiratory viral pathogens. The aerogenic route of infection is highly efficient, represented by the highest basic reproduction numbers of infectious diseases, as exemplified in human measles and severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) infection [1]. Under the constant threat of new emerging and reemerging viruses, knowledge about host–virus interaction provides the basis for pandemic preparedness. Alveolar macrophages (AlvMϕ) are the most abundant innate immune cells in the deep respiratory tract. Due to their exposed localization on the alveolar luminal surface, they are the first to encounter incoming pathogens and orchestrate the initiation of the immune response in the lung [2,3,4]. A multitude of studies of naturally occurring viral pneumonia and animal models of viral respiratory diseases have been employed to elucidate the relevance of AlvMϕ in the pathogenesis of viral infections. Moreover, omics technology development has given comprehensive insight into molecular mechanisms of viral effects upon AlvMϕ, making them interesting targets for the development of novel therapeutic strategies in infectious disorders [5,6,7]. Targeting AlvMϕ for therapeutic approaches is based on their role as early responders in many infectious diseases, their close proximity to the vasculature, their longevity, and their ability to develop an innate immune memory [7]. The present review aims to summarize the current knowledge about the role of AlvMϕ in viral respiratory diseases in human and veterinary medicine and the effects of AlvMϕ manipulation in experimental models of respiratory virus infections.

2. Alveolar Macrophage Biology and Function

AlvMϕ originate from fetal precursors and seed the lung during the embryogenesis phase [8,9,10]. The stable population of AlvMϕ within the lung self-maintains under steady-state conditions [9,11,12,13,14,15,16]. In the healthy lung, AlvMϕ reside approximately in every three alveoli [17]. Due to their localization, AlvMϕ are exposed to both harmless and potentially dangerous particles. This brings the need for a tight regulation with a tolerogenic way of ingesting harmless particles and the induction of proinflammatory responses when needed [18].
Isolated AlvMϕ adapt to culture conditions, but restore their cell-specific signature following re-transplantation into the lung, reflecting the impact of microenvironment on AlvMϕ phenotype and function [19]. AlvMϕ metabolize and recycle alveolar surfactant, and AlvMϕ depletion has been shown to cause alveolar proteinosis (Figure 1A) [20,21]. Furthermore, pulmonary surfactant per se has a suppressive effect on phagocytosis, which is overcome by toll-like receptor (TLR) 4 signaling [22,23]. The abundance of lipid-rich surfactant and low glucose concentrations in the airways leads to a catabolic lipid metabolism with low levels of glycolysis of AlvMϕ [24]. It has been shown that this distinct metabolism is closely linked to anti-inflammatory and homeostatic properties of AlvMϕ [24,25]. For instance, hypoxia-inducible factor 1-alpha (HIF-1α) expression in AlvMϕ promotes glycolysis-dependent inflammation and lung damage in influenza virus infection [26]. Clearance of apoptotic cells from alveoli (efferocytosis) is another vital function of AlvMϕ (Figure 1B) [2,27,28]. This process inhibits the production of proinflammatory mediators and stimulates the secretion of cytokines, promoting epithelial repair [29,30]. Furthermore, AlvMϕ secrete suppressors of cytokine signaling (SOCS) proteins, which dampen the responsiveness of airway epithelial cells to cytokines [31,32]. Reciprocally, prostaglandin E2 produced by the epithelium enhances SOCS3 expression by AlvMϕ (Figure 1C) [31]. On the other hand, airway epithelial cells secure the tight regulation of AlvMϕ inflammatory reactions by signaling via CD200, transforming growth factor (TGF)-β, CD172a, granulocyte-macrophage colony-stimulating factor (GM-CSF), macrophage colony-stimulating factor (M-CSF), and interleukin (IL)-10 (Figure 1D) [33,34,35,36,37,38]. In addition, communication of AlvMϕ with epithelial cells via gap junctions and Ca2+-mediated signal transduction was demonstrated (Figure 1E) [17]. Besides epithelial cells, basophilic granulocytes directly interact with AlvMϕ and regulate their maturation and immunomodulatory function [39]. Interestingly, AlvMϕ are poor antigen presenters and can even suppress antigen presentation by dendritic cells and T cell proliferation by secretion of suppressive prostaglandins and TGF-β (Figure 1F) [40,41,42,43,44,45,46]. Their significance for lung homeostasis is indicated by the fact that AlvMϕ elimination leads to exuberant immune responses to inhaled antigens and airway hyper-responsiveness [47]. AlvMϕ-produced TGF-β also induces regulatory T cells, which prevent Th2-type inflammation in the lung [48,49,50,51]. TGF-β production and low baseline proinflammatory cytokine levels reflect the tolerogenic state of AlvMϕ under steady-state conditions [52].
AlvMϕ are not only influenced by the lung microenvironment, but also by the intestinal microflora. Alterations of gut microbiota and circulating microbial metabolites have been shown to induce memory AlvMϕ and trained immunity in the lung [53].
AlvMϕ are at the ideal location to initiate inflammatory responses to defeat invading pathogens. The switch from the state of tolerance to an inflammatory response is mediated by binding of pathogen-associated molecular patterns (PAMPs) to AlvMϕ pattern recognition receptors (PRRs). Loss of connection to epithelia represent another factor shifting AlvMϕ towards a proinflammatory phenotype [32,54]. TLR activation reduces the responsiveness to anti-inflammatory IL-10 signaling in AlvMϕ [34]. Exceeding the phagocytic capacity of AlvMϕ results in the release of proinflammatory cytokines, including type I interferons (IFNs), tumor necrosis factor (TNF)-α, and IL-1β [55,56,57]. This leads to the recruitment of inflammatory cells and perpetuation of pulmonary inflammation [58]. Subsequently, transcription of interferon-stimulated genes (ISGs) is initiated via Janus kinase/signal transducer and activator of transcription (JAK/STAT) signaling, providing direct antiviral defenses [59,60]. However, inflammatory reactions differ quite markedly depending on the virus, elucidated in more detail in the following chapters. Not only does the activation status and phenotype of AlvMϕ change during virus infection, but also the overall composition of the macrophage pool within the airway niche. AlvMϕ loss in infectious disorders leads to replenishment by innate immune cells. Due to their proliferative capacity, AlvMϕ can partially refill the alveolar niche, but additional recruitment of circulating blood monocytes is necessary under certain pathologic conditions [25,35,56,61,62,63,64,65]. Within the alveolar niche, recruited cells can adapt the distinct phenotype of AlvMϕ [66,67,68,69,70]. However, functional alterations of these recruited AlvMϕ can be either beneficial or detrimental for lung homeostasis, host defense, and tissue repair following respiratory infection [63,64,71,72]. Signals derived from injured epithelial cells promote the repair responses of AlvMϕ with increased growth factor secretion and efferocytosis of apoptotic cells [73,74]. Adaptive effects mediated by epigenetic changes are present in innate immune cells, leading to the development of an innate immune memory (trained innate immunity) [75]. Induction of this state in AlvMϕ has been demonstrated following viral infection, and trained AlvMϕ display a phenotype, which can be described as the “ready to defend” status [76].
Aging is associated with reduced proliferation and responsiveness of AlvMϕ to GM-CSF, accompanied by an increased expression of cellular senescence markers [77,78,79]. Dysregulation of AlvMϕ derived from aged individuals is indicated by increased basal activation levels, decreased IFN-γ responsiveness and increased baseline production of proinflammatory cytokines [77,80]. Moreover, phagocytosis and efferocytosis of apoptotic neutrophils is less efficient in AlvMϕ of aged individuals [81,82,83,84]. The impaired function of AlvMϕ might play a role in the increased risk of the elderly for developing severe pneumonia following respiratory viral infection [85,86].

3. Influenza Viruses

Respiratory influenza virus infection has caused multiple pandemic and seasonal epidemic episodes. Especially the elderly, infants, and immunosuppressed people are at risk of developing life-threatening pneumonia, often complicated by secondary bacterial infections. Influenza viruses are enveloped with a segmented, negative-sense single-stranded RNA genome. Most human cases are caused by influenza A virus (IAV, Alphainfluenzavirus influenzae) and infection manifests as acute respiratory disease [87,88]. In addition to humans, several mammalian and avian species are susceptible to influenza virus infection, and spillover of highly pathogenic strains from animals to humans occurs [89,90,91]. Classification of IAV is based on their surface protein hemagglutinin (H) and neuraminidase (N).
Host cell entry of IAV involves binding of the H protein to cell-surface sialic acid receptors, followed by endocytosis [92,93]. Permissiveness of human, non-human primate, murine, porcine, canine, and feline AlvMϕ to influenza viruses has been shown [94,95,96,97,98,99,100,101,102,103,104,105,106]. In addition to receptor-mediated virus entry, phagocytosis of virus particles or infected epithelial cells lead to AlvMϕ infection [107]. While in vitro infections of murine and primary human AlvMϕ with H3N2 and H1N1 strains are abortive, productive H5N1 infection of primary human AlvMϕ has been shown [108,109,110,111]. However, systematic screening identified only a subset of H5N1 IAVs able to replicate in human AlvMϕ [112]. For canine H3N8 and swine H1N1 IAV, productive infection of AlvMϕ has been shown in vitro [105,113,114,115,116]. Porcine AlvMϕ cell lines even show productive replication of 11 different IAV strains derived from human, porcine, and avian origin in vitro [117]. In AlvMϕ, several mechanisms of viral inhibition have been recognized, including prevention of viral replication of H1N1 strains and defective viral assembly of seasonal IAV strains [112,118].
Selective depletion and adoptive transfer experiments demonstrate the essential role of AlvMϕ in protection against severe IAV pneumonia. AlvMϕ depletion causes severe symptoms and lung pathology, higher mortality, and enhanced viral replication in animal models. Moreover, AlvMϕ depletion leads to decreased inflammatory cytokine expression in the lung and increased susceptibility to secondary bacterial infections [2,100,119,120,121,122,123,124,125,126,127]. AlvMϕ-derived extracellular vesicles inhibit IAV replication in alveolar epithelial cells in vitro and in vivo, leading to protection of the respiratory epithelium [128]. Thus, an age-related decrease in AlvMϕ counts, accompanied by an impaired ability of AlvMϕ to limit lung damage and compromised efferocytosis of apoptotic neutrophils might account for the increased susceptibility of elderly people to IAV infection [81].
In vivo IAV infection is characterized by early disappearance of AlvMϕ, with repopulation of the alveolar niche within 7–11 days [63,65,101,119,129,130,131]. This initial loss of AlvMϕ is caused by IAV- or host factor-induced cell death [102,119,132]. Pigs infected with avian IAV show an early apoptosis of AlvMϕ, thereby limiting the spread of the virus [102]. Despite their depletion, AlvMϕ contribute to proinflammatory and Antiviral Responses, particularly type I IFN-mediated responses, as shown in mouse models [2]. Interestingly, inhibitory effects of the H1N1 protein NS1 on IL-1β production were shown in porcine AlvMϕ, representing a mechanism of immune evasion [133]. Repopulation of AlvMϕ following early IAV infection is complemented by a massive influx of monocyte-derived macrophages to alveolar spaces [63,65,131]. Early monocyte recruitment is mediated by chemokine (C-C motif) ligand (CCL) 2 and TNF-α released by AlvMϕ [134,135,136]. The expanding macrophage population replaces the original AlvMϕ pool, leading to excessive inflammation, alveolar leakage, and lung pathology, as well as reduced lung defense mechanisms [63,65,127,131,137]. Similarly, loss of AlvMϕ following IAV infection in humans correlates with an increased susceptibility to secondary bacterial infections [119]. As found in IAV mouse infection models, restoration of the original AlvMϕ population is essential for tissue repair following acute lung injury [74].
Detection of IAV by pattern recognition receptors leads to an upregulation of genes related to pathogen sensing, and induction of proinflammatory and antiviral pathways in AlvMϕ [95,110,135,138,139,140,141,142]. RNA sequencing of AlvMϕ from IAV-infected macaques demonstrates a proinflammatory phenotype with prominent chemokine induction [129]. IAV infection of AlvMϕ downregulates the transcription factor peroxisome proliferator-activated receptor gamma (PPAR-γ) via IFN-signaling, which activates proinflammatory pathways [143]. In addition, IAV infection decreases the expression of phagocytosis receptors in human, murine, and turkey AlvMϕ in vitro and in vivo [135,144,145,146,147]. Knockout of the scavenger receptor macrophage receptor with collagenous structure (MARCO) in AlvMϕ improves host survival by heightening chemokine expression during early infection [148,149]. Thus, it seems to be necessary for AlvMϕ to shift from the homeostatic to a proinflammatory phenotype, to induce adequate Antiviral Responses. A second wave of proinflammatory responses is induced after viral clearance, mainly by recruited macrophages in alveolar spaces [150]. While induction of antiviral immune reactions by proinflammatory mediators is vital during early infection, dysregulated cytokine responses and a hyperinflammatory microenvironment cause tissue injury. For instance, IAV-induced IFN-β production by AlvMϕ upregulates pro-apoptotic TNF-related apoptosis-inducing ligand (TRAIL), followed by apoptosis of alveolar epithelial cells in IAV-infected patients [151]. Moreover, TRAIL upregulation in AlvMϕ leads to reduced Na/K-ATPase activity in alveolar epithelial cells, resulting in reduced clearance of edema fluid in the lung, and represents a potential therapeutic target [152].
AlvMϕ-induced T cell activation during IAV infection has been demonstrated, and persistence of IAV nucleoprotein within AlvMϕ maintains lung-resident memory T cells [101,124,153]. Moreover, AlvMϕ attract memory B cells during IAV re-exposure by chemokine expression [154]. Non-neutralizing antibodies promote Fc receptor-mediated endocytosis of viral particles into AlvMϕ, which elicits protective CD8+ T Cell Responses in IAV infection [107,155,156,157]. Priming of AlvMϕ with Bacillus Calmette–Guérin vaccine or virus-like particles improves protection against IAV by increasing their efferocytic and antigen presentation capacity [158,159]. GM-CSF has been investigated as a compound to ameliorate IAV disease severity [11,35,36,160,161,162]. Here, intranasal administration or overexpression of GM-CSF prior to IAV infection mediate protection in mice [163,164,165,166,167]. Restoring the homeostatic interaction between CD200 and CD200R also limits weight loss and lung damage in IAV-infected mice [33]. Moreover, intestinal colonization by filamentous bacteria has been shown to enhance AlvMϕ antiviral functions and mediate protection against IAV infection in mouse models [168].

4. Coronaviruses

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2, Betacoronavirus pandemicum) caused a global pandemic from the beginning of 2020 until spring 2023 [169]. Previously, Middle East respiratory syndrome-related coronavirus (MERS-CoV, Betacoronavirus cameli) and SARS-CoV (Betacoronavirus pandemicum) had caused outbreaks in humans, although these were not as devastating as the recent SARS-CoV-2 pandemic. Coronaviruses are single-stranded, positive-sense RNA viruses with an inner nucleocapsid and an outer membrane containing the spike (S) protein. Coronavirus disease 2019 (COVID-19) usually manifests as an acute respiratory infection [170]. The receptor angiotensin-converting enzyme 2 (ACE2) and cleavage enzymes furin and transmembrane protease serine subtype 2 (TMPRSS2) have been identified as host factors necessary for viral entry, among others [171,172,173,174]. Subsequently, coronavirus S protein cleavage is necessary for host cell infection [173,174]. While expression of MERS-CoV entry receptor dipeptidylpeptidase 4 is present on non-human primate AlvMϕ [175], several studies have focused on the expression of SARS-CoV-2 entrance receptors on AlvMϕ and came to inconsistent results: ACE2, TMPRSS2, furin, and CD147 expression in AlvMϕ have been demonstrated in human lung tissues by immunohistochemistry [176,177]. Contrary to that, studies on primary human AlvMϕ from healthy donors failed to detect ACE2 mRNA in AlvMϕ [178,179,180]. However, the importance of virus entry receptors for AlvMϕ infection has been demonstrated in vitro by ACE2 overexpression, which increases SARS-CoV-2 replication in AlvMϕ of lung explants [181].
Phagocytosis is an alternative cell entry mechanism, leading to SARS-CoV-2 uptake into endosomes and phagosomes, and S protein cleavage by endosomal cathepsin L [173,182,183,184]. S protein cleavage and virus replication are most efficient in AlvMϕ infected with the SARS-CoV-2 Delta-variant [185]. In addition, antibody-bound coronavirus enters AlvMϕ via Fc receptors, as demonstrated in MERS-CoV and SARS-CoV [186,187]. Interestingly, immunization studies in mice suggest that Fc gamma receptor engagement and AlvMϕ are required for vaccine-induced antibody-mediated protection against SARS-CoV-2 infection [188]. Viral protein and RNA have been detected in AlvMϕ of COVID-19 patients [177,178,181,189,190,191,192,193,194,195,196] and permissiveness of AlvMϕ for MERS-CoV and SARS-CoV in murine, common marmoset and rhesus macaques has been demonstrated [175,197,198,199]. Detection of positive- and negative-strand viral RNA of COVID-19 patients provides evidence for active viral replication in AlvMϕ [189]. Similarly, macrophages from bronchoalveolar lavage (BAL) fluids of SARS-CoV-2-infected cynomolgus monkeys contain double-stranded viral RNA, indicative of productive AlvMϕ infection [200].
Depletion of AlvMϕ and replacement by infiltrating immune cells leads to a hyperinflammatory lung environment in severe COVID-19 cases (Figure 2A,B) [201,202,203]. Proinflammatory IL-1β and chemokine expression by AlvMϕ were found in BAL fluid from severely diseased patients [204]. Accordingly, lower inflammatory cytokine expression of AlvMϕ correlates with increased survival [196]. While in mild COVID-19, AlvMϕ upregulate phagocytosis-related pathways and IFN signaling, AlvMϕ from severely diseased patients display increased IL-10 expression, thus inhibiting antiviral IFN responses [205]. Moreover, lung macrophages of patients with severe COVID-19 display reduced expression of genes related to efferocytosis of apoptotic cells [206]. A decrease in tyrosine-protein kinase receptor UFO (AXL) in AlvMϕ of COVID-19 patients is thought to disturb their phagocytic function [207].
AlvMϕ of SARS-CoV-2-infected transgenic mice show a highly activated phenotype [189]. In addition, IFN-signaling by AlvMϕ mediates recruitment of IFN-γ producing T cells, providing a positive feedback loop of macrophage activation (Figure 2C) [189]. The resulting hyperinflammatory microenvironment leads to AlvMϕ cell death and replacement by recruited monocytes (Figure 2D,E). Comparably low numbers of tissue-resident AlvMϕ with loss of their homeostatic properties have been found in BAL fluids of severely diseased COVID-19 patients [189,201,204,207,208]. However, late-phase monocyte differentiation toward a tissue-resident AlvMϕ phenotype with restored homeostatic properties is present in convalescent patients (Figure 2F) [196,204]. Increased AlvMϕ numbers can be found in mild COVID-19 cases, and SARS-CoV-2-infected Syrian golden hamsters with moderate disease severity show no AlvMϕ depletion in the lung [209].
Ex vivo infection of human AlvMϕ with SARS-CoV-2 causes impaired IFN or ISG induction [178]. In this context, the cap structure of coronaviral RNA has been shown to prevent host immune responses via the retinoic acid-inducible gene (RIG)-I/mitochondrial antiviral-signaling protein (MAVS) pathway [210,211]. Experimentally infected cynomolgus macaques show long-term persistence of SARS-CoV-2 in BAL macrophages with reduced production of IFN-γ after lipopolysaccharide stimulation [200]. In vitro M1-polarized murine AlvMϕ take up SARS-CoV-2 more efficiently than M2-polarized cells. The low endosomal pH in M1-polarized AlvMϕ facilitates virus entry and replication [182]. Thus, M1-polarization of AlvMϕ during SARS-CoV-2 infection is supposed to augment viral spread and disease severity [182]. Similarly, AlvMϕ depletion prior to SARS-CoV-2 infection provides protection from lethal disease with enhanced viral clearance and reduced lung pathology in mice [212]. In contrast, AlvMϕ depletion in MERS-CoV-infected mice leads to impaired T Cell Responses with increased lung pathology, symptom severity, and mortality [213]. Epithelial-derived IL-10 upregulates ACE2 and furin expression on murine AlvMϕ ex vivo, increasing their susceptibility to SARS-CoV-2 infection [214].
Several approaches to treating COVID-19 patients focus on AlvMϕ [215]. Based on the hypothesis of lost GM-CSF-mediated differentiation of homeostatic AlvMϕ, inhalation of recombinant human GM-CSF has been shown to boost antiviral immune responses without systemic adverse effects in hypoxic COVID-19 patients [208]. On the other hand, blockage of GM-CSF signaling by intravenous delivery of anti-GM-CSF receptor antibodies can improve the clinical outcome in COVID-19 patients suffering from systemic hyperinflammation [216]. The JAK1/2-inhibitor baricitinib dampens proinflammatory cytokine expression in BAL cells and reduces lung pathology in SARS-CoV-2-infected rhesus macaques [217]. In vitro treatment of human BAL macrophages with IFN-γ reduces viral replication and improves cellular survival [218]. In humanized mice, blocking type I IFN signaling by administering anti-IFN-alpha/beta receptor beta chain (IFNAR2) and the antiviral drug remdesivir was tested [219]. Treatment with a combination of anti-IFNAR2 and remdesivir causes ISG suppression in lung macrophages. Moreover, remdesivir treatment alone leads to reduced levels of proinflammatory cytokines and chemokines in macrophages [219]. Intranasal application of bisphosphate and dexamethasone in SARS-CoV-2 Delta-variant-infected humanized mice downregulates endosomal cathepsin L in AlvMϕ, accompanied by lower viral loads [220]. Another treatment approach regulates the endosomal and lysosomal pH in AlvMϕ via cell-derived microparticles, improving intracellular virus degradation and dampening proinflammatory signaling [183].

5. Pneumoviruses

Pneumoviruses are single-stranded, enveloped, negative-sense RNA viruses [221]. Respiratory syncytial virus (RSV, Orthopneumovirus hominis) plays a major role as a cause of respiratory tract infections in humans, particularly in premature newborns, infants, and the elderly [222]. RSV has been shown to cause productive infection of AlvMϕ and elicit type I IFN responses, being crucial to limiting viral replication and severity of clinical symptoms [55,223,224,225,226,227,228]. However, as a mechanism of immune interference, RSV and the related bovine RSV (BRSV, Orthopneumovirus bovis) in cattle can inhibit IFN-mediated signaling pathways in AlvMϕ [229,230]. RSV infection of murine AlvMϕ triggers the production of proinflammatory mediators, including C-X-C motif chemokine ligand (CXCL) 10, TNF-α, IL-6, CCL3, and CCL4 [231,232,233]. Mouse knockout experiments demonstrate that MAVS and IFNAR signaling are important for the induction of proinflammatory mediators in AlvMϕ upon RSV infection [55,231]. Similar to mice, human AlvMϕ produce TNF-α, IL-6, and IL-8 in response to RSV infection, and BRSV infection of ovine AlvMϕ induces IL-1β, IL-6, IL-8, IL-12, TNF-α, IL-4, and IL-10 expression [234]. Induction of IL-10 in RSV-infected human AlvMϕ might represent an attempt to reduce exuberant proinflammatory responses and maintain alveolar homeostasis [235].
Experimental AlvMϕ depletion prior to RSV infection in mice is associated with decreased production of inflammatory mediators, reduced natural killer cell recruitment, and increased viral titers [224,236,237,238]. Phagocytic clearance of RSV by AlvMϕ has been shown in mouse models [239]. Therapeutic administration of AlvMϕ-like cells generated from pluripotent stem cells decreases lung inflammation and viral loads, indicating a protective function of AlvMϕ in RSV infection [240]. Moreover, AlvMϕ from RSV patients induce adaptive T Cell Response in vitro [226]. However, other studies revealed that AlvMϕ depletion leads to decreased clinical severity, lung inflammation, and viral loads in RSV-infected mice [223,228]. TNF-mediated necroptosis and loss of AlvMϕ disturb viral clearance during early RSV infection [224,228,241,242,243]. Blockage of TNF receptor 1 via intranasally delivered antibodies results in improved clinical disease and elevated macrophage numbers in BAL fluids of infected mice [244].
Patients with RSV infection exhibit an increased susceptibility to bacterial infections of the lung, indicative of disturbed lung defense mechanisms [245,246]. Mouse models reveal a M2-polarization of AlvMϕ following RSV infection, associated with reduced antibacterial function [247]. Moreover, in vitro RSV-infected murine and BRSV-infected bovine AlvMϕ demonstrated a partial loss of their homeostatic function with reduced reactive oxygen species (ROS) production, phagocytosis, and killing of infectious agents [232,248,249]. However, M2-polarization of AlvMϕ might represent a protective mechanism, to prevent immunopathology in RSV infection [250].
RSV reinfection is common in infants, and AlvMϕ might serve as reservoir for viral persistence [251]. Following RSV infection and subsequent reinfection, neonatal mice develop a serious disease characterized by a hyperinflammatory lung environment and decreased amounts of AlvMϕ. Airway macrophage depletion in mice prior to reinfection results in reduced severity of clinical symptoms [252]. The loss of homeostatic AlvMϕ during initial RSV infection is replaced by recruited, potentially harmful macrophages [252]. Compared to adult mice, AlvMϕ from neonates show reduced type I IFN induction and enhanced viral replication upon RSV infection [253]. Furthermore, IL-10 produced by neonatal regulatory B cells negatively impacts the response of neonatal AlvMϕ to RSV infection by reducing their capacity to produce proinflammatory mediators [253,254]. The weak activation of neonatal AlvMϕ coincides with a reduced IFN-γ availability but increased levels of the Th2-cytokines IL-4 and IL-10. Administration of IFN-γ prior to RSV infection improves antigen presentation and proinflammatory cytokine production by AlvMϕ in neonatal mice [243,255].
Regarding AlvMϕ as potential targets for prophylactic and therapeutic approaches against RSV, AlvMϕ depletion of mice prior to vaccination reduces protection upon challenge [256]. Priming of AlvMϕ by probiotics leads to increased production of type I IFNs, IFN-γ, and TNF-α in response to RSV infection, which reduces clinical symptoms, pulmonary inflammation, viral replication, and secondary bacterial pneumonia in mice [257,258,259,260,261,262,263]. Oral administration of Lacticaseibacillus rhamnosus improves the antiviral activity of AlvMϕ and leads to enhanced RSV clearance [263]. Another study revealed therapeutic effects of a probiotic mixture on RSV pathogenesis in neonatal mice by increased phagocytosis and IFN-β signaling by AlvMϕ [264]. In addition, intranasal inoculation of the probiotic bacterium Lactobacillus plantarum mediates protection of murine pneumonia virus (MPV, Orthopneumovirus muris)-infected mice via TLR2 and nucleotide-binding oligomerization domain (NOD) 2 activation [265].
RSV infection is a significant cause of asthma exacerbation in children [266]. Mice recovering from allergic airway eosinophilia show an increased severity of RSV infection, which is mediated by an immature, hyperinflammatory phenotype of AlvMϕ [238]. IL-33 production by AlvMϕ during RSV infection leads to the production of Th2-related cytokines and exacerbation of asthmatic disease [267]. Maturation of AlvMϕ by intratracheal administration of GM-CSF prevents mice from RSV-induced immunopathology, pointing out the significance of AlvMϕ as targets for therapeutic strategies [238].

6. Herpesviruses

The Orthoherpesviridae family comprises three subfamilies (Alpha-, Beta-, Gammaherpesvirinae), and herpesviral disease occurs in a broad range of hosts. Long-term viral persistence is common, and disease develops primarily under immunosuppressive conditions. Herpesviruses are enveloped viruses with a double-stranded, linear DNA genome. In humans, herpes simplex virus 1 and 2 (HSV1/2, Simplexvirus humanalpha1), varicella-zoster virus (VZV, Varicellovirus humanalpha3), human cytomegalovirus (HCMV, Cytomegalovirus humanbeta5), and Epstein–Barr virus (EBV, Lymphocryptovirus humangamma4) can cause respiratory disease. Similarly, infectious bovine rhinotracheitis virus (IBRV, Varicellovirus bovinealpha1), feline viral rhinotracheitis virus (FVRV, Varicellovirus felidalpha1), and equid alphaherpesvirus 1 (EqAHV1, Varicellovirus equidalpha1) infections lead to respiratory disease in their respective animal hosts. Ex vivo IBRV infection of bovine AlvMϕ is productive, leading to reduced Fc receptor-mediated phagocytosis [268,269]. In addition, AlvMϕ derived from IBRV-infected calves show reduced production of neutrophil chemoattractants, which increases the susceptibility to secondary bacterial infection [270]. FVRV antigen is present in AlvMϕ of cats with viral pneumonia [271]. Furthermore, macrophage numbers within BAL fluid of EqAHV1-infected ponies are decreased, suggestive of a cytopathic effect on AlvMϕ [272]. In addition, the phagocytic activity of BAL macrophages from infected horses is decreased upon EqAHV1 infection [273]. Pseudorabies virus (PRV, Varicellovirus suidalpha1) causes fatal disease in piglets, while adult animals primarily develop respiratory manifestations. PRV infects and replicates in porcine AlvMϕ in vitro and in vivo, with virus strain-dependent cytopathic effects [274,275,276,277]. Depending on the virus strain, infected AlvMϕ also show reduced phagocytosis, phagosome–lysosome fusion, hyperoxide release, and IFN-α production in response to stimulation [278,279]. An enrichment of lipids related to viral assembly and trafficking within PRV-infected AlvMϕ points towards hijacking of the host lipid metabolism for viral replication [277].
Murid gammaherpesvirus 4 (MuGHV4, Rhadinovirus muridgamma4) serves as a model for human gammaherpesvirus infection, including EBV, which causes respiratory disease in immunocompromised individuals. AlvMϕ are the first target cells following intranasal infection, showing viral replication and virus transmission to alveolar epithelial cells [64,280,281]. Mice lacking CD4+ T cells exhibit higher MuGHV4 infection rates and persistence in AlvMϕ, demonstrating a critical role of CD4+ T cell in controlling myeloid cell infection [282]. Futhermore, EBV infection can cause allergic airway disease in human patients [283]. MuGHV4 infection of mice leads to AlvMϕ infection and depletion in alveolar spaces. Subsequent replacement by recruited blood monocytes provides protection against allergic airway disease [64,284]. MuHV4 infection also leads to the polarization of recruited AlvMϕ towards a M2-phenotype, thereby protecting animals against house dust-mite-induced hypersensitivity [284]. Depletion of airway macrophages several weeks after MuGHV4 infection is associated with loss of protection, which confirms the essential role of recruited AlvMϕ [64].
Respiratory HCMV infection is common in humans. Neonatal infection often leads to long-term persistence with frequent periods of reactivation and productive infection. HCMV persists within AlvMϕ in vivo, and productive and lytic infection of primary human AlvMϕ has been shown in vitro [285,286]. Following respiratory murine CMV (MCMV, Muromegalovirus muridbeta1) infection of mice and HCMV infection of humans, AlvMϕ are among the first target cells, and infected AlvMϕ spread the infection to other cell types and invade the lung interstitial tissue [281,287,288]. AlvMϕ depletion leads to reduced viral replication in neonatal mice, which demonstrates their role as viral amplifiers [289]. Infection of AlvMϕ depends on MCMV-encoded chemokine 2 (MCK2) expressed by infected cells [289]. Furthermore, lung surfactant increases the uptake of CVM in rat type II alveolar epithelial cells and AlvMϕ [290]. RNA sequencing of infected AlvMϕ reveals a downregulation of antiviral signaling genes related to IFN and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) pathways [287]. Impaired phagocytosis and surfactant clearance are also present in MCMV-infected murine AlvMϕ, leading to increased susceptibility to secondary bacterial infection [287]. However, AlvMϕ depletion prior to MCMV-infection causes higher viral titers, emphasizing antiviral properties of non-infected bystander AlvMϕ [281].
A role for herpesviruses in the pathogenesis of idiopathic pulmonary fibrosis of human patients is suggested, although studies are not conclusive [291,292]. In mouse models of gammaherpesvirus infection, AlvMϕ are partly replaced by recruited monocytes, which display an M2-phenotype and drive the development of pulmonary fibrosis [293]. Other studies demonstrate viral latency in AlvMϕ and an upregulation of profibrotic- and proinflammatory-mediator expression in infected mice [294,295]. Interestingly, gammaherpesvirus equine herpesvirus 5 (EHV5, Percavirus equidgamma5) is associated with equine multinodular pulmonary fibrosis [296,297]. Here, EHV5 DNA and intranuclear viral inclusions are present within AlvMϕ of affected horses, although the pathogenesis of fibroses remains undetermined [296,298].

7. Retroviruses

Retroviruses are enveloped, single-stranded, positive-sensed RNA viruses with a diploid genome [299]. They are mostly host-adapted and cause a variety of disease syndromes, including immunodeficiency, inflammation, neurodegeneration, and neoplasia. Integration of viral genome components into the host genome is a hallmark of this virus family [300,301]. Human immunodeficiency virus (HIV) 1 and 2 (Lentivirus humimdef1/2) cause ongoing public health hazards [302]. Due to improved antiretroviral therapies, disease prevention strategies, and diagnostic tools, HIV infection has become a controllable condition in people with access to health care systems. Initial infection causes flu-like symptoms, followed by a symptom-free period with persistence of HIV provirus DNA in host cells. Acquired immune deficiency syndrome (AIDS) develops in untreated persons and leads to life-threatening opportunistic infections, including respiratory disease [303]. Moreover, lymphocytic alveolitis represents a pulmonary complication in HIV-infected patients, associated with poor prognosis [304,305].
HIV tropism is determined by a combination of the affinity to CD4 receptors and co-receptor usage. Viral entry assays show an inefficient entry and replication of cell-free T cell-tropic HIV, while macrophage (M)-tropic HIV is able to enter and replicate efficiently in human AlvMϕ [306]. Permissiveness of rhesus macaque AlvMϕ to simian immunodeficiency virus (SIV, Lentivirus simimdef) has also been demonstrated in vitro and in vivo [307,308,309,310]. Interestingly, T cell-tropic HIV strains can infect AlvMϕ via interaction with infected CD4+ T cells and heterotypic cell fusion [306,311]. Close contact of infected AlvMϕ with other cells mediated by intracellular adhesion molecule (ICAM)-1 favors virus spread within AIDS patients [312,313]. In addition, reduced elimination of AlvMϕ by cell death during early SIV infection contributes to viral latency in macaques [314].
People infected with HIV suffer from lung infections, and even patients receiving antiretroviral therapy are at increased risk of developing bacterial pneumonia [315]. A dysregulated lung microenvironment with altered cytokine responses and phenotypic changes in AlvMϕ manifests in HIV patients [309,316,317,318,319,320,321,322,323,324,325]. For instance, increased AlvMϕ-derived TGF-β impairs immunoglobulin secretion in co-cultured peripheral blood mononuclear cells, leading to defective adaptive immune responses [324]. Moreover, AlvMϕ are thought to contribute to lymphocytic alveolitis in HIV patients by releasing chemotactic mediators for cytotoxic CD8+ cells [311,326,327,328,329].
Loss of anti-inflammatory surface markers and transcriptomic properties of AlvMϕ from untreated HIV-infected persons have been reported, which coincide with increased TNF-α expression and decreased lung function [330]. Certain miRNAs encoded by HIV stimulate TNF-α production in cultured AlvMϕ [331]. In contrast, other authors reported a reduced ex vivo stimulation-induced TNF-α production and downregulated TLR expression in AlvMϕ from HIV-positive individuals, as well as reduced TNF-α levels in BAL fluid of patients with high viral loads [332]. Downregulation of the transcription factor PPAR-γ in AlvMϕ from HIV patients is thought to cause dysregulated activation profiles [325]. Indicative of disease phase-specific cytokine responses, acute SIV infection causes proinflammatory cytokine secretion by AlvMϕ, which subsequently decreases during chronic infection [317]. Macaques with chronic SIV infection show reduced numbers of AlvMϕ but elevated M1-polarized macrophages in their BAL fluids, leading to a proinflammatory microenvironment in the lung [333]. Microarray analyses reveal an upregulation of several genes associated with classic macrophage activation in AlvMϕ from HIV-positive individuals [323].
Interestingly, HIV preferentially infects a subset of AlvMϕ, representing immature blood monocyte-derived macrophages [334]. Moreover, HIV-infected persons show reduced numbers of homeostatic CD163+ AlvMϕ and an increase in alveolar histiocytes of monocytic origin in their BAL fluid [335]. Thus, the proinflammatory lung environment following HIV infection might be caused by recruited monocytes, replacing the tissue-resident AlvMϕ population. Smoking further accelerates the dysregulation of AlvMϕ during HIV infection, leading to enhanced oxidative stress and extracellular matrix remodeling and inflammation, which predisposes the person to chronic obstructive pulmonary disease and pulmonary emphysema [336,337].
Impaired AlvMϕ functions following HIV infection increases the risk of secondary infections. For instance, reduced phagosome activity of AlvMϕ in HIV-infected, untreated individuals is reported [334], and proviral DNA-containing AlvMϕ from HIV patients display reduced phagocytic capacity [338]. AlvMϕ from SIV-infected non-human primates also show impaired antibody-dependent and -independent phagocytosis during the chronic stage of infection [317]. Defective GM-CSF signaling with reduced phagocytic capacity was shown in AlvMϕ of HIV-transgenic rats, related to zinc deficiency [339]. HIV-encoded miR144 inhibits the transcription factor nuclear factor erythroid 2-related factor 2 (NRF2), leading to oxidative stress and impaired phagocytic functions of AlvMϕ in vitro [340,341]. Furthermore, AlvMϕ from seropositive persons show downregulated mannose receptor expression, resulting in reduced binding and phagocytosis of fungi and reduced NF-κB-dependent IL-8 responses in vitro [342]. Defective hydrogen peroxide production by AlvMϕ from asymptomatic HIV-infected persons reduces bactericidal and fungicidal activities of infected AlvMϕ [343]. In addition, AlvMϕ from HIV-infected humans show reduced production of IL-8 and reduced upregulation of inflammatory genes upon bacterial challenge in vitro [323,344]. Conversely, secretion of IL-1β and TNF-α in response to bacterial challenge is increased in AlvMϕ from HIV-positive individuals [323].
AIDS patients are at increased risk of developing tuberculosis. Mycobacterium tuberculosis (Mtb) causes a type I IFN-mediated upregulation of Siglec-1, which supports the intracellular spread of HIV in AlvMϕ [345]. Another mechanism of enhanced HIV replication in co-infection with mycobacteria is stimulation of AlvMϕ by activated leukocytes, leading to reduced activity of the inhibitory isoform of CCAAT/enhancer-binding protein beta (C/EBPβ) [346,347,348]. Mtb infection also elevates the expression of HIV co-receptor CXCR4 on AlvMϕ, thereby increasing their permissiveness [349]. Elevated IL-10 levels in BAL fluid of HIV-positive patients inhibit TNF-α responses of AlvMϕ, leading to reduced apoptosis and defective pathogen clearance [350]. Interestingly, antiretroviral treatment had a more negative effect than HIV alone on protective responses to Mtb infection [351].
Although CD4+ and CD8+ T cells are able to inhibit HIV replication and lyse infected AlvMϕ, persistent infection occurs in the lung [352,353]. The detection of proviral DNA within AlvMϕ in symptomatic and asymptomatic individuals identifies lung innate immune cells as a cellular reservoir for HIV, and AlvMϕ might serve as a source for viral rebound after interruption of antiretroviral therapy [338,354,355,356,357,358,359]. IFN-γ-induced cellular restriction factor adenosine deaminase acting on RNA 1 (ADAR1) acts negatively on HIV replication, thereby favoring persistence of proviral DNA [360]. While viral load in AlvMϕ from asymptomatic patients is very low, it is markedly increased in AIDS patients and secretion of TNF-α, IL-1β, and IL-6 is augmented [318].
Small ruminant lentiviruses include Visna/Maedi virus (VMV, Lentivirus ovivismae) in sheep and caprine arthritis encephalitis virus (CAEV, Lentivirus capartenc) in goats. Besides encephalomyelitis, arthritis, and mastitis, infections manifest as slowly progressing pneumonia. Although VMV-infected AlvMϕ can be lysed by cytotoxic T cells, a low proportion of AlvMϕ harboring viral protein, proviral DNA, or viral RNA is present in VMV-infected sheep with interstitial pneumonia [361,362,363,364,365,366,367]. Virus infection of AlvMϕ is also shown in CAEV-infected goats [368]. VMV replicates in AlvMϕ in vivo and in vitro [369,370], and infected AlvMϕ are able to transmit VMV across the respiratory epithelial barrier [369]. Following VMV infection, BAL macrophage numbers are elevated and AlvMϕ display an activated phenotype with secretion of IL-8, IL-6, IL-10, GM-CSF, TNF-α, IL-1β, and TGF-β [369,371,372,373,374,375,376]. Furthermore, an increased hydrogen peroxide release of ovine AlvMϕ is found in vitro, likely related to lung hyperreactivity observed in VMV infection [377]. Moreover, cultured VMV-infected AlvMϕ show impaired phagocytosis of bacteria [378].
Feline immunodeficiency virus (FIV, Lentivirus felimdef) and equine infectious anemia virus (EIAV, Lentivirus equinfane) within AlvMϕ have been shown in infected cats and horses, respectively [379,380]. FIV is an immunosuppressive lentivirus causing AIDS-like disease in cats. However, the role of AlvMϕ in disease pathogenesis has not yet been elucidated. EIAV does not cause productive infection of AlvMϕ in vitro, but increases proinflammatory cytokine expression [381]. Jaagsiekte sheep retrovirus (JSRV, Betaretrovirus ovijaa) protein and proviral DNA have been demonstrated in AlvMϕ, but their role in the development of ovine pulmonary adenocarcinoma remains undetermined [382,383].

8. Adenoviruses

Adenoviruses are non-enveloped, double-stranded DNA viruses [384]. While in immunocompetent persons infection is usually asymptomatic or manifests with only mild respiratory symptoms, human adenoviruses can lead to severe pneumonia in children and immunocompromised individuals [385]. Human AlvMϕ are permissive to adenovirus infection and account for rapid viral elimination upon infection [386,387]. The scavenger receptor MARCO on AlvMϕ serves as virus entry receptor for human adenoviruses and initiates innate immune responses [388,389]. Knockout mouse models reveal that GM-CSF efficiently increases the phagocytic uptake and lysosomal degradation of adenoviruses by AlvMϕ [390,391]. Internalization of adenoviruses by AlvMϕ also initiates proinflammatory signaling during early respiratory tract infection [392,393]. Here, excessive proinflammatory cytokine release by AlvMϕ is supposed to account for lung injury in adenovirus pneumonia, as shown in experimentally infected hamsters [394,395]. Interestingly, surfactant protein A within alveoli enhances viral clearance by AlvMϕ and inhibits lung inflammation, thereby preventing alveolar injury during pulmonary adenoviral infection of mice [396]. AlvMϕ are the most frequently infected cell type in canine adenovirus pneumonia, which is supposed to interfere with pulmonary defense mechanisms in affected dogs [397,398].

9. Morbilliviruses

Morbilliviruses, including human measles virus (MeV, Morbillivirus hominis), canine distemper virus (CDV, Morbillivirus canis), rinderpest virus (Morbillivirus pecoris, eradicated since 2011), peste-des-petits-ruminant virus (PPRV, Morbillivirus caprinae), and morbilliviruses of marine mammals cause systemic disease with respiratory distress and profound immunosuppression. Morbilliviruses belong to the family Paramyxoviridae, which consists of enveloped, single-stranded RNA viruses [399]. A notable feature of morbilliviruses is their ability to Infect Immune cells of the respiratory tract, from which infectious virus is released before being transmitted to other hosts via aerosols or respiratory droplets. MeV genome can be found in AlvMϕ derived from human BAL fluid [400], and virus antigen has been detected in CD11c+ myeloid cells in lungs, representing AlvMϕ and pulmonary dendritic cells, in autopsy and biopsy samples obtained from natural measles cases [401].
Studies using transgenic mice expressing the viral entry receptor CD150 and experimental infections of non-human primates identified AlvMϕ, besides dendritic cells, as an early target for MeV [402,403,404,405]. Similarly, ferret models show that CDV primarily infects AlvMϕ following aerogenic infection, preceding viral replication in lymphoid organs and viremia [406]. AlvMϕ have been described as the first cell type to become infected with CDV also in canine lung tissue explants [407]. CDV can be detected in airway histiocytes of infected dogs (Figure 3) [408]. It is speculated that MeV and CDV bypass the epithelial barrier of the respiratory tract within AlvMϕ and pulmonary dendritic cells during the early infection phase with subsequent virus dissemination and systemic disease (Figure 4) [407,409].
Virus antigen and viral inclusion bodies in AlvMϕ have been demonstrated in morbillivirus pneumonia of striped dolphins, harbor seals, and harbor porpoises. Like MeV and CDV, the main cytopathic effects of AlvMϕ in these infections include syncytia formation due to distinct viral fusiogenic activity [410,411,412,413]. Moreover, pyknosis of AlvMϕ can be found in horses with pneumonia related to Hendra virus (Henipavirus hendraense), another paramyxovirus [414]. As demonstrated by viral histochemistry staining in vitro, feline morbillivirus (Morbillivirus felis) exhibits tropism for AlvMϕ, which might contribute to viral entry during early infection. Nevertheless, since the virus is primarily associated with chronic kidney disease in cats, the pathologic relevance of this finding remains uncertain [415]. PPRV also targets AlvMϕ in goats and sheep following aerogenic infection [416,417,418]. Here, in vitro studies revealed that PPRV fusion protein inhibits Antiviral Responses in goat AlvMϕ, leading to increased viral growth and replication. This immune evasion strategy is antagonized by overexpression of plasminogen activator urokinase, enhancing antiviral type I interferon responses in AlvMϕ [419].
Figure 4. Hypothesized routes of canine distemper virus (CDV) entry and release in the pulmonary system. (A) CDV is taken up by SLAM+ alveolar macrophages, and bypasses the epithelium or enters epithelial cells directly, via micropinocytosis. (B) Professional antigen-presenting cells present CDV antigen to peripheral blood mononuclear cells (PBMCs), in particular lymphocytes. (C) CDV replication takes place in regional lymph nodes before dissemination to distant lymphoid tissues. (D) During secondary viremia, CDV is transported to the lung. (E) CDV-infected immune cells migrate to the basolateral side of the epithelium. (F) CDV enters epithelial cells via cellular adhesion molecule nectin-4. (G) CDV is released at the apical side to the lumen and propelled rostrally via the mucus layer, ciliary beating, and coughing. Adapted from “Hypothesized routes of CDV entry and release in the pulmonary airway system.” by Elisa Chludzinski, licenced under CC BY 4.0 (https://creativecommons.org/licenses/by/4.0/, accessed on 1 December 2024) [420].
Figure 4. Hypothesized routes of canine distemper virus (CDV) entry and release in the pulmonary system. (A) CDV is taken up by SLAM+ alveolar macrophages, and bypasses the epithelium or enters epithelial cells directly, via micropinocytosis. (B) Professional antigen-presenting cells present CDV antigen to peripheral blood mononuclear cells (PBMCs), in particular lymphocytes. (C) CDV replication takes place in regional lymph nodes before dissemination to distant lymphoid tissues. (D) During secondary viremia, CDV is transported to the lung. (E) CDV-infected immune cells migrate to the basolateral side of the epithelium. (F) CDV enters epithelial cells via cellular adhesion molecule nectin-4. (G) CDV is released at the apical side to the lumen and propelled rostrally via the mucus layer, ciliary beating, and coughing. Adapted from “Hypothesized routes of CDV entry and release in the pulmonary airway system.” by Elisa Chludzinski, licenced under CC BY 4.0 (https://creativecommons.org/licenses/by/4.0/, accessed on 1 December 2024) [420].
Ijms 26 00407 g004

10. Respiroviruses

The genus Respirovirus belongs to the family Paramyxoviridae, comprising enveloped, single-stranded, negative-sense RNA viruses, causing acute respiratory disease in humans and animals [399]. Bovine parainfluenza virus 3 (BPIV3, Respirovirus bovis) is a component of enzootic pneumonia in calves and bovine respiratory disease complex in feedlot cattle. Like the human parainfluenza virus, BPIV3 infection predisposes to co-infection with other respiratory viruses and bacteria which are related to virus-induced airway lesions and disturbed lung defense mechanisms. BPIV3 replicates within AlvMϕ, and subsequent depression of their phagocytic function and antimicrobial properties has been shown in vitro and in vivo [421,422,423]. Moreover, an increased procoagulant activity of AlvMϕ by BPIV3 is supposed to favor fibrin formation in lung alveoli, leading to a suitable environment for bacterial colonization and growth [424]. Dysfunction of AlvMϕ is associated with an enhanced production of prostaglandins and thromboxane [425]. Thus, targeting the arachidonic acid metabolism of AlvMϕ, particularly reducing prostaglandin E2 by cyclooxygenase inhibition, is regarded as a strategy to restore the bactericidal function and pulmonary particle clearance in BPIV3-infected animals [421,426].
Sendai virus (SeV, Respirovirus muris) infection of young rodents is used for modeling postinfectious lung disease and virus-triggered asthma. AlvMϕ are thought to play a role in the development of airway injury [427]. For instance, TNF-α released by AlvMϕ contribute to bronchiolar fibrosis in weanling rats upon infection [428]. Moreover, persistence of SeV in lung innate immune cells, including AlvMϕ, may account for the progression from acute to chronic lung disease [429]. With aging, AlvMϕ seem to control asthmatic lung pathology triggered by SeV, since macrophage depletion has been shown to enhance pulmonary type 2 inflammatory responses and exacerbate post-viral lung pathology in experimentally infected adult mice [430].

11. Circoviruses

The family Circoviridae includes circular, single-stranded DNA viruses [431]. Porcine circovirus 2 (PCV2, Circovirus porcine2) is associated with several diseases and syndromes in pigs, known as porcine circovirus-associated diseases (PCV-ADs), contributing to economic losses in the porcine industry [432]. PCV2 infection alone induces only subclinical or mild symptoms, whereas PCV-AD requires additional stimulation mainly by co-infection with other respiratory viruses or bacteria [433,434]. Different organ systems can be affected by PCV-AD, including lymphoid tissues and the lung, where granulomatous lesions develop [432]. Particularly cells of the monocyte/macrophage lineage, including AlvMϕ, are an important target of PCV2, leading to persistent infection [435]. Therefore, AlvMϕ represent a potential virus reservoir, and may facilitate immune evasion and viral spread. Primarily phagocytic or endocytic entry leads to intracytoplasmic location of viral antigen, triggering subsequent cytokine and chemokine responses [436]. Several studies indicate an upregulation of myeloid differentiation primary response (MYD) 88-related signaling pathways upon infection of AlvMϕ in vitro, leading to increased expression of cytokines (e.g., TNF-α, IL-1β, IL-8, IL-10) and chemokines [437,438,439,440]. Imbalanced or prolonged cytokine responses can contribute to impaired pulmonary function, tissue damage, reduced antiviral immunity, and systemic inflammation [440,441]. TNF-α and IL-1β, especially, are associated with the induction of fever, respiratory distress, and lung injury in vivo [439]. Moreover, IL-8, CCL2, CXCL5, and CCL4 are potent chemoattractants for neutrophils, monocytes, and other leukocytes, which induce and maintain granulomatous inflammatory processes [435,437,438,439,440]. Furthermore, PCV2-associated immune modulation of AlvMϕ involves overexpression of IL-10 and TGF-β. Both are potent suppressors of antiviral immunity, promoting viral persistence and facilitating co-infections [442]. The PCV2 capsid protein cap induces IL-10 expression via interaction with the host complement factor receptor gC1qR expressed by AlvMϕ [443]. The same pathway is exploited by PCV2 to suppress IL-12p40 expression, dampening Th1 immune response and further enhancing immunosuppression [444]. In addition to altered cytokine responses, PCV2 also impairs the phagocytic capability of infected AlvMϕ and reduces the production of ROS in vitro, resulting in reduced pathogen clearance and increased susceptibility to secondary infections [434,435].

12. Arteriviruses

Arteriviruses are enveloped viruses with a linear, positive-sense RNA genome [445]. Porcine reproductive and respiratory syndrome virus (PRRSV-1/2, Betaarterivirus europensis/americense) accounts for severe economic losses in the swine industry by causing respiratory disease primarily in young pigs and reproductive failure in sows. Respiratory infection results in interstitial pneumonia and impaired pulmonary innate immunity, facilitating secondary bacterial and other viral infections [446]. AlvMϕ are primary target cells for initial PRRSV replication during acute infection, which precedes virus spread, while persistent infection of these cells causes chronic respiratory problems in affected pigs [447]. PRRSV leads to reduced phagocytic capacity and bactericidal function of AlvMϕ, as shown in vitro and in vivo [448,449,450]. Moreover, PRRSV elicits only weak antiviral innate immune responses in AlvMϕ, mediated by virus protein interference with molecules of the type I IFN pathway. Here, PRRSV non-structural protein 1 (nsp1) is considered as the strongest antagonist of IFN-β production, by acting on the phosphorylation and nuclear translocation of interferon regulating factor 3 [451,452]. In addition, PRRSV induces a M2-phenotype of AlvMϕ, characterized by CD163 expression, which serves as a virus entry receptor, while simultaneously counteracting Antiviral Responses of M1-polarized macrophages [453,454,455].
Impaired antigen processing and major histocompatibility complex class I-restricted antigen presentation lead to reduced cytotoxic T Cell Responses, following infection with highly pathogenic PRRSV strains [456]. In vitro studies also demonstrate reduced cytotoxic function of natural killer cells against PRRSV-infected AlvMϕ [457]. Transcriptome analyses of PRRSV-infected AlvMϕ reveal an upregulation of genes related to T cell exhaustion, including indoleamine-2,3-dioxygenase and the immune check point molecules programmed cell death-ligand (PDL)-1 and PDL-2 [458,459]. Moreover, increased expression of suppressive cytokines IL-10 and TGF-β by AlvMϕ following PRRSV infection are supposed to impair T cell function. These mechanisms contribute to adaptive immune evasion and chronic respiratory infection in pigs [460,461].
PRRSV transiently impairs the expression of proinflammatory cytokines in the early stage of infection. However, the virus is able to induce an inflammatory storm during the late stage [462]. In particular, highly pathogenic PRRSV elicits excessive secretion of proinflammatory cytokines, such as TNF-α, IL-8 and IL-1β, thought to foster diffuse alveolar damage and pulmonary edema in infected pigs. Although less efficient than pulmonary intravascular macrophages, infected AlvMϕ participate in endothelial barrier injury by releasing inflammatory mediators, as demonstrated in vitro using transwell co-culture systems [463,464,465].
A time-dependent increase in AlvMϕ apoptosis has been found in pigs experimentally infected with PRRSV [466]. In vitro experiments demonstrate an activation of anti-apoptotic pathways during initial infection, thereby favoring viral replication. Late in infection, PRRSV-infected AlvMϕ die by apoptosis and secondary necrosis [467]. In addition to apoptosis, highly pathogenic PRRSV induces pyroptosis of AlvMϕ in vitro and in vivo, associated with excessive IL-1β secretion. Triggering programmed cell death in infected AlvMϕ is regarded as a mechanism to restrict viral replication and promote PRRSV elimination, but might also contribute to immunopathology and lung damage in affected animals [468]. Given the central role of AlvMϕ in PRRSV infection and pathogenesis, the development of therapeutics strengthening Antiviral Responses and maintaining homeostatic functions of these cells represents a novel approach in porcine health management [469,470].
Equine arteritis virus (EAV, Alphaarterivirus equid) is the causative agent of equine viral arteritis. The course of disease can range from asymptomatic cases to respiratory and reproductive symptoms, depending on virus strain virulence, route of transmission, and host immunity [471]. Horizontal transmission occurs during the acute disease phase via aerosols, and, like PRRSV, AlvMϕ represent the primary cells for viral entry. EAV antigen can be demonstrated within AlvMϕ of infected horses and aborted fetuses [472]. Similar to cytokine expression of PRRSV-infected porcine AlvMϕ, EAV infection of equine AlvMϕ induces an increased expression of proinflammatory cytokines such as IL-1β, IL-6, IL-8, and TNF-α. The majority of clinical signs in equine viral arteritis are related to vascular injury [381]. In vitro studies have shown that EAV-infected AlvMϕ activate endothelial cells, resulting in increased expression of adhesion molecule E-selectin, and potentially release vasculotoxic IL-1β and TNF-α [381].
Several factors impair the efficacy of vaccination, and insufficient protection is observed particularly in multifactorial diseases [473]. Therefore, antiviral therapeutics that act directly on local target cells, such as AlvMϕ, have been explored. For instance, matrine, a plant-based alkaloid, is able to inhibit the replication of PRRSV and PCV2 in AlvMϕ in vitro, probably by interfering with TLR signaling, NF-κB-related pathways and virus-induced TNF-α release [474].

13. Conclusions

The reported studies delineate a multifaceted function of AlvMϕ in viral respiratory diseases. Animal models and in vitro experiments reveal beneficial and detrimental effects of the cells during infection, which clearly depend on virus properties, disease phase, intervention strategies, and the age of the host. AlvMϕ promote virus amplification and spread during early infection, and can serve as a reservoir for persistent infection. Since proper function of AlvMϕ are critical for lung defense mechanisms and viral elimination, several pathogens have evolved efficient strategies to evade host immune responses, particularly by interfering with type I interferon signaling. In addition, viral hijacking of the cellular machinery has the ability to impair pathogen recognition and the phagocytic capacity of AlvMϕ, increasing the host’s susceptibility to pulmonary co-infections [2,3,4]. Moreover, dysregulated cytokine responses and loss of homeostatic function of AlvMϕ during virus infection can enhance airway hyper-reactivity and virus-induced immunopathology. Given their plasticity and different functions in respiratory diseases, therapeutic strategies targeting AlvMϕ should be based on the needed role in a given disease situation. Although many strategies mentioned in this review article give hope to improving human and animal health in the future, more work is clearly needed to transfer in vitro and animal experimental results to clinical settings. While their position in the deep lung bears great potential for efficient therapeutic strategies, it also brings challenges, such as avoiding overloading of AlvMϕ, side effects in other cell populations, or compound loss in the upper airways [7]. Therefore, research on efficient and safe drug-delivery systems is needed to realize AlvMϕ-targeted therapeutic approaches. Understanding the unique properties of AlvMϕ and their complex interplay with other cells of the lung immune system represents a prerequisite for the development of new therapeutic approaches in respiratory virus infections.

Author Contributions

P.P., M.S. and A.B. contributed to conceptualization, drafting, writing, reviewing, and editing of the manuscript. All authors have read and agreed to the published version of the manuscript.

Funding

P.P. received funding from the German Research Foundation (Deutsche Forschungsgemeinschaft, DFG)—398066876/GRK 2485/2 (GRK VIPER). This Open Access publication was funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)—491094227 “Open Access Publication Funding” and the University of Veterinary Medicine Hannover Foundation.

Institutional Review Board Statement

Not applicable.

Data Availability Statement

Not applicable.

Acknowledgments

The authors thank Frances Sherwood-Brock for language editing of this article and Elisa Chludzinski for providing an image. Figure 1, Figure 2 and Figure 4 have been created in BioRender by Pöpperl, P. (2024) and can be accessed under: https://BioRender.com/r02b966 (accessed on 1 December 2024) (Figure 1); https://BioRender.com/b96n265 (accessed on 1 December 2024) (Figure 2); https://BioRender.com/l84c047 (accessed on 1 December 2024) (Figure 4).

Conflicts of Interest

The authors declare no conflicts of interest.

References

  1. Guerra, F.M.; Bolotin, S.; Lim, G.; Heffernan, J.; Deeks, S.L.; Li, Y.; Crowcroft, N.S. The basic reproduction number (R0) of measles: A systematic review. Lancet Infect. Dis. 2017, 17, e420–e428. [Google Scholar] [CrossRef]
  2. Schneider, C.; Nobs, S.P.; Heer, A.K.; Kurrer, M.; Klinke, G.; van Rooijen, N.; Vogel, J.; Kopf, M. Alveolar macrophages are essential for protection from respiratory failure and associated morbidity following influenza virus infection. PLoS Pathog. 2014, 10, e1004053. [Google Scholar] [CrossRef] [PubMed]
  3. Xu, J.; Flaczyk, A.; Neal, L.M.; Fa, Z.; Eastman, A.J.; Malachowski, A.N.; Cheng, D.; Moore, B.B.; Curtis, J.L.; Osterholzer, J.J.; et al. Scavenger Receptor MARCO Orchestrates Early Defenses and Contributes to Fungal Containment during Cryptococcal Infection. J. Immunol. 2017, 198, 3548–3557. [Google Scholar] [CrossRef]
  4. Arredouani, M.; Yang, Z.; Ning, Y.; Qin, G.; Soininen, R.; Tryggvason, K.; Kobzik, L. The scavenger receptor MARCO is required for lung defense against pneumococcal pneumonia and inhaled particles. J. Exp. Med. 2004, 200, 267–272. [Google Scholar] [CrossRef] [PubMed]
  5. Panahipoor Javaherdehi, A.; Ghanbari, S.; Mahdavi, P.; Zafarani, A.; Razizadeh, M.H. The role of alveolar macrophages in viral respiratory infections and their therapeutic implications. Biochem. Biophys. Rep. 2024, 40, 101826. [Google Scholar] [CrossRef] [PubMed]
  6. Malainou, C.; Abdin, S.M.; Lachmann, N.; Matt, U.; Herold, S. Alveolar macrophages in tissue homeostasis, inflammation, and infection: Evolving concepts of therapeutic targeting. J. Clin. Investig. 2023, 133, e170501. [Google Scholar] [CrossRef]
  7. Lim, P.N.; Cervantes, M.M.; Pham, L.K.; Rothchild, A.C. Alveolar macrophages: Novel therapeutic targets for respiratory diseases. Expert. Rev. Mol. Med. 2021, 23, e18. [Google Scholar] [CrossRef]
  8. Hoeffel, G.; Chen, J.; Lavin, Y.; Low, D.; Almeida, F.F.; See, P.; Beaudin, A.E.; Lum, J.; Low, I.; Forsberg, E.C.; et al. C-Myb(+) erythro-myeloid progenitor-derived fetal monocytes give rise to adult tissue-resident macrophages. Immunity 2015, 42, 665–678. [Google Scholar] [CrossRef]
  9. Hashimoto, D.; Chow, A.; Noizat, C.; Teo, P.; Beasley, M.B.; Leboeuf, M.; Becker, C.D.; See, P.; Price, J.; Lucas, D.; et al. Tissue-resident macrophages self-maintain locally throughout adult life with minimal contribution from circulating monocytes. Immunity 2013, 38, 792–804. [Google Scholar] [CrossRef] [PubMed]
  10. Ginhoux, F.; Guilliams, M. Tissue-Resident Macrophage Ontogeny and Homeostasis. Immunity 2016, 44, 439–449. [Google Scholar] [CrossRef] [PubMed]
  11. Guilliams, M.; De Kleer, I.; Henri, S.; Post, S.; Vanhoutte, L.; De Prijck, S.; Deswarte, K.; Malissen, B.; Hammad, H.; Lambrecht, B.N. Alveolar macrophages develop from fetal monocytes that differentiate into long-lived cells in the first week of life via GM-CSF. J. Exp. Med. 2013, 210, 1977–1992. [Google Scholar] [CrossRef] [PubMed]
  12. Schmidt, A.; Sucke, J.; Fuchs-Moll, G.; Freitag, P.; Hirschburger, M.; Kaufmann, A.; Garn, H.; Padberg, W.; Grau, V. Macrophages in experimental rat lung isografts and allografts: Infiltration and proliferation in situ. J. Leukoc. Biol. 2007, 81, 186–194. [Google Scholar] [CrossRef]
  13. Tarling, J.D.; Lin, H.S.; Hsu, S. Self-renewal of pulmonary alveolar macrophages: Evidence from radiation chimera studies. J. Leukoc. Biol. 1987, 42, 443–446. [Google Scholar] [CrossRef] [PubMed]
  14. Sawyer, R.T.; Strausbauch, P.H.; Volkman, A. Resident macrophage proliferation in mice depleted of blood monocytes by strontium-89. Lab. Investig. 1982, 46, 165–170. [Google Scholar]
  15. Yona, S.; Kim, K.W.; Wolf, Y.; Mildner, A.; Varol, D.; Breker, M.; Strauss-Ayali, D.; Viukov, S.; Guilliams, M.; Misharin, A.; et al. Fate mapping reveals origins and dynamics of monocytes and tissue macrophages under homeostasis. Immunity 2013, 38, 79–91. [Google Scholar] [CrossRef] [PubMed]
  16. Evren, E.; Ringqvist, E.; Doisne, J.M.; Thaller, A.; Sleiers, N.; Flavell, R.A.; Di Santo, J.P.; Willinger, T. CD116+ fetal precursors migrate to the perinatal lung and give rise to human alveolar macrophages. J. Exp. Med. 2022, 219, e20210987. [Google Scholar] [CrossRef]
  17. Westphalen, K.; Gusarova, G.A.; Islam, M.N.; Subramanian, M.; Cohen, T.S.; Prince, A.S.; Bhattacharya, J. Sessile alveolar macrophages communicate with alveolar epithelium to modulate immunity. Nature 2014, 506, 503–506. [Google Scholar] [CrossRef]
  18. Hussell, T.; Bell, T.J. Alveolar macrophages: Plasticity in a tissue-specific context. Nat. Rev. Immunol. 2014, 14, 81–93. [Google Scholar] [CrossRef] [PubMed]
  19. Subramanian, S.; Busch, C.J.-L.; Molawi, K.; Geirsdottir, L.; Maurizio, J.; Vargas Aguilar, S.; Belahbib, H.; Gimenez, G.; Yuda, R.A.A.; Burkon, M.; et al. Long-term culture-expanded alveolar macrophages restore their full epigenetic identity after transfer in vivo. Nat. Immunol. 2022, 23, 458–468. [Google Scholar] [CrossRef] [PubMed]
  20. Stanley, E.; Lieschke, G.J.; Grail, D.; Metcalf, D.; Hodgson, G.; Gall, J.A.; Maher, D.W.; Cebon, J.; Sinickas, V.; Dunn, A.R. Granulocyte/macrophage colony-stimulating factor-deficient mice show no major perturbation of hematopoiesis but develop a characteristic pulmonary pathology. Proc. Natl. Acad. Sci. USA 1994, 91, 5592–5596. [Google Scholar] [CrossRef] [PubMed]
  21. Nishinakamura, R.; Nakayama, N.; Hirabayashi, Y.; Inoue, T.; Aud, D.; McNeil, T.; Azuma, S.; Yoshida, S.; Toyoda, Y.; Arai, K.; et al. Mice deficient for the IL-3/GM-CSF/IL-5 beta c receptor exhibit lung pathology and impaired immune response, while beta IL3 receptor-deficient mice are normal. Immunity 1995, 2, 211–222. [Google Scholar] [CrossRef]
  22. Janssen, W.J.; McPhillips, K.A.; Dickinson, M.G.; Linderman, D.J.; Morimoto, K.; Xiao, Y.Q.; Oldham, K.M.; Vandivier, R.W.; Henson, P.M.; Gardai, S.J. Surfactant proteins A and D suppress alveolar macrophage phagocytosis via interaction with SIRP alpha. Am. J. Respir. Crit. Care Med. 2008, 178, 158–167. [Google Scholar] [CrossRef]
  23. Kong, X.N.; Yan, H.X.; Chen, L.; Dong, L.W.; Yang, W.; Liu, Q.; Yu, L.X.; Huang, D.D.; Liu, S.Q.; Liu, H.; et al. LPS-induced down-regulation of signal regulatory protein {alpha} contributes to innate immune activation in macrophages. J. Exp. Med. 2007, 204, 2719–2731. [Google Scholar] [CrossRef] [PubMed]
  24. Svedberg, F.R.; Brown, S.L.; Krauss, M.Z.; Campbell, L.; Sharpe, C.; Clausen, M.; Howell, G.J.; Clark, H.; Madsen, J.; Evans, C.M.; et al. The lung environment controls alveolar macrophage metabolism and responsiveness in type 2 inflammation. Nat. Immunol. 2019, 20, 571–580. [Google Scholar] [CrossRef] [PubMed]
  25. Mould, K.J.; Barthel, L.; Mohning, M.P.; Thomas, S.M.; McCubbrey, A.L.; Danhorn, T.; Leach, S.M.; Fingerlin, T.E.; O’Connor, B.P.; Reisz, J.A. Cell origin dictates programming of resident versus recruited macrophages during acute lung injury. Am. J. Respir. Cell Mol. Biol. 2017, 57, 294–306. [Google Scholar] [CrossRef]
  26. Zhu, B.; Wu, Y.; Huang, S.; Zhang, R.; Son, Y.M.; Li, C.; Cheon, I.S.; Gao, X.; Wang, M.; Chen, Y.; et al. Uncoupling of macrophage inflammation from self-renewal modulates host recovery from respiratory viral infection. Immunity 2021, 54, 1200–1218.e1209. [Google Scholar] [CrossRef] [PubMed]
  27. Gautier, E.L.; Shay, T.; Miller, J.; Greter, M.; Jakubzick, C.; Ivanov, S.; Helft, J.; Chow, A.; Elpek, K.G.; Gordonov, S.; et al. Gene-expression profiles and transcriptional regulatory pathways that underlie the identity and diversity of mouse tissue macrophages. Nat. Immunol. 2012, 13, 1118–1128. [Google Scholar] [CrossRef] [PubMed]
  28. Roberts, A.W.; Lee, B.L.; Deguine, J.; John, S.; Shlomchik, M.J.; Barton, G.M. Tissue-Resident Macrophages Are Locally Programmed for Silent Clearance of Apoptotic Cells. Immunity 2017, 47, 913–927.e916. [Google Scholar] [CrossRef]
  29. Hung, L.-Y.; Sen, D.; Oniskey, T.K.; Katzen, J.; Cohen, N.A.; Vaughan, A.E.; Nieves, W.; Urisman, A.; Beers, M.F.; Krummel, M.F.; et al. Macrophages promote epithelial proliferation following infectious and non-infectious lung injury through a Trefoil factor 2-dependent mechanism. Mucosal Immunol. 2019, 12, 64–76. [Google Scholar] [CrossRef]
  30. Fadok, V.A.; Bratton, D.L.; Konowal, A.; Freed, P.W.; Westcott, J.Y.; Henson, P.M. Macrophages that have ingested apoptotic cells in vitro inhibit proinflammatory cytokine production through autocrine/paracrine mechanisms involving TGF-beta, PGE2, and PAF. J. Clin. Investig. 1998, 101, 890–898. [Google Scholar] [CrossRef] [PubMed]
  31. Speth, J.M.; Bourdonnay, E.; Penke, L.R.; Mancuso, P.; Moore, B.B.; Weinberg, J.B.; Peters-Golden, M. Alveolar Epithelial Cell-Derived Prostaglandin E2 Serves as a Request Signal for Macrophage Secretion of Suppressor of Cytokine Signaling 3 during Innate Inflammation. J. Immunol. 2016, 196, 5112–5120. [Google Scholar] [CrossRef]
  32. Bourdonnay, E.; Zasłona, Z.; Penke, L.R.; Speth, J.M.; Schneider, D.J.; Przybranowski, S.; Swanson, J.A.; Mancuso, P.; Freeman, C.M.; Curtis, J.L.; et al. Transcellular delivery of vesicular SOCS proteins from macrophages to epithelial cells blunts inflammatory signaling. J. Exp. Med. 2015, 212, 729–742. [Google Scholar] [CrossRef] [PubMed]
  33. Snelgrove, R.J.; Goulding, J.; Didierlaurent, A.M.; Lyonga, D.; Vekaria, S.; Edwards, L.; Gwyer, E.; Sedgwick, J.D.; Barclay, A.N.; Hussell, T. A critical function for CD200 in lung immune homeostasis and the severity of influenza infection. Nat. Immunol. 2008, 9, 1074–1083. [Google Scholar] [CrossRef] [PubMed]
  34. Fernandez, S.; Jose, P.; Avdiushko, M.G.; Kaplan, A.M.; Cohen, D.A. Inhibition of IL-10 Receptor Function in Alveolar Macrophages by Toll-Like Receptor Agonists1. J. Immunol. 2004, 172, 2613–2620. [Google Scholar] [CrossRef]
  35. Gschwend, J.; Sherman, S.P.M.; Ridder, F.; Feng, X.; Liang, H.E.; Locksley, R.M.; Becher, B.; Schneider, C. Alveolar macrophages rely on GM-CSF from alveolar epithelial type 2 cells before and after birth. J. Exp. Med. 2021, 218, e20210745. [Google Scholar] [CrossRef] [PubMed]
  36. Draijer, C.; Penke, L.R.K.; Peters-Golden, M. Distinctive Effects of GM-CSF and M-CSF on Proliferation and Polarization of Two Major Pulmonary Macrophage Populations. J. Immunol. 2019, 202, 2700–2709. [Google Scholar] [CrossRef] [PubMed]
  37. Guilliams, M.; Thierry, G.R.; Bonnardel, J.; Bajenoff, M. Establishment and Maintenance of the Macrophage Niche. Immunity 2020, 52, 434–451. [Google Scholar] [CrossRef]
  38. Yu, X.; Buttgereit, A.; Lelios, I.; Utz, S.G.; Cansever, D.; Becher, B.; Greter, M. The Cytokine TGF-β Promotes the Development and Homeostasis of Alveolar Macrophages. Immunity 2017, 47, 903–912.e904. [Google Scholar] [CrossRef] [PubMed]
  39. Cohen, M.; Giladi, A.; Gorki, A.-D.; Solodkin, D.G.; Zada, M.; Hladik, A.; Miklosi, A.; Salame, T.-M.; Halpern, K.B.; David, E.; et al. Lung Single-Cell Signaling Interaction Map Reveals Basophil Role in Macrophage Imprinting. Cell 2018, 175, 1031–1044.e1018. [Google Scholar] [CrossRef]
  40. Lipscomb, M.F.; Lyons, C.R.; Nunez, G.; Ball, E.J.; Stastny, P.; Vial, W.; Lem, V.; Weissler, J.; Miller, L.M. Human alveolar macrophages: HLA-DR-positive macrophages that are poor stimulators of a primary mixed leukocyte reaction. J. Immunol. 1986, 136, 497–504. [Google Scholar] [CrossRef]
  41. Lyons, C.R.; Ball, E.J.; Toews, G.B.; Weissler, J.C.; Stastny, P.; Lipscomb, M.F. Inability of human alveolar macrophages to stimulate resting T cells correlates with decreased antigen-specific T cell-macrophage binding. J. Immunol. 1986, 137, 1173–1180. [Google Scholar] [CrossRef]
  42. Roth, M.D.; Golub, S.H. Human pulmonary macrophages utilize prostaglandins and transforming growth factor beta 1 to suppress lymphocyte activation. J. Leukoc. Biol. 1993, 53, 366–371. [Google Scholar] [CrossRef] [PubMed]
  43. Coleman, M.M.; Ruane, D.; Moran, B.; Dunne, P.J.; Keane, J.; Mills, K.H. Alveolar macrophages contribute to respiratory tolerance by inducing FoxP3 expression in naive T cells. Am. J. Respir. Cell Mol. Biol. 2013, 48, 773–780. [Google Scholar] [CrossRef] [PubMed]
  44. Holt, P.G.; Oliver, J.; Bilyk, N.; McMenamin, C.; McMenamin, P.G.; Kraal, G.; Thepen, T. Downregulation of the antigen presenting cell function(s) of pulmonary dendritic cells in vivo by resident alveolar macrophages. J. Exp. Med. 1993, 177, 397–407. [Google Scholar] [CrossRef]
  45. Upham, J.W.; Strickland, D.H.; Bilyk, N.; Robinson, B.W.; Holt, P.G. Alveolar macrophages from humans and rodents selectively inhibit T-cell proliferation but permit T-cell activation and cytokine secretion. Immunology 1995, 84, 142–147. [Google Scholar]
  46. McCombs, C.C.; Michalski, J.P.; Westerfield, B.T.; Light, R.W. Human Alveolar Macrophages Suppress the Proliferative Response of Peripheral Blood Lymphocytes. Chest 1982, 82, 266–271. [Google Scholar] [CrossRef]
  47. Strickland, D.H.; Thepen, T.; Kees, U.R.; Kraal, G.; Holt, P.G. Regulation of T-cell function in lung tissue by pulmonary alveolar macrophages. Immunology 1993, 80, 266–272. [Google Scholar] [PubMed]
  48. Josefowicz, S.Z.; Niec, R.E.; Kim, H.Y.; Treuting, P.; Chinen, T.; Zheng, Y.; Umetsu, D.T.; Rudensky, A.Y. Extrathymically generated regulatory T cells control mucosal TH2 inflammation. Nature 2012, 482, 395–399. [Google Scholar] [CrossRef] [PubMed]
  49. Munger, J.S.; Huang, X.; Kawakatsu, H.; Griffiths, M.J.; Dalton, S.L.; Wu, J.; Pittet, J.F.; Kaminski, N.; Garat, C.; Matthay, M.A.; et al. The integrin alpha v beta 6 binds and activates latent TGF beta 1: A mechanism for regulating pulmonary inflammation and fibrosis. Cell 1999, 96, 319–328. [Google Scholar] [CrossRef]
  50. Roquilly, A.; McWilliam, H.E.G.; Jacqueline, C.; Tian, Z.; Cinotti, R.; Rimbert, M.; Wakim, L.; Caminschi, I.; Lahoud, M.H.; Belz, G.T.; et al. Local Modulation of Antigen-Presenting Cell Development after Resolution of Pneumonia Induces Long-Term Susceptibility to Secondary Infections. Immunity 2017, 47, 135–147.e135. [Google Scholar] [CrossRef] [PubMed]
  51. Soroosh, P.; Doherty, T.A.; Duan, W.; Mehta, A.K.; Choi, H.; Adams, Y.F.; Mikulski, Z.; Khorram, N.; Rosenthal, P.; Broide, D.H.; et al. Lung-resident tissue macrophages generate Foxp3+ regulatory T cells and promote airway tolerance. J. Exp. Med. 2013, 210, 775–788. [Google Scholar] [CrossRef] [PubMed]
  52. Duan, M.; Hibbs, M.L.; Chen, W. The contributions of lung macrophage and monocyte heterogeneity to influenza pathogenesis. Immunol. Cell Biol. 2017, 95, 225–235. [Google Scholar] [CrossRef] [PubMed]
  53. Jeyanathan, M.; Vaseghi-Shanjani, M.; Afkhami, S.; Grondin, J.A.; Kang, A.; D’Agostino, M.R.; Yao, Y.; Jain, S.; Zganiacz, A.; Kroezen, Z.; et al. Parenteral BCG vaccine induces lung-resident memory macrophages and trained immunity via the gut–lung axis. Nat. Immunol. 2022, 23, 1687–1702. [Google Scholar] [CrossRef]
  54. Bissonnette, E.Y.; Lauzon-Joset, J.-F.; Debley, J.S.; Ziegler, S.F. Cross-Talk Between Alveolar Macrophages and Lung Epithelial Cells is Essential to Maintain Lung Homeostasis. Front. Immunol. 2020, 11, 583042. [Google Scholar] [CrossRef] [PubMed]
  55. Goritzka, M.; Makris, S.; Kausar, F.; Durant, L.R.; Pereira, C.; Kumagai, Y.; Culley, F.J.; Mack, M.; Akira, S.; Johansson, C. Alveolar macrophage-derived type I interferons orchestrate innate immunity to RSV through recruitment of antiviral monocytes. J. Exp. Med. 2015, 212, 699–714. [Google Scholar] [CrossRef]
  56. Mould, K.J.; Jackson, N.D.; Henson, P.M.; Seibold, M.; Janssen, W.J. Single cell RNA sequencing identifies unique inflammatory airspace macrophage subsets. JCI Insight 2019, 4, e126556. [Google Scholar] [CrossRef]
  57. Kumagai, Y.; Takeuchi, O.; Kato, H.; Kumar, H.; Matsui, K.; Morii, E.; Aozasa, K.; Kawai, T.; Akira, S. Alveolar macrophages are the primary interferon-alpha producer in pulmonary infection with RNA viruses. Immunity 2007, 27, 240–252. [Google Scholar] [CrossRef]
  58. Park, S.H.; Kang, K.; Giannopoulou, E.; Qiao, Y.; Kang, K.; Kim, G.; Park-Min, K.-H.; Ivashkiv, L.B. Type I interferons and the cytokine TNF cooperatively reprogram the macrophage epigenome to promote inflammatory activation. Nat. Immunol. 2017, 18, 1104–1116. [Google Scholar] [CrossRef] [PubMed]
  59. Schoggins, J.W.; Rice, C.M. Interferon-stimulated genes and their antiviral effector functions. Curr. Opin. Virol. 2011, 1, 519–525. [Google Scholar] [CrossRef] [PubMed]
  60. Schoggins, J.W. Interferon-Stimulated Genes: What Do They All Do? Annu. Rev. Virol. 2019, 6, 567–584. [Google Scholar] [CrossRef] [PubMed]
  61. Jenkins, S.J.; Ruckerl, D.; Cook, P.C.; Jones, L.H.; Finkelman, F.D.; van Rooijen, N.; MacDonald, A.S.; Allen, J.E. Local Macrophage Proliferation, Rather than Recruitment from the Blood, Is a Signature of TH2 Inflammation. Science 2011, 332, 1284–1288. [Google Scholar] [CrossRef]
  62. Minutti, C.M.; Jackson-Jones, L.H.; García-Fojeda, B.; Knipper, J.A.; Sutherland, T.E.; Logan, N.; Ringqvist, E.; Guillamat-Prats, R.; Ferenbach, D.A.; Artigas, A.; et al. Local amplifiers of IL-4Rα–mediated macrophage activation promote repair in lung and liver. Science 2017, 356, 1076–1080. [Google Scholar] [CrossRef] [PubMed]
  63. Aegerter, H.; Kulikauskaite, J.; Crotta, S.; Patel, H.; Kelly, G.; Hessel, E.M.; Mack, M.; Beinke, S.; Wack, A. Influenza-induced monocyte-derived alveolar macrophages confer prolonged antibacterial protection. Nat. Immunol. 2020, 21, 145–157. [Google Scholar] [CrossRef]
  64. Machiels, B.; Dourcy, M.; Xiao, X.; Javaux, J.; Mesnil, C.; Sabatel, C.; Desmecht, D.; Lallemand, F.; Martinive, P.; Hammad, H.; et al. A gammaherpesvirus provides protection against allergic asthma by inducing the replacement of resident alveolar macrophages with regulatory monocytes. Nat. Immunol. 2017, 18, 1310–1320. [Google Scholar] [CrossRef] [PubMed]
  65. Li, F.; Piattini, F.; Pohlmeier, L.; Feng, Q.; Rehrauer, H.; Kopf, M. Monocyte-derived alveolar macrophages autonomously determine severe outcome of respiratory viral infection. Sci. Immunol. 2022, 7, eabj5761. [Google Scholar] [CrossRef]
  66. Gentek, R.; Molawi, K.; Sieweke, M.H. Tissue macrophage identity and self-renewal. Immunol. Rev. 2014, 262, 56–73. [Google Scholar] [CrossRef] [PubMed]
  67. Blériot, C.; Chakarov, S.; Ginhoux, F. Determinants of Resident Tissue Macrophage Identity and Function. Immunity 2020, 52, 957–970. [Google Scholar] [CrossRef]
  68. Gibbings, S.L.; Goyal, R.; Desch, A.N.; Leach, S.M.; Prabagar, M.; Atif, S.M.; Bratton, D.L.; Janssen, W.; Jakubzick, C.V. Transcriptome analysis highlights the conserved difference between embryonic and postnatal-derived alveolar macrophages. Blood 2015, 126, 1357–1366. [Google Scholar] [CrossRef]
  69. Guilliams, M.; Svedberg, F.R. Does tissue imprinting restrict macrophage plasticity? Nat. Immunol. 2021, 22, 118–127. [Google Scholar] [CrossRef]
  70. van de Laar, L.; Saelens, W.; De Prijck, S.; Martens, L.; Scott, C.L.; Van Isterdael, G.; Hoffmann, E.; Beyaert, R.; Saeys, Y.; Lambrecht, B.N.; et al. Yolk Sac Macrophages, Fetal Liver, and Adult Monocytes Can Colonize an Empty Niche and Develop into Functional Tissue-Resident Macrophages. Immunity 2016, 44, 755–768. [Google Scholar] [CrossRef] [PubMed]
  71. McCubbrey, A.L.; Barthel, L.; Mohning, M.P.; Redente, E.F.; Mould, K.J.; Thomas, S.M.; Leach, S.M.; Danhorn, T.; Gibbings, S.L.; Jakubzick, C.V.; et al. Deletion of c-FLIP from CD11b(hi) Macrophages Prevents Development of Bleomycin-induced Lung Fibrosis. Am. J. Respir. Cell Mol. Biol. 2018, 58, 66–78. [Google Scholar] [CrossRef]
  72. Misharin, A.V.; Morales-Nebreda, L.; Reyfman, P.A.; Cuda, C.M.; Walter, J.M.; McQuattie-Pimentel, A.C.; Chen, C.I.; Anekalla, K.R.; Joshi, N.; Williams, K.J.N.; et al. Monocyte-derived alveolar macrophages drive lung fibrosis and persist in the lung over the life span. J. Exp. Med. 2017, 214, 2387–2404. [Google Scholar] [CrossRef]
  73. Dagher, R.; Copenhaver, A.M.; Besnard, V.; Berlin, A.; Hamidi, F.; Maret, M.; Wang, J.; Qu, X.; Shrestha, Y.; Wu, J.; et al. IL-33-ST2 axis regulates myeloid cell differentiation and activation enabling effective club cell regeneration. Nat. Commun. 2020, 11, 4786. [Google Scholar] [CrossRef]
  74. Janssen, W.J.; Barthel, L.; Muldrow, A.; Oberley-Deegan, R.E.; Kearns, M.T.; Jakubzick, C.; Henson, P.M. Fas determines differential fates of resident and recruited macrophages during resolution of acute lung injury. Am. J. Respir. Crit. Care Med. 2011, 184, 547–560. [Google Scholar] [CrossRef]
  75. Netea, M.G.; Joosten, L.A.; Latz, E.; Mills, K.H.; Natoli, G.; Stunnenberg, H.G.; O’Neill, L.A.; Xavier, R.J. Trained immunity: A program of innate immune memory in health and disease. Science 2016, 352, aaf1098. [Google Scholar] [CrossRef]
  76. Yao, Y.; Jeyanathan, M.; Haddadi, S.; Barra, N.G.; Vaseghi-Shanjani, M.; Damjanovic, D.; Lai, R.; Afkhami, S.; Chen, Y.; Dvorkin-Gheva, A.; et al. Induction of Autonomous Memory Alveolar Macrophages Requires T Cell Help and Is Critical to Trained Immunity. Cell 2018, 175, 1634–1650.e1617. [Google Scholar] [CrossRef] [PubMed]
  77. Boe, D.M.; Hulsebus, H.J.; Najarro, K.M.; Mullen, J.E.; Kim, H.; Tan, A.C.; McMahan, R.H.; Kovacs, E.J. Advanced age is associated with changes in alveolar macrophages and their responses to the stress of traumatic injury. J. Leukoc. Biol. 2022, 112, 1371–1386. [Google Scholar] [CrossRef]
  78. Angelidis, I.; Simon, L.M.; Fernandez, I.E.; Strunz, M.; Mayr, C.H.; Greiffo, F.R.; Tsitsiridis, G.; Ansari, M.; Graf, E.; Strom, T.M.; et al. An atlas of the aging lung mapped by single cell transcriptomics and deep tissue proteomics. Nat. Commun. 2019, 10, 963. [Google Scholar] [CrossRef] [PubMed]
  79. McQuattie-Pimentel, A.C.; Ren, Z.; Joshi, N.; Watanabe, S.; Stoeger, T.; Chi, M.; Lu, Z.; Sichizya, L.; Aillon, R.P.; Chen, C.I.; et al. The lung microenvironment shapes a dysfunctional response of alveolar macrophages in aging. J. Clin. Investig. 2021, 131, e140299. [Google Scholar] [CrossRef]
  80. Canan, C.H.; Gokhale, N.S.; Carruthers, B.; Lafuse, W.P.; Schlesinger, L.S.; Torrelles, J.B.; Turner, J. Characterization of lung inflammation and its impact on macrophage function in aging. J. Leukoc. Biol. 2014, 96, 473–480. [Google Scholar] [CrossRef]
  81. Wong, C.K.; Smith, C.A.; Sakamoto, K.; Kaminski, N.; Koff, J.L.; Goldstein, D.R. Aging Impairs Alveolar Macrophage Phagocytosis and Increases Influenza-Induced Mortality in Mice. J. Immunol. 2017, 199, 1060–1068. [Google Scholar] [CrossRef]
  82. Li, Z.; Jiao, Y.; Fan, E.K.; Scott, M.J.; Li, Y.; Li, S.; Billiar, T.R.; Wilson, M.A.; Shi, X.; Fan, J. Aging-Impaired Filamentous Actin Polymerization Signaling Reduces Alveolar Macrophage Phagocytosis of Bacteria. J. Immunol. 2017, 199, 3176–3186. [Google Scholar] [CrossRef]
  83. Aprahamian, T.; Takemura, Y.; Goukassian, D.; Walsh, K. Ageing is associated with diminished apoptotic cell clearance in vivo. Clin. Exp. Immunol. 2008, 152, 448–455. [Google Scholar] [CrossRef]
  84. De Maeyer, R.P.H.; van de Merwe, R.C.; Louie, R.; Bracken, O.V.; Devine, O.P.; Goldstein, D.R.; Uddin, M.; Akbar, A.N.; Gilroy, D.W. Blocking elevated p38 MAPK restores efferocytosis andinflammatory resolution in the elderly. Nat. Immunol. 2020, 21, 615–625. [Google Scholar] [CrossRef] [PubMed]
  85. Evren, E.; Ringqvist, E.; Willinger, T. Origin and ontogeny of lung macrophages: From mice to humans. Immunology 2020, 160, 126–138. [Google Scholar] [CrossRef] [PubMed]
  86. Pervizaj-Oruqaj, L.; Ferrero, M.R.; Matt, U.; Herold, S. The guardians of pulmonary harmony: Alveolar macrophages orchestrating the symphony of lung inflammation and tissue homeostasis. Eur. Respir. Rev. 2024, 33, 230263. [Google Scholar] [CrossRef]
  87. World Health Organization; GISRS. INFLUENZA LABORATORY SURVEILLANCE INFORMATION—Virus Detections by Subtype Reported to FluNet. Available online: https://app.powerbi.com/view?r=eyJrIjoiZTkyODcyOTEtZjA5YS00ZmI0LWFkZGUtODIxNGI5OTE3YjM0IiwidCI6ImY2MTBjMGI3LWJkMjQtNGIzOS04MTBiLTNkYzI4MGFmYjU5MCIsImMiOjh9 (accessed on 12 August 2024).
  88. World Health Organization. Influenza (Seasonal) Fact Sheet. Available online: https://www.who.int/news-room/fact-sheets/detail/influenza-(seasonal) (accessed on 12 August 2024).
  89. Saunders-Hastings, P.R.; Krewski, D. Reviewing the History of Pandemic Influenza: Understanding Patterns of Emergence and Transmission. Pathogens 2016, 5, 66. [Google Scholar] [CrossRef]
  90. Webster, R.G.; Bean, W.J.; Gorman, O.T.; Chambers, T.M.; Kawaoka, Y. Evolution and ecology of influenza A viruses. Microbiol Rev 1992, 56, 152–179. [Google Scholar] [CrossRef]
  91. Taubenberger, J.K.; Morens, D.M. Influenza: The Once and Future Pandemic. Public Health Rep. 2010, 125, 15–26. [Google Scholar] [CrossRef]
  92. Kuiken, T.; Taubenberger, J.K. Pathology of human influenza revisited. Vaccine 2008, 26, D59–D66. [Google Scholar] [CrossRef]
  93. Shi, Y.; Wu, Y.; Zhang, W.; Qi, J.; Gao, G.F. Enabling the ’host jump’: Structural determinants of receptor-binding specificity in influenza A viruses. Nat. Rev. Microbiol. 2014, 12, 822–831. [Google Scholar] [CrossRef]
  94. Nelson, B.; Zhou, X.; White, M.; Hartshorn, K.; Takahashi, K.; Kinane, T.B.; Anandaiah, A.; Koziel, H. Recombinant human mannose-binding lectin dampens human alveolar macrophage inflammatory responses to influenza A virus in vitro. J. Leukoc. Biol. 2014, 95, 715–722. [Google Scholar] [CrossRef]
  95. Travanty, E.; Zhou, B.; Zhang, H.; Di, Y.P.; Alcorn, J.F.; Wentworth, D.E.; Mason, R.; Wang, J. Differential Susceptibilities of Human Lung Primary Cells to H1N1 Influenza Viruses. J. Virol. 2015, 89, 11935–11944. [Google Scholar] [CrossRef] [PubMed]
  96. Shieh, W.-J.; Blau, D.M.; Denison, A.M.; DeLeon-Carnes, M.; Adem, P.; Bhatnagar, J.; Sumner, J.; Liu, L.; Patel, M.; Batten, B.; et al. 2009 Pandemic Influenza A (H1N1): Pathology and Pathogenesis of 100 Fatal Cases in the United States. Am. J. Pathol. 2010, 177, 166–175. [Google Scholar] [CrossRef]
  97. Calore, E.E.; Uip, D.E.; Perez, N.M. Pathology of the swine-origin influenza A (H1N1) flu. Pathol. Res. Pract. 2011, 207, 86–90. [Google Scholar] [CrossRef]
  98. Weinheimer, V.K.; Becher, A.; Tönnies, M.; Holland, G.; Knepper, J.; Bauer, T.T.; Schneider, P.; Neudecker, J.; Rückert, J.C.; Szymanski, K.; et al. Influenza A viruses target type II pneumocytes in the human lung. J. Infect. Dis. 2012, 206, 1685–1694. [Google Scholar] [CrossRef]
  99. Chen, Y.; Deng, W.; Jia, C.; Dai, X.; Zhu, H.; Kong, Q.; Huang, L.; Liu, Y.; Ma, C.; Li, J.; et al. Pathological lesions and viral localization of influenza A (H5N1) virus in experimentally infected Chinese rhesus macaques: Implications for pathogenesis and viral transmission. Arch. Virol. 2009, 154, 227–233. [Google Scholar] [CrossRef] [PubMed]
  100. Tate, M.D.; Pickett, D.L.; van Rooijen, N.; Brooks, A.G.; Reading, P.C. Critical role of airway macrophages in modulating disease severity during influenza virus infection of mice. J. Virol. 2010, 84, 7569–7580. [Google Scholar] [CrossRef] [PubMed]
  101. DiPiazza, A.; Nogales, A.; Poulton, N.; Wilson, P.C.; Martínez-Sobrido, L.; Sant, A.J. Pandemic 2009 H1N1 Influenza Venus reporter virus reveals broad diversity of MHC class II-positive antigen-bearing cells following infection in vivo. Sci. Rep. 2017, 7, 10857. [Google Scholar] [CrossRef] [PubMed]
  102. Chang, P.; Kuchipudi, S.V.; Mellits, K.H.; Sebastian, S.; James, J.; Liu, J.; Shelton, H.; Chang, K.C. Early apoptosis of porcine alveolar macrophages limits avian influenza virus replication and pro-inflammatory dysregulation. Sci. Rep. 2015, 5, 17999. [Google Scholar] [CrossRef]
  103. Jung, K.; Chae, C. First outbreak of respiratory disease associated with swine influenza H1N2 virus in pigs in Korea. J. Vet. Diagn. Investig. 2005, 17, 176–178. [Google Scholar] [CrossRef]
  104. Castleman, W.L.; Powe, J.R.; Crawford, P.C.; Gibbs, E.P.; Dubovi, E.J.; Donis, R.O.; Hanshaw, D. Canine H3N8 influenza virus infection in dogs and mice. Vet. Pathol. 2010, 47, 507–517. [Google Scholar] [CrossRef]
  105. Powe, J.R.; Castleman, W.L. Canine influenza virus replicates in alveolar macrophages and induces TNF-alpha. Vet. Pathol. 2009, 46, 1187–1196. [Google Scholar] [CrossRef] [PubMed]
  106. Löhr, C.V.; DeBess, E.E.; Baker, R.J.; Hiett, S.L.; Hoffman, K.A.; Murdoch, V.J.; Fischer, K.A.; Mulrooney, D.M.; Selman, R.L.; Hammill-Black, W.M. Pathology and viral antigen distribution of lethal pneumonia in domestic cats due to pandemic (H1N1) 2009 influenza A virus. Vet. Pathol. 2010, 47, 378–386. [Google Scholar] [CrossRef]
  107. Ettensohn, D.B.; Frampton, M.W.; Nichols, J.E.; Roberts, N.J., Jr. Human Alveolar Macrophages May Not Be Susceptible to Direct Infection by a Human Influenza Virus. J. Infect. Dis. 2016, 214, 1658–1665. [Google Scholar] [CrossRef]
  108. Tate, M.D.; Schilter, H.C.; Brooks, A.G.; Reading, P.C. Responses of mouse airway epithelial cells and alveolar macrophages to virulent and avirulent strains of influenza A virus. Viral. Immunol. 2011, 24, 77–88. [Google Scholar] [CrossRef] [PubMed]
  109. Wang, J.; Oberley-Deegan, R.; Wang, S.; Nikrad, M.; Funk, C.J.; Hartshorn, K.L.; Mason, R.J. Differentiated human alveolar type II cells secrete antiviral IL-29 (IFN-lambda 1) in response to influenza A infection. J. Immunol. 2009, 182, 1296–1304. [Google Scholar] [CrossRef] [PubMed]
  110. Yu, W.C.; Chan, R.W.; Wang, J.; Travanty, E.A.; Nicholls, J.M.; Peiris, J.S.; Mason, R.J.; Chan, M.C. Viral replication and innate host responses in primary human alveolar epithelial cells and alveolar macrophages infected with influenza H5N1 and H1N1 viruses. J. Virol. 2011, 85, 6844–6855. [Google Scholar] [CrossRef]
  111. van Riel, D.; Leijten, L.M.; van der Eerden, M.; Hoogsteden, H.C.; Boven, L.A.; Lambrecht, B.N.; Osterhaus, A.D.; Kuiken, T. Highly pathogenic avian influenza virus H5N1 infects alveolar macrophages without virus production or excessive TNF-alpha induction. PLoS Pathog. 2011, 7, e1002099. [Google Scholar] [CrossRef]
  112. Cline Troy, D.; Karlsson Erik, A.; Seufzer Bradley, J.; Schultz-Cherry, S. The Hemagglutinin Protein of Highly Pathogenic H5N1 Influenza Viruses Overcomes an Early Block in the Replication Cycle to Promote Productive Replication in Macrophages. J. Virol. 2013, 87, 1411–1419. [Google Scholar] [CrossRef]
  113. Xie, X.; Pang, M.; Liang, S.; Lin, Y.; Zhao, Y.; Qiu, D.; Liu, J.; Dong, Y.; Liu, Y. Cellular microRNAs influence replication of H3N2 canine influenza virus in infected cells. Vet. Microbiol. 2021, 257, 109083. [Google Scholar] [CrossRef]
  114. Dobrescu, I.; Levast, B.; Lai, K.; Delgado-Ortega, M.; Walker, S.; Banman, S.; Townsend, H.; Simon, G.; Zhou, Y.; Gerdts, V.; et al. In vitro and ex vivo analyses of co-infections with swine influenza and porcine reproductive and respiratory syndrome viruses. Vet. Microbiol. 2014, 169, 18–32. [Google Scholar] [CrossRef]
  115. Zhang, J.; Miao, J.; Hou, J.; Lu, C. The effects of H3N2 swine influenza virus infection on TLRs and RLRs signaling pathways in porcine alveolar macrophages. Virol. J. 2015, 12, 61. [Google Scholar] [CrossRef]
  116. Zhu, J.; Zou, W.; Jia, G.; Zhou, H.; Hu, Y.; Peng, M.; Chen, H.; Jin, M. Analysis of cellular proteome alterations in porcine alveolar macrophage cells infected with 2009 (H1N1) and classical swine H1N1 influenza viruses. J. Proteom. 2012, 75, 1732–1741. [Google Scholar] [CrossRef] [PubMed]
  117. Kasloff, S.B.; Weingartl, H.M. Swine alveolar macrophage cell model allows optimal replication of influenza A viruses regardless of their origin. Virology 2016, 490, 91–98. [Google Scholar] [CrossRef] [PubMed]
  118. Londrigan Sarah, L.; Short Kirsty, R.; Ma, J.; Gillespie, L.; Rockman Steven, P.; Brooks Andrew, G.; Reading Patrick, C. Infection of Mouse Macrophages by Seasonal Influenza Viruses Can Be Restricted at the Level of Virus Entry and at a Late Stage in the Virus Life Cycle. J. Virol. 2015, 89, 12319–12329. [Google Scholar] [CrossRef]
  119. Ghoneim, H.E.; Thomas, P.G.; McCullers, J.A. Depletion of alveolar macrophages during influenza infection facilitates bacterial superinfections. J. Immunol. 2013, 191, 1250–1259. [Google Scholar] [CrossRef]
  120. Tumpey, T.M.; García-Sastre, A.; Taubenberger, J.K.; Palese, P.; Swayne, D.E.; Pantin-Jackwood, M.J.; Schultz-Cherry, S.; Solórzano, A.; Van Rooijen, N.; Katz, J.M.; et al. Pathogenicity of influenza viruses with genes from the 1918 pandemic virus: Functional roles of alveolar macrophages and neutrophils in limiting virus replication and mortality in mice. J. Virol. 2005, 79, 14933–14944. [Google Scholar] [CrossRef] [PubMed]
  121. Kim, H.M.; Lee, Y.W.; Lee, K.J.; Kim, H.S.; Cho, S.W.; van Rooijen, N.; Guan, Y.; Seo, S.H. Alveolar macrophages are indispensable for controlling influenza viruses in lungs of pigs. J. Virol. 2008, 82, 4265–4274. [Google Scholar] [CrossRef] [PubMed]
  122. Cardani, A.; Boulton, A.; Kim, T.S.; Braciale, T.J. Alveolar Macrophages Prevent Lethal Influenza Pneumonia By Inhibiting Infection Of Type-1 Alveolar Epithelial Cells. PLoS Pathog. 2017, 13, e1006140. [Google Scholar] [CrossRef]
  123. Goplen, N.P.; Huang, S.; Zhu, B.; Cheon, I.S.; Son, Y.M.; Wang, Z.; Li, C.; Dai, Q.; Jiang, L.; Sun, J. Tissue-Resident Macrophages Limit Pulmonary CD8 Resident Memory T Cell Establishment. Front. Immunol. 2019, 10, 2332. [Google Scholar] [CrossRef]
  124. Kawasaki, T.; Ikegawa, M.; Yunoki, K.; Otani, H.; Ori, D.; Ishii, K.J.; Kuroda, E.; Takamura, S.; Kitabatake, M.; Ito, T.; et al. Alveolar macrophages instruct CD8(+) T cell expansion by antigen cross-presentation in lung. Cell Rep. 2022, 41, 111828. [Google Scholar] [CrossRef]
  125. Kim, H.M.; Kang, Y.M.; Ku, K.B.; Park, E.H.; Yum, J.; Kim, J.C.; Jin, S.Y.; Lee, J.S.; Kim, H.S.; Seo, S.H. The severe pathogenicity of alveolar macrophage-depleted ferrets infected with 2009 pandemic H1N1 influenza virus. Virology 2013, 444, 394–403. [Google Scholar] [CrossRef] [PubMed]
  126. Purnama, C.; Ng, S.L.; Tetlak, P.; Setiagani, Y.A.; Kandasamy, M.; Baalasubramanian, S.; Karjalainen, K.; Ruedl, C. Transient ablation of alveolar macrophages leads to massive pathology of influenza infection without affecting cellular adaptive immunity. Eur. J. Immunol. 2014, 44, 2003–2012. [Google Scholar] [CrossRef] [PubMed]
  127. Verma, A.K.; Bansal, S.; Bauer, C.; Muralidharan, A.; Sun, K. Influenza Infection Induces Alveolar Macrophage Dysfunction and Thereby Enables Noninvasive Streptococcus pneumoniae to Cause Deadly Pneumonia. J. Immunol. 2020, 205, 1601–1607. [Google Scholar] [CrossRef] [PubMed]
  128. Schneider, D.J.; Smith, K.A.; Latuszek, C.E.; Wilke, C.A.; Lyons, D.M.; Penke, L.R.; Speth, J.M.; Marthi, M.; Swanson, J.A.; Moore, B.B.; et al. Alveolar macrophage-derived extracellular vesicles inhibit endosomal fusion of influenza virus. EMBO J. 2020, 39, e105057. [Google Scholar] [CrossRef] [PubMed]
  129. Corry, J.; Kettenburg, G.; Upadhyay, A.A.; Wallace, M.; Marti, M.M.; Wonderlich, E.R.; Bissel, S.J.; Goss, K.; Sturgeon, T.J.; Watkins, S.C.; et al. Infiltration of inflammatory macrophages and neutrophils and widespread pyroptosis in lung drive influenza lethality in nonhuman primates. PLoS Pathog. 2022, 18, e1010395. [Google Scholar] [CrossRef]
  130. Nicol, M.Q.; Campbell, G.M.; Shaw, D.J.; Dransfield, I.; Ligertwood, Y.; Beard, P.M.; Nash, A.A.; Dutia, B.M. Lack of IFNγ signaling attenuates spread of influenza A virus in vivo and leads to reduced pathogenesis. Virology 2019, 526, 155–164. [Google Scholar] [CrossRef]
  131. Pervizaj-Oruqaj, L.; Selvakumar, B.; Ferrero, M.R.; Heiner, M.; Malainou, C.; Glaser, R.D.; Wilhelm, J.; Bartkuhn, M.; Weiss, A.; Alexopoulos, I.; et al. Alveolar macrophage-expressed Plet1 is a driver of lung epithelial repair after viral pneumonia. Nat. Commun. 2024, 15, 87. [Google Scholar] [CrossRef]
  132. Downey, J.; Pernet, E.; Coulombe, F.; Divangahi, M. Dissecting host cell death programs in the pathogenesis of influenza. Microbes Infect. 2018, 20, 560–569. [Google Scholar] [CrossRef] [PubMed]
  133. Park, H.S.; Liu, G.; Thulasi Raman, S.N.; Landreth, S.L.; Liu, Q.; Zhou, Y. NS1 Protein of 2009 Pandemic Influenza A Virus Inhibits Porcine NLRP3 Inflammasome-Mediated Interleukin-1 Beta Production by Suppressing ASC Ubiquitination. J. Virol. 2018, 92, 10-1128. [Google Scholar] [CrossRef]
  134. Herold, S.; von Wulffen, W.; Steinmueller, M.; Pleschka, S.; Kuziel, W.A.; Mack, M.; Srivastava, M.; Seeger, W.; Maus, U.A.; Lohmeyer, J. Alveolar epithelial cells direct monocyte transepithelial migration upon influenza virus infection: Impact of chemokines and adhesion molecules. J. Immunol. 2006, 177, 1817–1824. [Google Scholar] [CrossRef] [PubMed]
  135. Wang, J.; Nikrad, M.P.; Travanty, E.A.; Zhou, B.; Phang, T.; Gao, B.; Alford, T.; Ito, Y.; Nahreini, P.; Hartshorn, K.; et al. Innate immune response of human alveolar macrophages during influenza A infection. PLoS ONE 2012, 7, e29879. [Google Scholar] [CrossRef] [PubMed]
  136. Gerlach, R.L.; Camp, J.V.; Chu, Y.K.; Jonsson, C.B. Early host responses of seasonal and pandemic influenza A viruses in primary well-differentiated human lung epithelial cells. PLoS ONE 2013, 8, e78912. [Google Scholar] [CrossRef]
  137. Herold, S.; Steinmueller, M.; von Wulffen, W.; Cakarova, L.; Pinto, R.; Pleschka, S.; Mack, M.; Kuziel, W.A.; Corazza, N.; Brunner, T.; et al. Lung epithelial apoptosis in influenza virus pneumonia: The role of macrophage-expressed TNF-related apoptosis-inducing ligand. J. Exp. Med. 2008, 205, 3065–3077. [Google Scholar] [CrossRef] [PubMed]
  138. Bertrams, W.; Hönzke, K.; Obermayer, B.; Tönnies, M.; Bauer, T.T.; Schneider, P.; Neudecker, J.; Rückert, J.C.; Stiewe, T.; Nist, A.; et al. Transcriptomic comparison of primary human lung cells with lung tissue samples and the human A549 lung cell line highlights cell type specific responses during infections with influenza A virus. Sci. Rep. 2022, 12, 20608. [Google Scholar] [CrossRef]
  139. Liu, L.; Zhou, J.; Wang, Y.; Mason, R.J.; Funk, C.J.; Du, Y. Proteome alterations in primary human alveolar macrophages in response to influenza A virus infection. J. Proteome Res. 2012, 11, 4091–4101. [Google Scholar] [CrossRef]
  140. Ma, J.Z.; Ng, W.C.; Zappia, L.; Gearing, L.J.; Olshansky, M.; Pham, K.; Cheong, K.; Hsu, A.; Turner, S.J.; Wijburg, O.; et al. Unique Transcriptional Architecture in Airway Epithelial Cells and Macrophages Shapes Distinct Responses following Influenza Virus Infection Ex Vivo. J. Virol. 2019, 93, 10-1128. [Google Scholar] [CrossRef]
  141. Seo, S.H.; Webby, R.; Webster, R.G. No apoptotic deaths and different levels of inductions of inflammatory cytokines in alveolar macrophages infected with influenza viruses. Virology 2004, 329, 270–279. [Google Scholar] [CrossRef] [PubMed]
  142. Zhao, X.; Dai, J.; Xiao, X.; Wu, L.; Zeng, J.; Sheng, J.; Su, J.; Chen, X.; Wang, G.; Li, K. PI3K/Akt signaling pathway modulates influenza virus induced mouse alveolar macrophage polarization to M1/M2b. PLoS ONE 2014, 9, e104506. [Google Scholar] [CrossRef]
  143. Huang, S.; Zhu, B.; Cheon, I.S.; Goplen, N.P.; Jiang, L.; Zhang, R.; Peebles, R.S.; Mack, M.; Kaplan, M.H.; Limper, A.H.; et al. PPAR-γ in Macrophages Limits Pulmonary Inflammation and Promotes Host Recovery following Respiratory Viral Infection. J. Virol. 2019, 93. [Google Scholar] [CrossRef] [PubMed]
  144. Sun, K.; Metzger, D.W. Inhibition of pulmonary antibacterial defense by interferon-gamma during recovery from influenza infection. Nat. Med. 2008, 14, 558–564. [Google Scholar] [CrossRef] [PubMed]
  145. Hang, D.T.T.; Choi, E.J.; Song, J.Y.; Kim, S.E.; Kwak, J.; Shin, Y.K. Differential effect of prior influenza infection on alveolar macrophage phagocytosis of Staphylococcus aureus and Escherichia coli: Involvement of interferon-gamma production. Microbiol. Immunol. 2011, 55, 751–759. [Google Scholar] [CrossRef]
  146. Jakab, G.J. Immune impairment of alveolar macrophage phagocytosis during influenza virus pneumonia. Am. Rev. Respir. Dis. 1982, 126, 778–782. [Google Scholar] [PubMed]
  147. Kodihalli, S.; Sivanandan, V.; Nagaraja, K.V.; Shaw, D.; Halvorson, D.A. Effect of avian influenza virus infection on the phagocytic function of systemic phagocytes and pulmonary macrophages of turkeys. Avian Dis. 1994, 38, 93–102. [Google Scholar] [CrossRef]
  148. Ghosh, S.; Gregory, D.; Smith, A.; Kobzik, L. MARCO regulates early inflammatory responses against influenza: A useful macrophage function with adverse outcome. Am. J. Respir. Cell. Mol. Biol. 2011, 45, 1036–1044. [Google Scholar] [CrossRef]
  149. Palecanda, A.; Paulauskis, J.; Al-Mutairi, E.; Imrich, A.; Qin, G.; Suzuki, H.; Kodama, T.; Tryggvason, K.; Koziel, H.; Kobzik, L. Role of the scavenger receptor MARCO in alveolar macrophage binding of unopsonized environmental particles. J. Exp. Med. 1999, 189, 1497–1506. [Google Scholar] [CrossRef] [PubMed]
  150. Zhang, J.; Liu, J.; Yuan, Y.; Huang, F.; Ma, R.; Luo, B.; Xi, Z.; Pan, T.; Liu, B.; Zhang, Y.; et al. Two waves of pro-inflammatory factors are released during the influenza A virus (IAV)-driven pulmonary immunopathogenesis. PLoS Pathog. 2020, 16, e1008334. [Google Scholar] [CrossRef] [PubMed]
  151. Högner, K.; Wolff, T.; Pleschka, S.; Plog, S.; Gruber, A.D.; Kalinke, U.; Walmrath, H.D.; Bodner, J.; Gattenlöhner, S.; Lewe-Schlosser, P.; et al. Macrophage-expressed IFN-β contributes to apoptotic alveolar epithelial cell injury in severe influenza virus pneumonia. PLoS Pathog. 2013, 9, e1003188. [Google Scholar] [CrossRef] [PubMed]
  152. Peteranderl, C.; Morales-Nebreda, L.; Selvakumar, B.; Lecuona, E.; Vadász, I.; Morty, R.E.; Schmoldt, C.; Bespalowa, J.; Wolff, T.; Pleschka, S.; et al. Macrophage-epithelial paracrine crosstalk inhibits lung edema clearance during influenza infection. J. Clin. Investig. 2016, 126, 1566–1580. [Google Scholar] [CrossRef] [PubMed]
  153. Lobby, J.L.; Uddbäck, I.; Scharer, C.D.; Mi, T.; Boss, J.M.; Thomsen, A.R.; Christensen, J.P.; Kohlmeier, J.E. Persistent Antigen Harbored by Alveolar Macrophages Enhances the Maintenance of Lung-Resident Memory CD8(+) T Cells. J. Immunol. 2022, 209, 1778–1787. [Google Scholar] [CrossRef] [PubMed]
  154. MacLean, A.J.; Richmond, N.; Koneva, L.; Attar, M.; Medina, C.A.P.; Thornton, E.E.; Gomes, A.C.; El-Turabi, A.; Bachmann, M.F.; Rijal, P.; et al. Secondary influenza challenge triggers resident memory B cell migration and rapid relocation to boost antibody secretion at infected sites. Immunity 2022, 55, 718–733.e718. [Google Scholar] [CrossRef] [PubMed]
  155. Ko, Y.A.; Yu, Y.H.; Wu, Y.F.; Tseng, Y.C.; Chen, C.L.; Goh, K.S.; Liao, H.Y.; Chen, T.H.; Cheng, T.R.; Yang, A.S.; et al. A non-neutralizing antibody broadly protects against influenza virus infection by engaging effector cells. PLoS Pathog. 2021, 17, e1009724. [Google Scholar] [CrossRef]
  156. Laidlaw, B.J.; Decman, V.; Ali, M.A.; Abt, M.C.; Wolf, A.I.; Monticelli, L.A.; Mozdzanowska, K.; Angelosanto, J.M.; Artis, D.; Erikson, J.; et al. Cooperativity between CD8+ T cells, non-neutralizing antibodies, and alveolar macrophages is important for heterosubtypic influenza virus immunity. PLoS Pathog. 2013, 9, e1003207. [Google Scholar] [CrossRef]
  157. Macdonald, D.C.; Singh, H.; Whelan, M.A.; Escors, D.; Arce, F.; Bottoms, S.E.; Barclay, W.S.; Maini, M.; Collins, M.K.; Rosenberg, W.M. Harnessing alveolar macrophages for sustained mucosal T-cell recall confers long-term protection to mice against lethal influenza challenge without clinical disease. Mucosal Immunol. 2014, 7, 89–100. [Google Scholar] [CrossRef]
  158. Mukherjee, S.; Subramaniam, R.; Chen, H.; Smith, A.; Keshava, S.; Shams, H. Boosting efferocytosis in alveolar space using BCG vaccine to protect host against influenza pneumonia. PLoS ONE 2017, 12, e0180143. [Google Scholar] [CrossRef]
  159. Richert, L.E.; Rynda-Apple, A.; Harmsen, A.L.; Han, S.; Wiley, J.A.; Douglas, T.; Larson, K.; Morton, R.V.; Harmsen, A.G. CD11c+ cells primed with unrelated antigens facilitate an accelerated immune response to influenza virus in mice. Eur. J. Immunol. 2014, 44, 397–408. [Google Scholar] [CrossRef]
  160. Berclaz, P.Y.; Shibata, Y.; Whitsett, J.A.; Trapnell, B.C. GM-CSF, via PU.1, regulates alveolar macrophage Fcgamma R-mediated phagocytosis and the IL-18/IFN-gamma -mediated molecular connection between innate and adaptive immunity in the lung. Blood 2002, 100, 4193–4200. [Google Scholar] [CrossRef] [PubMed]
  161. Schneider, C.; Nobs, S.P.; Kurrer, M.; Rehrauer, H.; Thiele, C.; Kopf, M. Induction of the nuclear receptor PPAR-γ by the cytokine GM-CSF is critical for the differentiation of fetal monocytes into alveolar macrophages. Nat. Immunol. 2014, 15, 1026–1037. [Google Scholar] [CrossRef]
  162. Shibata, Y.; Berclaz, P.Y.; Chroneos, Z.C.; Yoshida, M.; Whitsett, J.A.; Trapnell, B.C. GM-CSF regulates alveolar macrophage differentiation and innate immunity in the lung through PU.1. Immunity 2001, 15, 557–567. [Google Scholar] [CrossRef] [PubMed]
  163. Huang, F.F.; Barnes, P.F.; Feng, Y.; Donis, R.; Chroneos, Z.C.; Idell, S.; Allen, T.; Perez, D.R.; Whitsett, J.A.; Dunussi-Joannopoulos, K.; et al. GM-CSF in the lung protects against lethal influenza infection. Am. J. Respir. Crit. Care Med. 2011, 184, 259–268. [Google Scholar] [CrossRef] [PubMed]
  164. Subramaniam, R.; Hillberry, Z.; Chen, H.; Feng, Y.; Fletcher, K.; Neuenschwander, P.; Shams, H. Delivery of GM-CSF to Protect against Influenza Pneumonia. PLoS ONE 2015, 10, e0124593. [Google Scholar] [CrossRef] [PubMed]
  165. Huang, H.; Li, H.; Zhou, P.; Ju, D. Protective effects of recombinant human granulocyte macrophage colony stimulating factor on H1N1 influenza virus-induced pneumonia in mice. Cytokine 2010, 51, 151–157. [Google Scholar] [CrossRef] [PubMed]
  166. Sever-Chroneos, Z.; Murthy, A.; Davis, J.; Florence, J.M.; Kurdowska, A.; Krupa, A.; Tichelaar, J.W.; White, M.R.; Hartshorn, K.L.; Kobzik, L.; et al. GM-CSF modulates pulmonary resistance to influenza A infection. Antiviral. Res. 2011, 92, 319–328. [Google Scholar] [CrossRef]
  167. Halstead, E.S.; Umstead, T.M.; Davies, M.L.; Kawasawa, Y.I.; Silveyra, P.; Howyrlak, J.; Yang, L.; Guo, W.; Hu, S.; Hewage, E.K.; et al. GM-CSF overexpression after influenza a virus infection prevents mortality and moderates M1-like airway monocyte/macrophage polarization. Respir. Res. 2018, 19, 3. [Google Scholar] [CrossRef]
  168. Ngo, V.L.; Lieber, C.M.; Kang, H.-j.; Sakamoto, K.; Kuczma, M.; Plemper, R.K.; Gewirtz, A.T. Intestinal microbiota programming of alveolar macrophages influences severity of respiratory viral infection. Cell Host Microbe 2024, 32, 335–348.e338. [Google Scholar] [CrossRef] [PubMed]
  169. World Health Organization. WHO COVID-19 Dashboard. Available online: https://data.who.int/dashboards/covid19/ (accessed on 16 July 2024).
  170. Machhi, J.; Herskovitz, J.; Senan, A.M.; Dutta, D.; Nath, B.; Oleynikov, M.D.; Blomberg, W.R.; Meigs, D.D.; Hasan, M.; Patel, M.; et al. The Natural History, Pathobiology, and Clinical Manifestations of SARS-CoV-2 Infections. J. Neuroimmune Pharmacol. 2020, 15, 359–386. [Google Scholar] [CrossRef] [PubMed]
  171. Scialo, F.; Daniele, A.; Amato, F.; Pastore, L.; Matera, M.G.; Cazzola, M.; Castaldo, G.; Bianco, A. ACE2: The Major Cell Entry Receptor for SARS-CoV-2. Lung 2020, 198, 867–877. [Google Scholar] [CrossRef] [PubMed]
  172. Clausen, T.M.; Sandoval, D.R.; Spliid, C.B.; Pihl, J.; Perrett, H.R.; Painter, C.D.; Narayanan, A.; Majowicz, S.A.; Kwong, E.M.; McVicar, R.N.; et al. SARS-CoV-2 Infection Depends on Cellular Heparan Sulfate and ACE2. Cell 2020, 183, 1043–1057.e1015. [Google Scholar] [CrossRef]
  173. Hoffmann, M.; Kleine-Weber, H.; Schroeder, S.; Krüger, N.; Herrler, T.; Erichsen, S.; Schiergens, T.S.; Herrler, G.; Wu, N.H.; Nitsche, A.; et al. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell 2020, 181, 271–280.e278. [Google Scholar] [CrossRef] [PubMed]
  174. Cantuti-Castelvetri, L.; Ojha, R.; Pedro, L.D.; Djannatian, M.; Franz, J.; Kuivanen, S.; van der Meer, F.; Kallio, K.; Kaya, T.; Anastasina, M.; et al. Neuropilin-1 facilitates SARS-CoV-2 cell entry and infectivity. Science 2020, 370, 856–860. [Google Scholar] [CrossRef] [PubMed]
  175. Yu, P.; Xu, Y.; Deng, W.; Bao, L.; Huang, L.; Xu, Y.; Yao, Y.; Qin, C. Comparative pathology of rhesus macaque and common marmoset animal models with Middle East respiratory syndrome coronavirus. PLoS ONE 2017, 12, e0172093. [Google Scholar] [CrossRef]
  176. Bräutigam, K.; Reinhard, S.; Galván, J.A.; Wartenberg, M.; Hewer, E.; Schürch, C.M. Systematic Investigation of SARS-CoV-2 Receptor Protein Distribution along Viral Entry Routes in Humans. Respiration 2022, 101, 610–618. [Google Scholar] [CrossRef] [PubMed]
  177. Bräutigam, K.; Reinhard, S.; Wartenberg, M.; Forster, S.; Greif, K.; Granai, M.; Bösmüller, H.; Klingel, K.; Schürch, C.M. Comprehensive analysis of SARS-CoV-2 receptor proteins in human respiratory tissues identifies alveolar macrophages as potential virus entry site. Histopathology 2023, 82, 846–859. [Google Scholar] [CrossRef]
  178. Dalskov, L.; Møhlenberg, M.; Thyrsted, J.; Blay-Cadanet, J.; Poulsen, E.T.; Folkersen, B.H.; Skaarup, S.H.; Olagnier, D.; Reinert, L.; Enghild, J.J.; et al. SARS-CoV-2 evades immune detection in alveolar macrophages. EMBO Rep. 2020, 21, e51252. [Google Scholar] [CrossRef]
  179. Ortiz, M.E.; Thurman, A.; Pezzulo, A.A.; Leidinger, M.R.; Klesney-Tait, J.A.; Karp, P.H.; Tan, P.; Wohlford-Lenane, C.; McCray, P.B.; Meyerholz, D.K. Heterogeneous expression of the SARS-Coronavirus-2 receptor ACE2 in the human respiratory tract. EBioMedicine 2020, 60, 102976. [Google Scholar] [CrossRef] [PubMed]
  180. Delorey, T.M.; Ziegler, C.G.K.; Heimberg, G.; Normand, R.; Yang, Y.; Segerstolpe, Å.; Abbondanza, D.; Fleming, S.J.; Subramanian, A.; Montoro, D.T.; et al. COVID-19 tissue atlases reveal SARS-CoV-2 pathology and cellular targets. Nature 2021, 595, 107–113. [Google Scholar] [CrossRef] [PubMed]
  181. Hönzke, K.; Obermayer, B.; Mache, C.; Fatykhova, D.; Kessler, M.; Dökel, S.; Wyler, E.; Baumgardt, M.; Löwa, A.; Hoffmann, K.; et al. Human lungs show limited permissiveness for SARS-CoV-2 due to scarce ACE2 levels but virus-induced expansion of inflammatory macrophages. Eur. Respir. J. 2022, 60, 2102725. [Google Scholar] [CrossRef]
  182. Lv, J.; Wang, Z.; Qu, Y.; Zhu, H.; Zhu, Q.; Tong, W.; Bao, L.; Lv, Q.; Cong, J.; Li, D.; et al. Distinct uptake, amplification, and release of SARS-CoV-2 by M1 and M2 alveolar macrophages. Cell Discov. 2021, 7, 24. [Google Scholar] [CrossRef] [PubMed]
  183. Wang, Z.; Lv, J.; Yu, P.; Qu, Y.; Zhou, Y.; Zhou, L.; Zhu, Q.; Li, S.; Song, J.; Deng, W.; et al. SARS-CoV-2 treatment effects induced by ACE2-expressing microparticles are explained by the oxidized cholesterol-increased endosomal pH of alveolar macrophages. Cell. Mol. Immunol. 2022, 19, 210–221. [Google Scholar] [CrossRef]
  184. Schütz, D.; Ruiz-Blanco, Y.B.; Münch, J.; Kirchhoff, F.; Sanchez-Garcia, E.; Müller, J.A. Peptide and peptide-based inhibitors of SARS-CoV-2 entry. Adv. Drug Deliv. Rev. 2020, 167, 47–65. [Google Scholar] [CrossRef]
  185. Wang, Z.; Zhou, Y.; Bao, L.; Li, D.; Lv, J.; Wang, D.; Li, S.; Tong, W.M.; Liu, J.; Qin, C.; et al. Escaping alveolar macrophage endosomal retention explains massive expansion of SARS-CoV-2 delta variant. Signal Transduct. Target. Ther. 2021, 6, 431. [Google Scholar] [CrossRef]
  186. Zhou, J.; Chu, H.; Li, C.; Wong, B.H.-Y.; Cheng, Z.-S.; Poon, V.K.-M.; Sun, T.; Lau, C.C.-Y.; Wong, K.K.-Y.; Chan, J.Y.-W.; et al. Active Replication of Middle East Respiratory Syndrome Coronavirus and Aberrant Induction of Inflammatory Cytokines and Chemokines in Human Macrophages: Implications for Pathogenesis. J. Infect. Dis. 2013, 209, 1331–1342. [Google Scholar] [CrossRef] [PubMed]
  187. Yip, M.S.; Leung, N.H.; Cheung, C.Y.; Li, P.H.; Lee, H.H.; Daëron, M.; Peiris, J.S.; Bruzzone, R.; Jaume, M. Antibody-dependent infection of human macrophages by severe acute respiratory syndrome coronavirus. Virol. J. 2014, 11, 82. [Google Scholar] [CrossRef] [PubMed]
  188. Mackin, S.R.; Desai, P.; Whitener, B.M.; Karl, C.E.; Liu, M.; Baric, R.S.; Edwards, D.K.; Chicz, T.M.; McNamara, R.P.; Alter, G.; et al. Fc-γR-dependent antibody effector functions are required for vaccine-mediated protection against antigen-shifted variants of SARS-CoV-2. Nat. Microbiol. 2023, 8, 569–580. [Google Scholar] [CrossRef]
  189. Grant, R.A.; Morales-Nebreda, L.; Markov, N.S.; Swaminathan, S.; Querrey, M.; Guzman, E.R.; Abbott, D.A.; Donnelly, H.K.; Donayre, A.; Goldberg, I.A.; et al. Circuits between infected macrophages and T cells in SARS-CoV-2 pneumonia. Nature 2021, 590, 635–641. [Google Scholar] [CrossRef]
  190. Abdullaev, A.; Odilov, A.; Ershler, M.; Volkov, A.; Lipina, T.; Gasanova, T.; Lebedin, Y.; Babichenko, I.; Sudarikov, A. Viral Load and Patterns of SARS-CoV-2 Dissemination to the Lungs, Mediastinal Lymph Nodes, and Spleen of Patients with COVID-19 Associated Lymphopenia. Viruses 2021, 13, 1410. [Google Scholar] [CrossRef] [PubMed]
  191. Acheampong, K.K.; Schaff, D.L.; Emert, B.L.; Lake, J.; Reffsin, S.; Shea, E.K.; Comar, C.E.; Litzky, L.A.; Khurram, N.A.; Linn, R.L.; et al. Subcellular Detection of SARS-CoV-2 RNA in Human Tissue Reveals Distinct Localization in Alveolar Type 2 Pneumocytes and Alveolar Macrophages. mBio 2021, 13, e0375121. [Google Scholar] [CrossRef]
  192. Bhatnagar, J.; Gary, J.; Reagan-Steiner, S.; Estetter, L.B.; Tong, S.; Tao, Y.; Denison, A.M.; Lee, E.; DeLeon-Carnes, M.; Li, Y.; et al. Evidence of Severe Acute Respiratory Syndrome Coronavirus 2 Replication and Tropism in the Lungs, Airways, and Vascular Endothelium of Patients With Fatal Coronavirus Disease 2019: An Autopsy Case Series. J. Infect. Dis. 2021, 223, 752–764. [Google Scholar] [CrossRef]
  193. Chu, H.; Chan, J.F.; Wang, Y.; Yuen, T.T.; Chai, Y.; Hou, Y.; Shuai, H.; Yang, D.; Hu, B.; Huang, X.; et al. Comparative Replication and Immune Activation Profiles of SARS-CoV-2 and SARS-CoV in Human Lungs: An Ex Vivo Study With Implications for the Pathogenesis of COVID-19. Clin. Infect. Dis. 2020, 71, 1400–1409. [Google Scholar] [CrossRef] [PubMed]
  194. Magro, C.M.; Mulvey, J.; Kubiak, J.; Mikhail, S.; Suster, D.; Crowson, A.N.; Laurence, J.; Nuovo, G. Severe COVID-19: A multifaceted viral vasculopathy syndrome. Ann. Diagn. Pathol. 2021, 50, 151645. [Google Scholar] [CrossRef] [PubMed]
  195. Martines, R.B.; Ritter, J.M.; Matkovic, E.; Gary, J.; Bollweg, B.C.; Bullock, H.; Goldsmith, C.S.; Silva-Flannery, L.; Seixas, J.N.; Reagan-Steiner, S.; et al. Pathology and Pathogenesis of SARS-CoV-2 Associated with Fatal Coronavirus Disease, United States. Emerg. Infect. Dis. 2020, 26, 2005–2015. [Google Scholar] [CrossRef]
  196. Wendisch, D.; Dietrich, O.; Mari, T.; von Stillfried, S.; Ibarra, I.L.; Mittermaier, M.; Mache, C.; Chua, R.L.; Knoll, R.; Timm, S.; et al. SARS-CoV-2 infection triggers profibrotic macrophage responses and lung fibrosis. Cell 2021, 184, 6243–6261.e6227. [Google Scholar] [CrossRef]
  197. Li, K.; Wohlford-Lenane, C.L.; Channappanavar, R.; Park, J.E.; Earnest, J.T.; Bair, T.B.; Bates, A.M.; Brogden, K.A.; Flaherty, H.A.; Gallagher, T.; et al. Mouse-adapted MERS coronavirus causes lethal lung disease in human DPP4 knockin mice. Proc. Natl. Acad. Sci. USA 2017, 114, E3119–E3128. [Google Scholar] [CrossRef]
  198. Greenough, T.C.; Carville, A.; Coderre, J.; Somasundaran, M.; Sullivan, J.L.; Luzuriaga, K.; Mansfield, K. Pneumonitis and multi-organ system disease in common marmosets (Callithrix jacchus) infected with the severe acute respiratory syndrome-associated coronavirus. Am. J. Pathol. 2005, 167, 455–463. [Google Scholar] [CrossRef] [PubMed]
  199. Nagata, N.; Iwata, N.; Hasegawa, H.; Sato, Y.; Morikawa, S.; Saijo, M.; Itamura, S.; Saito, T.; Ami, Y.; Odagiri, T.; et al. Pathology and virus dispersion in cynomolgus monkeys experimentally infected with severe acute respiratory syndrome coronavirus via different inoculation routes. Int. J. Exp. Pathol. 2007, 88, 403–414. [Google Scholar] [CrossRef]
  200. Huot, N.; Planchais, C.; Rosenbaum, P.; Contreras, V.; Jacquelin, B.; Petitdemange, C.; Lazzerini, M.; Beaumont, E.; Orta-Resendiz, A.; Rey, F.A.; et al. SARS-CoV-2 viral persistence in lung alveolar macrophages is controlled by IFN-γ and NK cells. Nat. Immunol. 2023, 24, 2068–2079. [Google Scholar] [CrossRef]
  201. Liao, M.; Liu, Y.; Yuan, J.; Wen, Y.; Xu, G.; Zhao, J.; Cheng, L.; Li, J.; Wang, X.; Wang, F.; et al. Single-cell landscape of bronchoalveolar immune cells in patients with COVID-19. Nat. Med. 2020, 26, 842–844. [Google Scholar] [CrossRef] [PubMed]
  202. Bost, P.; Giladi, A.; Liu, Y.; Bendjelal, Y.; Xu, G.; David, E.; Blecher-Gonen, R.; Cohen, M.; Medaglia, C.; Li, H.; et al. Host-Viral Infection Maps Reveal Signatures of Severe COVID-19 Patients. Cell 2020, 181, 1475–1488.e1412. [Google Scholar] [CrossRef]
  203. Szabo, P.A.; Dogra, P.; Gray, J.I.; Wells, S.B.; Connors, T.J.; Weisberg, S.P.; Krupska, I.; Matsumoto, R.; Poon, M.M.L.; Idzikowski, E.; et al. Longitudinal profiling of respiratory and systemic immune responses reveals myeloid cell-driven lung inflammation in severe COVID-19. Immunity 2021, 54, 797–814.e796. [Google Scholar] [CrossRef]
  204. Chen, S.T.; Park, M.D.; Del Valle, D.M.; Buckup, M.; Tabachnikova, A.; Thompson, R.C.; Simons, N.W.; Mouskas, K.; Lee, B.; Geanon, D.; et al. A shift in lung macrophage composition is associated with COVID-19 severity and recovery. Sci. Transl. Med. 2022, 14, eabn5168. [Google Scholar] [CrossRef] [PubMed]
  205. Wauters, E.; Van Mol, P.; Garg, A.D.; Jansen, S.; Van Herck, Y.; Vanderbeke, L.; Bassez, A.; Boeckx, B.; Malengier-Devlies, B.; Timmerman, A.; et al. Discriminating mild from critical COVID-19 by innate and adaptive immune single-cell profiling of bronchoalveolar lavages. Cell Res. 2021, 31, 272–290. [Google Scholar] [CrossRef]
  206. Salina, A.C.G.; Dos-Santos, D.; Rodrigues, T.S.; Fortes-Rocha, M.; Freitas-Filho, E.G.; Alzamora-Terrel, D.L.; Castro, I.M.S.; Fraga da Silva, T.F.C.; de Lima, M.H.F.; Nascimento, D.C.; et al. Efferocytosis of SARS-CoV-2-infected dying cells impairs macrophage anti-inflammatory functions and clearance of apoptotic cells. Elife 2022, 11, e74443. [Google Scholar] [CrossRef] [PubMed]
  207. Melms, J.C.; Biermann, J.; Huang, H.; Wang, Y.; Nair, A.; Tagore, S.; Katsyv, I.; Rendeiro, A.F.; Amin, A.D.; Schapiro, D.; et al. A molecular single-cell lung atlas of lethal COVID-19. Nature 2021, 595, 114–119. [Google Scholar] [CrossRef] [PubMed]
  208. Bosteels, C.; Van Damme, K.F.A.; De Leeuw, E.; Declercq, J.; Maes, B.; Bosteels, V.; Hoste, L.; Naesens, L.; Debeuf, N.; Deckers, J.; et al. Loss of GM-CSF-dependent instruction of alveolar macrophages in COVID-19 provides a rationale for inhaled GM-CSF treatment. Cell Rep. Med. 2022, 3, 100833. [Google Scholar] [CrossRef] [PubMed]
  209. Nouailles, G.; Wyler, E.; Pennitz, P.; Postmus, D.; Vladimirova, D.; Kazmierski, J.; Pott, F.; Dietert, K.; Muelleder, M.; Farztdinov, V.; et al. Temporal omics analysis in Syrian hamsters unravel cellular effector responses to moderate COVID-19. Nat. Commun. 2021, 12, 4869. [Google Scholar] [CrossRef] [PubMed]
  210. Chen, Y.; Guo, D. Molecular mechanisms of coronavirus RNA capping and methylation. Virol. Sin. 2016, 31, 3–11. [Google Scholar] [CrossRef]
  211. Pichlmair, A.; Schulz, O.; Tan, C.P.; Näslund, T.I.; Liljeström, P.; Weber, F.; Reis e Sousa, C. RIG-I-Mediated Antiviral Responses to Single-Stranded RNA Bearing 5′-Phosphates. Science 2006, 314, 997–1001. [Google Scholar] [CrossRef]
  212. Zhao, J.; Zhao, J.; Van Rooijen, N.; Perlman, S. Evasion by stealth: Inefficient immune activation underlies poor T Cell Response and severe disease in SARS-CoV-infected mice. PLoS Pathog. 2009, 5, e1000636. [Google Scholar] [CrossRef] [PubMed]
  213. Channappanavar, R.; Selvaraj, M.; More, S.; Perlman, S. Alveolar macrophages protect mice from MERS-CoV-induced pneumonia and severe disease. Vet. Pathol. 2022, 59, 627–638. [Google Scholar] [CrossRef] [PubMed]
  214. Mitsui, Y.; Suzuki, T.; Kuniyoshi, K.; Inamo, J.; Yamaguchi, K.; Komuro, M.; Watanabe, J.; Edamoto, M.; Li, S.; Kouno, T.; et al. Expression of the readthrough transcript CiDRE in alveolar macrophages boosts SARS-CoV-2 susceptibility and promotes COVID-19 severity. Immunity 2023, 56, 1939–1954.e1912. [Google Scholar] [CrossRef] [PubMed]
  215. Lang, F.M.; Lee, K.M.C.; Teijaro, J.R.; Becher, B.; Hamilton, J.A. GM-CSF-based treatments in COVID-19: Reconciling opposing therapeutic approaches. Nat. Rev. Immunol. 2020, 20, 507–514. [Google Scholar] [CrossRef]
  216. De Luca, G.; Cavalli, G.; Campochiaro, C.; Della-Torre, E.; Angelillo, P.; Tomelleri, A.; Boffini, N.; Tentori, S.; Mette, F.; Farina, N.; et al. GM-CSF blockade with mavrilimumab in severe COVID-19 pneumonia and systemic hyperinflammation: A single-centre, prospective cohort study. Lancet Rheumatol. 2020, 2, e465–e473. [Google Scholar] [CrossRef] [PubMed]
  217. Hoang, T.N.; Pino, M.; Boddapati, A.K.; Viox, E.G.; Starke, C.E.; Upadhyay, A.A.; Gumber, S.; Nekorchuk, M.; Busman-Sahay, K.; Strongin, Z.; et al. Baricitinib treatment resolves lower-airway macrophage inflammation and neutrophil recruitment in SARS-CoV-2-infected rhesus macaques. Cell 2021, 184, 460–475.e421. [Google Scholar] [CrossRef] [PubMed]
  218. Hoepel, W.; Chen, H.J.; Geyer, C.E.; Allahverdiyeva, S.; Manz, X.D.; de Taeye, S.W.; Aman, J.; Mes, L.; Steenhuis, M.; Griffith, G.R.; et al. High titers and low fucosylation of early human anti-SARS-CoV-2 IgG promote inflammation by alveolar macrophages. Sci. Transl. Med. 2021, 13, eabf8654. [Google Scholar] [CrossRef] [PubMed]
  219. Sefik, E.; Qu, R.; Junqueira, C.; Kaffe, E.; Mirza, H.; Zhao, J.; Brewer, J.R.; Han, A.; Steach, H.R.; Israelow, B.; et al. Inflammasome activation in infected macrophages drives COVID-19 pathology. Nature 2022, 606, 585–593. [Google Scholar] [CrossRef]
  220. Wang, Z.; Zhou, Y.; Bao, L.; Li, D.; Lv, J.; Wang, D.; Li, S.; Liu, J.; Qin, C.; Tong, W.-M.; et al. Airway administration of bisphosphate and dexamethasone inhibits SARS-CoV-2 variant infection by targeting alveolar macrophages. Signal Transduct. Target. Ther. 2022, 7, 116. [Google Scholar] [CrossRef] [PubMed]
  221. Rima, B.; Collins, P.; Easton, A.; Fouchier, R.; Kurath, G.; Lamb, R.A.; Lee, B.; Maisner, A.; Rota, P.; Wang, L.; et al. ICTV Virus Taxonomy Profile: Pneumoviridae. J. Gen. Virol. 2017, 98, 2912–2913. [Google Scholar] [CrossRef]
  222. an der Heiden, M.; Buchholz, U.; Buda, S. Estimation of influenza- and respiratory syncytial virus-attributable medically attended acute respiratory infections in Germany, 2010/11–2017/18. Influenza Other Respir Viruses 2019, 13, 517–521. [Google Scholar] [CrossRef]
  223. Li, W.; Wang, X.; Chen, Y.; Ding, Y.; Ling, X.; Yuan, B.; Tao, J. Luteolin-7-O-glucoside promotes macrophage release of IFN-β by maintaining mitochondrial function and corrects the disorder of glucose metabolism during RSV infection. Eur. J. Pharmacol. 2024, 963, 176271. [Google Scholar] [CrossRef]
  224. Kolli, D.; Gupta, M.R.; Sbrana, E.; Velayutham, T.S.; Chao, H.; Casola, A.; Garofalo, R.P. Alveolar macrophages contribute to the pathogenesis of human metapneumovirus infection while protecting against respiratory syncytial virus infection. Am. J. Respir. Cell. Mol. Biol. 2014, 51, 502–515. [Google Scholar] [CrossRef]
  225. Midulla, F.; Villani, A.; Panuska, J.R.; Dab, I.; Kolls, J.K.; Merolla, R.; Ronchetti, R. Respiratory syncytial virus lung infection in infants: Immunoregulatory role of infected alveolar macrophages. J. Infect. Dis. 1993, 168, 1515–1519. [Google Scholar] [CrossRef]
  226. Panuska, J.R.; Hertz, M.I.; Taraf, H.; Villani, A.; Cirino, N.M. Respiratory syncytial virus infection of alveolar macrophages in adult transplant patients. Am. Rev. Respir. Dis. 1992, 145, 934–939. [Google Scholar] [CrossRef] [PubMed]
  227. Becker, S.; Soukup, J.; Yankaskas, J.R. Respiratory syncytial virus infection of human primary nasal and bronchial epithelial cell cultures and bronchoalveolar macrophages. Am. J. Respir. Cell. Mol. Biol. 1992, 6, 369–374. [Google Scholar] [CrossRef]
  228. Santos, L.D.; Antunes, K.H.; Muraro, S.P.; de Souza, G.F.; da Silva, A.G.; Felipe, J.S.; Zanetti, L.C.; Czepielewski, R.S.; Magnus, K.; Scotta, M.; et al. TNF-mediated alveolar macrophage necroptosis drives disease pathogenesis during respiratory syncytial virus infection. Eur. Respir. J. 2021, 57, 2003764. [Google Scholar] [CrossRef] [PubMed]
  229. Senft, A.P.; Taylor, R.H.; Lei, W.; Campbell, S.A.; Tipper, J.L.; Martinez, M.J.; Witt, T.L.; Clay, C.C.; Harrod, K.S. Respiratory syncytial virus impairs macrophage IFN-alpha/beta- and IFN-gamma-stimulated transcription by distinct mechanisms. Am. J. Respir. Cell. Mol. Biol. 2010, 42, 404–414. [Google Scholar] [CrossRef]
  230. Valarcher, J.F.; Furze, J.; Wyld, S.; Cook, R.; Conzelmann, K.K.; Taylor, G. Role of alpha/beta interferons in the attenuation and immunogenicity of recombinant bovine respiratory syncytial viruses lacking NS proteins. J. Virol. 2003, 77, 8426–8439. [Google Scholar] [CrossRef] [PubMed]
  231. Makris, S.; Bajorek, M.; Culley, F.J.; Goritzka, M.; Johansson, C. Alveolar Macrophages Can Control Respiratory Syncytial Virus Infection in the Absence of Type I Interferons. J. Innate Immun. 2016, 8, 452–463. [Google Scholar] [CrossRef] [PubMed]
  232. Franke-Ullmann, G.; Pförtner, C.; Walter, P.; Steinmüller, C.; Lohmann-Matthes, M.L.; Kobzik, L.; Freihorst, J. Alteration of pulmonary macrophage function by respiratory syncytial virus infection in vitro. J. Immunol. 1995, 154, 268–280. [Google Scholar] [CrossRef]
  233. Ravi, L.I.; Li, L.; Sutejo, R.; Chen, H.; Wong, P.S.; Tan, B.H.; Sugrue, R.J. A systems-based approach to analyse the host response in murine lung macrophages challenged with respiratory syncytial virus. BMC Genom. 2013, 14, 190. [Google Scholar] [CrossRef]
  234. Fach, S.J.; Olivier, A.; Gallup, J.M.; Waters, T.E.; Ackermann, M.R.; Lehmkuhl, H.D.; Sacco, R.E. Differential expression of cytokine transcripts in neonatal and adult ovine alveolar macrophages in response to respiratory syncytial virus or toll-like receptor ligation. Vet. Immunol. Immunopathol. 2010, 136, 55–64. [Google Scholar] [CrossRef] [PubMed]
  235. Panuska, J.R.; Merolla, R.; Rebert, N.A.; Hoffmann, S.P.; Tsivitse, P.; Cirino, N.M.; Silverman, R.H.; Rankin, J.A. Respiratory syncytial virus induces interleukin-10 by human alveolar macrophages. Suppression of early cytokine production and implications for incomplete immunity. J. Clin. Investig. 1995, 96, 2445–2453. [Google Scholar] [CrossRef]
  236. Pribul, P.K.; Harker, J.; Wang, B.; Wang, H.; Tregoning, J.S.; Schwarze, J.; Openshaw, P.J. Alveolar macrophages are a major determinant of early responses to viral lung infection but do not influence subsequent disease development. J. Virol. 2008, 82, 4441–4448. [Google Scholar] [CrossRef] [PubMed]
  237. Reed, J.L.; Brewah, Y.A.; Delaney, T.; Welliver, T.; Burwell, T.; Benjamin, E.; Kuta, E.; Kozhich, A.; McKinney, L.; Suzich, J.; et al. Macrophage impairment underlies airway occlusion in primary respiratory syncytial virus bronchiolitis. J. Infect. Dis. 2008, 198, 1783–1793. [Google Scholar] [CrossRef]
  238. Naessens, T.; Schepens, B.; Smet, M.; Pollard, C.; Van Hoecke, L.; De Beuckelaer, A.; Willart, M.; Lambrecht, B.; De Koker, S.; Saelens, X.; et al. GM-CSF treatment prevents respiratory syncytial virus-induced pulmonary exacerbation responses in postallergic mice by stimulating alveolar macrophage maturation. J. Allergy Clin. Immunol. 2016, 137, 700–709.e709. [Google Scholar] [CrossRef]
  239. LeVine, A.M.; Elliott, J.; Whitsett, J.A.; Srikiatkhachorn, A.; Crouch, E.; DeSilva, N.; Korfhagen, T. Surfactant protein-d enhances phagocytosis and pulmonary clearance of respiratory syncytial virus. Am. J. Respir. Cell. Mol. Biol. 2004, 31, 193–199. [Google Scholar] [CrossRef]
  240. Porto, B.N.; Litvack, M.L.; Cen, Y.; Lok, I.; Bouch, S.; Norris, M.J.; Duan, W.; Ackerley, C.; Post, M.; Moraes, T.J. Alveolar-like Macrophages Attenuate Respiratory Syncytial Virus Infection. Viruses 2021, 13, 2960. [Google Scholar] [CrossRef]
  241. Antunes, K.H.; Cassão, G.; Santos, L.D.; Borges, S.G.; Poppe, J.; Gonçalves, J.B.; Nunes, E.D.S.; Recacho, G.F.; Sousa, V.B.; Da Silva, G.S.; et al. Airway Administration of Bacterial Lysate OM-85 Protects Mice Against Respiratory Syncytial Virus Infection. Front. Immunol. 2022, 13, 867022. [Google Scholar] [CrossRef]
  242. Lee, Y.T.; Kim, K.H.; Hwang, H.S.; Lee, Y.; Kwon, Y.M.; Ko, E.J.; Jung, Y.J.; Lee, Y.N.; Kim, M.C.; Kang, S.M. Innate and adaptive cellular phenotypes contributing to pulmonary disease in mice after respiratory syncytial virus immunization and infection. Virology 2015, 485, 36–46. [Google Scholar] [CrossRef]
  243. Empey, K.M.; Orend, J.G.; Peebles, R.S., Jr.; Egaña, L.; Norris, K.A.; Oury, T.D.; Kolls, J.K. Stimulation of immature lung macrophages with intranasal interferon gamma in a novel neonatal mouse model of respiratory syncytial virus infection. PLoS ONE 2012, 7, e40499. [Google Scholar] [CrossRef]
  244. Morris, D.R.; Ansar, M.; Ivanciuc, T.; Qu, Y.; Casola, A.; Garofalo, R.P. Selective Blockade of TNFR1 Improves Clinical Disease and Bronchoconstriction in Experimental RSV Infection. Viruses 2020, 12, 1176. [Google Scholar] [CrossRef] [PubMed]
  245. Weinberger, D.M.; Klugman, K.P.; Steiner, C.A.; Simonsen, L.; Viboud, C. Association between Respiratory Syncytial Virus Activity and Pneumococcal Disease in Infants: A Time Series Analysis of US Hospitalization Data. PLoS Med. 2015, 12, e1001776. [Google Scholar] [CrossRef] [PubMed]
  246. Stark, J.M.; Stark, M.A.; Colasurdo, G.N.; LeVine, A.M. Decreased bacterial clearance from the lungs of mice following primary respiratory syncytial virus infection. J. Med. Virol. 2006, 78, 829–838. [Google Scholar] [CrossRef] [PubMed]
  247. Shibata, T.; Makino, A.; Ogata, R.; Nakamura, S.; Ito, T.; Nagata, K.; Terauchi, Y.; Oishi, T.; Fujieda, M.; Takahashi, Y.; et al. Respiratory syncytial virus infection exacerbates pneumococcal pneumonia via Gas6/Axl-mediated macrophage polarization. J. Clin. Investig. 2020, 130, 3021–3037. [Google Scholar] [CrossRef]
  248. Adair, B.M.; McNulty, M.S. Effect of “in vitro” exposure of bovine alveolar macrophages to different strains of bovine respiratory syncytial virus. Vet. Immunol. Immunopathol. 1992, 30, 193–206. [Google Scholar] [CrossRef]
  249. Liu, L.; Lehmkuhl, H.D.; Kaeberle, M.L. Synergistic effects of bovine respiratory syncytial virus and non-cytopathic bovine viral diarrhea virus infection on selected bovine alveolar macrophage functions. Can. J. Vet. Res. 1999, 63, 41–48. [Google Scholar]
  250. Shirey, K.A.; Pletneva, L.M.; Puche, A.C.; Keegan, A.D.; Prince, G.A.; Blanco, J.C.; Vogel, S.N. Control of RSV-induced lung injury by alternatively activated macrophages is IL-4R alpha-, TLR4-, and IFN-beta-dependent. Mucosal Immunol. 2010, 3, 291–300. [Google Scholar] [CrossRef] [PubMed]
  251. Hegele, R.G.; Hayashi, S.; Bramley, A.M.; Hogg, J.C. Persistence of respiratory syncytial virus genome and protein after acute bronchiolitis in guinea pigs. Chest 1994, 105, 1848–1854. [Google Scholar] [CrossRef]
  252. Harker, J.A.; Yamaguchi, Y.; Culley, F.J.; Tregoning, J.S.; Openshaw, P.J. Delayed sequelae of neonatal respiratory syncytial virus infection are dependent on cells of the innate immune system. J. Virol. 2014, 88, 604–611. [Google Scholar] [CrossRef]
  253. Laubreton, D.; Drajac, C.; Eléouët, J.F.; Rameix-Welti, M.A.; Lo-Man, R.; Riffault, S.; Descamps, D. Regulatory B Lymphocytes Colonize the Respiratory Tract of Neonatal Mice and Modulate Immune Responses of Alveolar Macrophages to RSV Infection in IL-10-Dependant Manner. Viruses 2020, 12, 822. [Google Scholar] [CrossRef]
  254. Sun, C.-M.; Deriaud, E.; Leclerc, C.; Lo-Man, R. Upon TLR9 Signaling, CD5+ B Cells Control the IL-12-Dependent Th1-Priming Capacity of Neonatal DCs. Immunity 2005, 22, 467–477. [Google Scholar] [CrossRef] [PubMed]
  255. Eichinger, K.M.; Egaña, L.; Orend, J.G.; Resetar, E.; Anderson, K.B.; Patel, R.; Empey, K.M. Alveolar macrophages support interferon gamma-mediated viral clearance in RSV-infected neonatal mice. Respir. Res. 2015, 16, 122. [Google Scholar] [CrossRef] [PubMed]
  256. Benoit, A.; Huang, Y.; Proctor, J.; Rowden, G.; Anderson, R. Effects of alveolar macrophage depletion on liposomal vaccine protection against respiratory syncytial virus (RSV). Clin. Exp. Immunol. 2006, 145, 147–154. [Google Scholar] [CrossRef] [PubMed]
  257. Tonetti, F.R.; Tomokiyo, M.; Fukuyama, K.; Elean, M.; Moyano, R.O.; Yamamuro, H.; Shibata, R.; Quilodran-Vega, S.; Kurata, S.; Villena, J.; et al. Post-immunobiotics increase resistance to primary respiratory syncytial virus infection and secondary pneumococcal pneumonia. Benef. Microbes 2023, 1–14. [Google Scholar] [CrossRef]
  258. Clua, P.; Tomokiyo, M.; Raya Tonetti, F.; Islam, M.A.; García Castillo, V.; Marcial, G.; Salva, S.; Alvarez, S.; Takahashi, H.; Kurata, S.; et al. The Role of Alveolar Macrophages in the Improved Protection against Respiratory Syncytial Virus and Pneumococcal Superinfection Induced by the Peptidoglycan of Lactobacillus rhamnosus CRL1505. Cells 2020, 9, 1653. [Google Scholar] [CrossRef] [PubMed]
  259. Gilliaux, G.; Desmecht, D. Gammaherpesvirus Alters Alveolar Macrophages According to the Host Genetic Background and Promotes Beneficial Inflammatory Control over Pneumovirus Infection. Viruses 2022, 14, 98. [Google Scholar] [CrossRef]
  260. Hong, J.E.; Kye, Y.C.; Park, S.M.; Cheon, I.S.; Chu, H.; Park, B.C.; Park, Y.M.; Chang, J.; Cho, J.H.; Song, M.K.; et al. Alveolar Macrophages Treated With Bacillus subtilis Spore Protect Mice Infected With Respiratory Syncytial Virus A2. Front. Microbiol. 2019, 10, 447. [Google Scholar] [CrossRef]
  261. Kanmani, P.; Clua, P.; Vizoso-Pinto, M.G.; Rodriguez, C.; Alvarez, S.; Melnikov, V.; Takahashi, H.; Kitazawa, H.; Villena, J. Respiratory Commensal Bacteria Corynebacterium pseudodiphtheriticum Improves Resistance of Infant Mice to Respiratory Syncytial Virus and Streptococcus pneumoniae Superinfection. Front. Microbiol. 2017, 8, 1613. [Google Scholar] [CrossRef]
  262. Martinez, E.C.; Garg, R.; van Drunen Littel-van den Hurk, S. Innate immune protection from pneumonia virus of mice induced by a novel immunomodulator is prolonged by dual treatment and mediated by macrophages. Antiviral. Res. 2019, 171, 104594. [Google Scholar] [CrossRef]
  263. Garcia-Castillo, V.; Tomokiyo, M.; Raya Tonetti, F.; Islam, M.A.; Takahashi, H.; Kitazawa, H.; Villena, J. Alveolar Macrophages Are Key Players in the Modulation of the Respiratory Antiviral Immunity Induced by Orally Administered Lacticaseibacillus rhamnosus CRL1505. Front. Immunol. 2020, 11, 568636. [Google Scholar] [CrossRef] [PubMed]
  264. Ji, J.J.; Sun, Q.M.; Nie, D.Y.; Wang, Q.; Zhang, H.; Qin, F.F.; Wang, Q.S.; Lu, S.F.; Pang, G.M.; Lu, Z.G. Probiotics protect against RSV infection by modulating the microbiota-alveolar-macrophage axis. Acta Pharmacol. Sin. 2021, 42, 1630–1641. [Google Scholar] [CrossRef] [PubMed]
  265. Rice, T.A.; Brenner, T.A.; Percopo, C.M.; Ma, M.; Keicher, J.D.; Domachowske, J.B.; Rosenberg, H.F. Signaling via pattern recognition receptors NOD2 and TLR2 contributes to immunomodulatory control of lethal pneumovirus infection. Antiviral. Res. 2016, 132, 131–140. [Google Scholar] [CrossRef] [PubMed]
  266. Zhao, J.; Takamura, M.; Yamaoka, A.; Odajima, Y.; Iikura, Y. Altered eosinophil levels as a result of viral infection in asthma exacerbation in childhood. Pediatr. Allergy Immunol. 2002, 13, 47–50. [Google Scholar] [CrossRef] [PubMed]
  267. Qi, F.; Bai, S.; Wang, D.; Xu, L.; Hu, H.; Zeng, S.; Chai, R.; Liu, B. Macrophages produce IL-33 by activating MAPK signaling pathway during RSV infection. Mol. Immunol. 2017, 87, 284–292. [Google Scholar] [CrossRef] [PubMed]
  268. Forman, A.J.; Babiuk, L.A.; Misra, V.; Baldwin, F. Susceptibility of bovine macrophages to infectious bovine rhinotracheitis virus infection. Infect. Immun. 1982, 35, 1048–1057. [Google Scholar] [CrossRef] [PubMed]
  269. Forman, A.J.; Babiuk, L.A. Effect of infectious bovine rhinotracheitis virus infection on bovine alveolar macrophage function. Infect. Immun. 1982, 35, 1041–1047. [Google Scholar] [CrossRef] [PubMed]
  270. McGuire, R.L.; Babiuk, L.A. Evidence for defective neutrophil function in lungs of calves exposed to infectious bovine rhinotracheitis virus. Vet. Immunol. Immunopathol. 1984, 5, 259–271. [Google Scholar] [CrossRef] [PubMed]
  271. Chvala-Mannsberger, S.; Bagó, Z.; Weissenböck, H. Occurrence, morphological characterization and antigen localization of felid herpesvirus-induced pneumonia in cats: A retrospective study (2000–2006). J. Comp. Pathol. 2009, 141, 163–169. [Google Scholar] [CrossRef] [PubMed]
  272. Kydd, J.H.; Hannant, D.; Mumford, J.A. Residence and recruitment of leucocytes to the equine lung after EHV-1 infection. Vet. Immunol. Immunopathol. 1996, 52, 15–26. [Google Scholar] [CrossRef] [PubMed]
  273. Mori, E.; Mori, C.M.C.; Della Libera, A.M.M.P.; Lara, M.C.C.S.H.; Fernandes, W.R. Evaluation of alveolar macrophage function after experimental infection with equine herpesvirus-1 in horses. Arq. Bras. Med. Vet. Zootec. 2003, 55, 271–278. [Google Scholar] [CrossRef]
  274. Iglesias, G.; Harkness, J.W. In vitro comparison between four variants of Aujeszky’s disease virus. Comp. Immunol. Microbiol. Infect. Dis. 1989, 12, 47–56. [Google Scholar] [CrossRef] [PubMed]
  275. Iglesias, G.; Pijoan, C.; Molitor, T. Interactions of Pseudorabies virus with swine alveolar macrophages I: Virus replication. Arch. Virol. 1989, 104, 107–115. [Google Scholar] [CrossRef]
  276. Shibata, I.; Uruno, K.; Samegai, Y.; Okada, M.; Inaba, Y. Replication of virulent and attenuated strains of Aujeszky’s disease virus in swine alveolar macrophages. J. Vet. Med. Sci. 1994, 56, 465–468. [Google Scholar] [CrossRef] [PubMed]
  277. Yao, L.; Hu, Q.; Zhang, C.; Ghonaim, A.H.; Cheng, Y.; Ma, H.; Yu, X.; Wang, J.; Fan, X.; He, Q. Untargeted LC-MS based metabolomic profiling of iPAMs to investigate lipid metabolic pathways alternations induced by different Pseudorabies virus strains. Vet. Microbiol. 2021, 256, 109041. [Google Scholar] [CrossRef]
  278. Iglesias, G.; Pijoan, C.; Molitor, T. Interactions of pseudorabies virus with swine alveolar macrophages: Effects of virus infection on cell functions. J. Leukoc. Biol. 1989, 45, 410–415. [Google Scholar] [CrossRef]
  279. Iglesias, G.; Pijoan, C.; Molitor, T. Effects of pseudorabies virus infection upon cytotoxicity and antiviral activities of porcine alveolar macrophages. Comp. Immunol. Microbiol. Infect. Dis. 1992, 15, 249–259. [Google Scholar] [CrossRef] [PubMed]
  280. Lawler, C.; Milho, R.; May, J.S.; Stevenson, P.G. Rhadinovirus Host Entry by Co-operative Infection. PLoS Pathog. 2015, 11, e1004761. [Google Scholar] [CrossRef] [PubMed]
  281. Farrell, H.E.; Lawler, C.; Oliveira, M.T.; Davis-Poynter, N.; Stevenson, P.G. Alveolar Macrophages Are a Prominent but Nonessential Target for Murine Cytomegalovirus Infecting the Lungs. J. Virol. 2015, 90, 2756–2766. [Google Scholar] [CrossRef]
  282. Tan, C.S.E.; Lawler, C.; Stevenson, P.G. CD8+ T cell evasion mandates CD4+ T cell control of chronic gamma-herpesvirus infection. PLoS Pathog. 2017, 13, e1006311. [Google Scholar] [CrossRef] [PubMed]
  283. Saghafian-Hedengren, S.; Sverremark-Ekström, E.; Linde, A.; Lilja, G.; Nilsson, C. Early-life EBV infection protects against persistent IgE sensitization. J. Allergy Clin. Immunol. 2010, 125, 433–438. [Google Scholar] [CrossRef] [PubMed]
  284. Loos, P.; Baiwir, J.; Maquet, C.; Javaux, J.; Sandor, R.; Lallemand, F.; Marichal, T.; Machiels, B.; Gillet, L. Dampening type 2 properties of group 2 innate lymphoid cells by a gammaherpesvirus infection reprograms alveolar macrophages. Sci. Immunol. 2023, 8, eabl9041. [Google Scholar] [CrossRef] [PubMed]
  285. Drew, W.L.; Mintz, L.; Hoo, R.; Finley, T.N. Growth of herpes simplex and cytomegalovirus in cultured human alveolar macrophages. Am. Rev. Respir. Dis. 1979, 119, 287–291. [Google Scholar] [PubMed]
  286. Poole, E.; Juss, J.K.; Krishna, B.; Herre, J.; Chilvers, E.R.; Sinclair, J. Alveolar Macrophages Isolated Directly From Human Cytomegalovirus (HCMV)-Seropositive Individuals Are Sites of HCMV Reactivation In Vivo. J. Infect. Dis. 2015, 211, 1936–1942. [Google Scholar] [CrossRef] [PubMed]
  287. Baasch, S.; Giansanti, P.; Kolter, J.; Riedl, A.; Forde, A.J.; Runge, S.; Zenke, S.; Elling, R.; Halenius, A.; Brabletz, S.; et al. Cytomegalovirus subverts macrophage identity. Cell 2021, 184, 3774–3793.e3725. [Google Scholar] [CrossRef] [PubMed]
  288. Onno, M.; Pangault, C.; Le Friec, G.; Guilloux, V.; André, P.; Fauchet, R. Modulation of HLA-G antigens expression by human cytomegalovirus: Specific induction in activated macrophages harboring human cytomegalovirus infection. J. Immunol. 2000, 164, 6426–6434. [Google Scholar] [CrossRef] [PubMed]
  289. Stahl, F.R.; Keyser, K.A.; Heller, K.; Bischoff, Y.; Halle, S.; Wagner, K.; Messerle, M.; Förster, R. Mck2-dependent infection of alveolar macrophages promotes replication of MCMV in nodular inflammatory foci of the neonatal lung. Mucosal Immunol. 2015, 8, 57–67. [Google Scholar] [CrossRef]
  290. Weyer, C.; Sabat, R.; Wissel, H.; Krüger, D.H.; Stevens, P.A.; Prösch, S. Surfactant protein A binding to cytomegalovirus proteins enhances virus entry into rat lung cells. Am. J. Respir. Cell. Mol. Biol. 2000, 23, 71–78. [Google Scholar] [CrossRef] [PubMed]
  291. Sheng, G.; Chen, P.; Wei, Y.; Yue, H.; Chu, J.; Zhao, J.; Wang, Y.; Zhang, W.; Zhang, H.L. Viral Infection Increases the Risk of Idiopathic Pulmonary Fibrosis: A Meta-Analysis. Chest 2020, 157, 1175–1187. [Google Scholar] [CrossRef] [PubMed]
  292. Yin, Q.; Strong, M.J.; Zhuang, Y.; Flemington, E.K.; Kaminski, N.; de Andrade, J.A.; Lasky, J.A. Assessment of viral RNA in idiopathic pulmonary fibrosis using RNA-seq. BMC Pulm. Med. 2020, 20, 81. [Google Scholar] [CrossRef]
  293. Mora, A.L.; Torres-González, E.; Rojas, M.; Corredor, C.; Ritzenthaler, J.; Xu, J.; Roman, J.; Brigham, K.; Stecenko, A. Activation of alveolar macrophages via the alternative pathway in herpesvirus-induced lung fibrosis. Am. J. Respir. Cell. Mol. Biol. 2006, 35, 466–473. [Google Scholar] [CrossRef] [PubMed]
  294. Stoolman, J.S.; Vannella, K.M.; Coomes, S.M.; Wilke, C.A.; Sisson, T.H.; Toews, G.B.; Moore, B.B. Latent infection by γherpesvirus stimulates profibrotic mediator release from multiple cell types. Am. J. Physiol. Lung Cell Mol. Physiol. 2011, 300, L274–L285. [Google Scholar] [CrossRef]
  295. Calabrese, F.; Kipar, A.; Lunardi, F.; Balestro, E.; Perissinotto, E.; Rossi, E.; Nannini, N.; Marulli, G.; Stewart, J.P.; Rea, F. Herpes virus infection is associated with vascular remodeling and pulmonary hypertension in idiopathic pulmonary fibrosis. PLoS ONE 2013, 8, e55715. [Google Scholar] [CrossRef] [PubMed]
  296. Williams, K.J.; Maes, R.K.; Piero, F.D.; Lim, A.; Wise, A.G.; Bolin, D.C.; Caswell, J.L.; Jackson, C.; Robinson, N.E.; Derksen, F.J.; et al. Equine Multinodular Pulmonary Fibrosis: A Newly Recognized Herpesvirus-Associated Fibrotic Lung Disease. Vet. Pathol. 2007, 44, 849–862. [Google Scholar] [CrossRef] [PubMed]
  297. Williams, K.J.; Robinson, N.E.; Lim, A.; Brandenberger, C.; Maes, R.; Behan, A.; Bolin, S.R. Experimental Induction of Pulmonary Fibrosis in Horses with the Gammaherpesvirus Equine Herpesvirus 5. PLoS ONE 2013, 8, e77754. [Google Scholar] [CrossRef] [PubMed]
  298. Wong, D.M.; Belgrave, R.L.; Williams, K.J.; Del Piero, F.; Alcott, C.J.; Bolin, S.R.; Marr, C.M.; Nolen-Walston, R.; Myers, R.K.; Wilkins, P.A. Multinodular pulmonary fibrosis in five horses. J. Am. Vet. Med. Assoc. 2008, 232, 898–905. [Google Scholar] [CrossRef]
  299. Coffin, J.; Blomberg, J.; Fan, H.; Gifford, R.; Hatziioannou, T.; Lindemann, D.; Mayer, J.; Stoye, J.; Tristem, M.; Johnson, W.; et al. ICTV Virus Taxonomy Profile: Retroviridae 2021. J. Gen. Virol. 2021, 102, 001712. [Google Scholar] [CrossRef] [PubMed]
  300. Lesbats, P.; Engelman, A.N.; Cherepanov, P. Retroviral DNA Integration. Chem. Rev. 2016, 116, 12730–12757. [Google Scholar] [CrossRef] [PubMed]
  301. Suzuki, Y.; Craigie, R. The road to chromatin—Nuclear entry of retroviruses. Nat. Rev. Microbiol. 2007, 5, 187–196. [Google Scholar] [CrossRef] [PubMed]
  302. World Health Organization. HIV and AIDS. Available online: https://www.who.int/news-room/fact-sheets/detail/hiv-aids (accessed on 1 October 2024).
  303. Afessa, B.; Green, W.; Chiao, J.; Frederick, W. Pulmonary Complications of HIV Infection: Autopsy Findings. Chest 1998, 113, 1225–1229. [Google Scholar] [CrossRef] [PubMed]
  304. Guillon, J.-M.; Autran, B.; Denis, M.; Fouret, P.; Plata, F.; Mayaud, C.M.; Akoun, G.M. Human Immunodeficiency Virus-related Lymphocytic Alveolitis. Chest 1988, 94, 1264–1270. [Google Scholar] [CrossRef]
  305. Twigg, H.L.; Soliman, D.M.; Day, R.B.; Knox, K.S.; Anderson, R.J.; Wilkes, D.S.; Schnizlein-Bick, C.T. Lymphocytic alveolitis, bronchoalveolar lavage viral load, and outcome in human immunodeficiency virus infection. Am. J. Respir. Crit. Care Med. 1999, 159, 1439–1444. [Google Scholar] [CrossRef] [PubMed]
  306. Schiff, A.E.; Linder, A.H.; Luhembo, S.N.; Banning, S.; Deymier, M.J.; Diefenbach, T.J.; Dickey, A.K.; Tsibris, A.M.; Balazs, A.B.; Cho, J.L.; et al. T cell-tropic HIV efficiently infects alveolar macrophages through contact with infected CD4+ T cells. Sci. Rep. 2021, 11, 3890. [Google Scholar] [CrossRef]
  307. Potash, M.J.; Zeira, M.; Huang, Z.B.; Pearce, T.E.; Eden, E.; Gendelman, H.E.; Volsky, D.J. Virus-cell membrane fusion does not predict efficient infection of alveolar macrophages by human immunodeficiency virus type 1 (HIV-1). Virology 1992, 188, 864–868. [Google Scholar] [CrossRef] [PubMed]
  308. Park, I.W.; Koziel, H.; Hatch, W.; Li, X.; Du, B.; Groopman, J.E. CD4 receptor-dependent entry of human immunodeficiency virus type-1 env-pseudotypes into CCR5-, CCR3-, and CXCR4-expressing human alveolar macrophages is preferentially mediated by the CCR5 coreceptor. Am. J. Respir. Cell. Mol. Biol. 1999, 20, 864–871. [Google Scholar] [CrossRef]
  309. Denis, M.; Ghadirian, E. Dysregulation of interleukin 8, interleukin 10, and interleukin 12 release by alveolar macrophages from HIV type 1-infected subjects. AIDS Res. Hum. Retroviruses 1994, 10, 1619–1627. [Google Scholar] [CrossRef]
  310. Igarashi, T.; Donau, O.K.; Imamichi, H.; Nishimura, Y.; Theodore, T.S.; Iyengar, R.; Erb, C.; Buckler-White, A.; Buckler, C.E.; Martin, M.A. Although macrophage-tropic simian/human immunodeficiency viruses can exhibit a range of pathogenic phenotypes, a majority of isolates induce no clinical disease in immunocompetent macaques. J. Virol. 2007, 81, 10669–10679. [Google Scholar] [CrossRef] [PubMed]
  311. Twigg, H.L., 3rd; Lipscomb, M.F.; Yoffe, B.; Barbaro, D.J.; Weissler, J.C. Enhanced accessory cell function by alveolar macrophages from patients infected with the human immunodeficiency virus: Potential role for depletion of CD4+ cells in the lung. Am. J. Respir. Cell. Mol. Biol. 1989, 1, 391–400. [Google Scholar] [CrossRef]
  312. Bohnet, S.; Braun, J.; Dalhoff, K. Intercellular adhesion molecule-1 (ICAM-1) is upregulated on alveolar macrophages from AIDS patients. Eur. Respir. J. 1994, 7, 229–234. [Google Scholar] [CrossRef] [PubMed]
  313. Twigg, H.L., 3rd; Soliman, D.M. Role of alveolar macrophage-T cell adherence in accessory cell function in human immunodeficiency virus-infected individuals. Am. J. Respir. Cell. Mol. Biol. 1994, 11, 138–146. [Google Scholar] [CrossRef]
  314. Cai, Y.; Sugimoto, C.; Arainga, M.; Midkiff, C.C.; Liu, D.X.; Alvarez, X.; Lackner, A.A.; Kim, W.K.; Didier, E.S.; Kuroda, M.J. Preferential Destruction of Interstitial Macrophages over Alveolar Macrophages as a Cause of Pulmonary Disease in Simian Immunodeficiency Virus-Infected Rhesus Macaques. J. Immunol. 2015, 195, 4884–4891. [Google Scholar] [CrossRef]
  315. Feikin, D.R.; Feldman, C.; Schuchat, A.; Janoff, E.N. Global strategies to prevent bacterial pneumonia in adults with HIV disease. Lancet Infect. Dis. 2004, 4, 445–455. [Google Scholar] [CrossRef]
  316. Agostini, C.; Trentin, L.; Zambello, R.; Bulian, P.; Caenazzo, C.; Cipriani, A.; Cadrobbi, P.; Garbisa, S.; Semenzato, G. Release of granulocyte-macrophage colony-stimulating factor by alveolar macrophages in the lung of HIV-1-infected patients. A mechanism accounting for macrophage and neutrophil accumulation. J. Immunol. 1992, 149, 3379–3385. [Google Scholar] [CrossRef]
  317. Hunegnaw, R.; Mushtaq, Z.; Enyindah-Asonye, G.; Hoang, T.; Robert-Guroff, M. Alveolar Macrophage Dysfunction and Increased PD-1 Expression During Chronic SIV Infection of Rhesus Macaques. Front. Immunol. 2019, 10, 1537. [Google Scholar] [CrossRef]
  318. Sierra-Madero, J.G.; Toossi, Z.; Hom, D.L.; Finegan, C.K.; Hoenig, E.; Rich, E.A. Relationship between load of virus in alveolar macrophages from human immunodeficiency virus type 1-infected persons, production of cytokines, and clinical status. J. Infect. Dis. 1994, 169, 18–27. [Google Scholar] [CrossRef]
  319. Twigg, H.L., 3rd; Iwamoto, G.K.; Soliman, D.M. Role of cytokines in alveolar macrophage accessory cell function in HIV-infected individuals. J. Immunol. 1992, 149, 1462–1469. [Google Scholar] [CrossRef] [PubMed]
  320. Lipman, M.C.; Johnson, M.A.; Poulter, L.W. Functionally relevant changes occur in HIV-infected individuals’ alveolar macrophages prior to the onset of respiratory disease. Aids 1997, 11, 765–772. [Google Scholar] [CrossRef]
  321. Steffen, M.; Reinecker, H.C.; Petersen, J.; Doehn, C.; Pflüger, I.; Voss, A.; Raedler, A. Differences in cytokine secretion by intestinal mononuclear cells, peripheral blood monocytes and alveolar macrophages from HIV-infected patients. Clin. Exp. Immunol. 1993, 91, 30–36. [Google Scholar] [CrossRef]
  322. Trentin, L.; Garbisa, S.; Zambello, R.; Agostini, C.; Caenazzo, C.; Di Francesco, C.; Cipriani, A.; Francavilla, E.; Semenzato, G. Spontaneous production of interleukin-6 by alveolar macrophages from human immunodeficiency virus type 1-infected patients. J. Infect. Dis. 1992, 166, 731–737. [Google Scholar] [CrossRef]
  323. Gordon, S.B.; Jagoe, R.T.; Jarman, E.R.; North, J.C.; Pridmore, A.; Musaya, J.; French, N.; Zijlstra, E.E.; Molyneux, M.E.; Read, R.C. The alveolar microenvironment of patients infected with human immunodeficiency virus does not modify alveolar macrophage interactions with Streptococcus pneumoniae. Clin. Vaccine Immunol. 2013, 20, 882–891. [Google Scholar] [CrossRef]
  324. Twigg, H.L., 3rd; Spain, B.A.; Soliman, D.M.; Bowen, L.K.; Heidler, K.M.; Wilkes, D.S. Impaired IgG production in the lungs of HIV-infected individuals. Cell. Immunol. 1996, 170, 127–133. [Google Scholar] [CrossRef]
  325. Yeligar, S.M.; Ward, J.M.; Harris, F.L.; Brown, L.A.S.; Guidot, D.M.; Cribbs, S.K. Dysregulation of Alveolar Macrophage PPARγ, NADPH Oxidases, and TGFβ(1) in Otherwise Healthy HIV-Infected Individuals. AIDS Res. Hum. Retroviruses 2017, 33, 1018–1026. [Google Scholar] [CrossRef]
  326. Agostini, C.; Facco, M.; Siviero, M.; Carollo, D.; Galvan, S.; Cattelan, A.M.; Zambello, R.; Trentin, L.; Semenzato, G. CXC chemokines IP-10 and mig expression and direct migration of pulmonary CD8+/CXCR3+ T cells in the lungs of patients with HIV infection and T-cell alveolitis. Am. J. Respir. Crit. Care Med. 2000, 162, 1466–1473. [Google Scholar] [CrossRef] [PubMed]
  327. Agostini, C.; Siviero, M.; Facco, M.; Carollo, D.; Binotto, G.; Tosoni, A.; Cattelan, A.M.; Zambello, R.; Trentin, L.; Semenzato, G. Antiapoptotic effects of IL-15 on pulmonary Tc1 cells of patients with human immunodeficiency virus infection. Am. J. Respir. Crit. Care Med. 2001, 163, 484–489. [Google Scholar] [CrossRef]
  328. Agostini, C.; Zambello, R.; Facco, M.; Perin, A.; Piazza, F.; Siviero, M.; Basso, U.; Bortolin, M.; Trentin, L.; Semenzato, G. CD8 T-cell infiltration in extravascular tissues of patients with human immunodeficiency virus infection. Interleukin-15 upmodulates costimulatory pathways involved in the antigen-presenting cells-T-cell interaction. Blood 1999, 93, 1277–1286. [Google Scholar] [CrossRef]
  329. Spain, B.A.; Soliman, D.M.; Sidner, R.A.; Twigg, H.L. Enhanced proliferation and IL-2 secretion by lung lymphocytes from HIV-infected subjects. Am. J. Physiol. 1995, 269, L498–L506. [Google Scholar] [CrossRef]
  330. Neff, C.P.; Atif, S.M.; Logue, E.C.; Siebert, J.; Görg, C.; Lavelle, J.; Fiorillo, S.; Twigg, H.; Campbell, T.B.; Fontenot, A.P.; et al. HIV Infection Is Associated with Loss of Anti-Inflammatory Alveolar Macrophages. J. Immunol. 2020, 205, 2447–2455. [Google Scholar] [CrossRef]
  331. Bernard, M.A.; Zhao, H.; Yue, S.C.; Anandaiah, A.; Koziel, H.; Tachado, S.D. Novel HIV-1 miRNAs stimulate TNFα release in human macrophages via TLR8 signaling pathway. PLoS ONE 2014, 9, e106006. [Google Scholar] [CrossRef] [PubMed]
  332. Nicol, M.Q.; Mathys, J.M.; Pereira, A.; Ollington, K.; Ieong, M.H.; Skolnik, P.R. Human immunodeficiency virus infection alters tumor necrosis factor alpha production via Toll-like receptor-dependent pathways in alveolar macrophages and U1 cells. J. Virol. 2008, 82, 7790–7798. [Google Scholar] [CrossRef] [PubMed]
  333. Schweitzer, F.; Tarantelli, R.; Rayens, E.; Kling, H.M.; Mattila, J.T.; Norris, K.A. Monocyte and Alveolar Macrophage Skewing Is Associated with the Development of Pulmonary Arterial Hypertension in a Primate Model of HIV Infection. AIDS Res. Hum. Retroviruses 2019, 35, 63–74. [Google Scholar] [CrossRef] [PubMed]
  334. Jambo, K.C.; Banda, D.H.; Kankwatira, A.M.; Sukumar, N.; Allain, T.J.; Heyderman, R.S.; Russell, D.G.; Mwandumba, H.C. Small alveolar macrophages are infected preferentially by HIV and exhibit impaired phagocytic function. Mucosal Immunol. 2014, 7, 1116–1126. [Google Scholar] [CrossRef]
  335. Wassermann, K.; Schell-Frederick, E.; Eckert, G.; Don, M.; Pothoff, G.; Hilger, H.H. Pentamidine aerosol increases the number of alveolar macrophages in HIV-infected patients. Aids 1991, 5, 1099–1102. [Google Scholar] [CrossRef] [PubMed]
  336. Logue, E.C.; Neff, C.P.; Mack, D.G.; Martin, A.K.; Fiorillo, S.; Lavelle, J.; Vandivier, R.W.; Campbell, T.B.; Palmer, B.E.; Fontenot, A.P. Upregulation of Chitinase 1 in Alveolar Macrophages of HIV-Infected Smokers. J. Immunol. 2019, 202, 1363–1372. [Google Scholar] [CrossRef]
  337. Kaner, R.J.; Santiago, F.; Crystal, R.G. Up-regulation of alveolar macrophage matrix metalloproteinases in HIV1(+) smokers with early emphysema. J. Leukoc. Biol. 2009, 86, 913–922. [Google Scholar] [CrossRef]
  338. Cribbs, S.K.; Lennox, J.; Caliendo, A.M.; Brown, L.A.; Guidot, D.M. Healthy HIV-1-infected individuals on highly active antiretroviral therapy harbor HIV-1 in their alveolar macrophages. AIDS Res. Hum. Retroviruses 2015, 31, 64–70. [Google Scholar] [CrossRef]
  339. Joshi, P.C.; Raynor, R.; Fan, X.; Guidot, D.M. HIV-1-transgene expression in rats decreases alveolar macrophage zinc levels and phagocytosis. Am. J. Respir. Cell. Mol. Biol. 2008, 39, 218–226. [Google Scholar] [CrossRef] [PubMed]
  340. Fan, X.; Murray, S.C.; Staitieh, B.S.; Spearman, P.; Guidot, D.M. HIV Impairs Alveolar Macrophage Function via MicroRNA-144-Induced Suppression of Nrf2. Am. J. Med. Sci. 2021, 361, 90–97. [Google Scholar] [CrossRef] [PubMed]
  341. Staitieh, B.S.; Ding, L.; Neveu, W.A.; Spearman, P.; Guidot, D.M.; Fan, X. HIV-1 decreases Nrf2/ARE activity and phagocytic function in alveolar macrophages. J. Leukoc. Biol. 2017, 102, 517–525. [Google Scholar] [CrossRef]
  342. Zhang, J.; Zhu, J.; Imrich, A.; Cushion, M.; Kinane, T.B.; Koziel, H. Pneumocystis activates human alveolar macrophage NF-kappaB signaling through mannose receptors. Infect. Immun. 2004, 72, 3147–3160. [Google Scholar] [CrossRef]
  343. Koziel, H.; Li, X.; Armstrong, M.Y.; Richards, F.F.; Rose, R.M. Alveolar macrophages from human immunodeficiency virus-infected persons demonstrate impaired oxidative burst response to Pneumocystis carinii in vitro. Am. J. Respir. Cell. Mol. Biol. 2000, 23, 452–459. [Google Scholar] [CrossRef]
  344. Gordon, S.B.; Jarman, E.R.; Kanyanda, S.; French, N.; Pridmore, A.C.; Zijlstra, E.E.; Molyneux, M.E.; Read, R.C. Reduced interleukin-8 response to Streptococcus pneumoniae by alveolar macrophages from adults with HIV/AIDS. Aids 2005, 19, 1197–1200. [Google Scholar] [CrossRef] [PubMed]
  345. Dupont, M.; Souriant, S.; Balboa, L.; Vu Manh, T.P.; Pingris, K.; Rousset, S.; Cougoule, C.; Rombouts, Y.; Poincloux, R.; Ben Neji, M.; et al. Tuberculosis-associated IFN-I induces Siglec-1 on tunneling nanotubes and favors HIV-1 spread in macrophages. Elife 2020, 9, e52535. [Google Scholar] [CrossRef] [PubMed]
  346. Honda, Y.; Rogers, L.; Nakata, K.; Zhao, B.Y.; Pine, R.; Nakai, Y.; Kurosu, K.; Rom, W.N.; Weiden, M. Type I interferon induces inhibitory 16-kD CCAAT/enhancer binding protein (C/EBP)beta, repressing the HIV-1 long terminal repeat in macrophages: Pulmonary tuberculosis alters C/EBP expression, enhancing HIV-1 replication. J. Exp. Med. 1998, 188, 1255–1265. [Google Scholar] [CrossRef]
  347. Hoshino, Y.; Hoshino, S.; Gold, J.A.; Raju, B.; Prabhakar, S.; Pine, R.; Rom, W.N.; Nakata, K.; Weiden, M. Mechanisms of polymorphonuclear neutrophil-mediated induction of HIV-1 replication in macrophages during pulmonary tuberculosis. J. Infect. Dis. 2007, 195, 1303–1310. [Google Scholar] [CrossRef] [PubMed]
  348. Hoshino, Y.; Nakata, K.; Hoshino, S.; Honda, Y.; Tse, D.B.; Shioda, T.; Rom, W.N.; Weiden, M. Maximal HIV-1 replication in alveolar macrophages during tuberculosis requires both lymphocyte contact and cytokines. J. Exp. Med. 2002, 195, 495–505. [Google Scholar] [CrossRef]
  349. Hoshino, Y.; Tse, D.B.; Rochford, G.; Prabhakar, S.; Hoshino, S.; Chitkara, N.; Kuwabara, K.; Ching, E.; Raju, B.; Gold, J.A.; et al. Mycobacterium tuberculosis-induced CXCR4 and chemokine expression leads to preferential X4 HIV-1 replication in human macrophages. J. Immunol. 2004, 172, 6251–6258. [Google Scholar] [CrossRef]
  350. Patel, N.R.; Swan, K.; Li, X.; Tachado, S.D.; Koziel, H.; Impaired, M. tuberculosis-mediated apoptosis in alveolar macrophages from HIV+ persons: Potential role of IL-10 and BCL-3. J. Leukoc. Biol. 2009, 86, 53–60. [Google Scholar] [CrossRef] [PubMed]
  351. Correa-Macedo, W.; Fava, V.M.; Orlova, M.; Cassart, P.; Olivenstein, R.; Sanz, J.; Xu, Y.Z.; Dumaine, A.; Sindeaux, R.H.M.; Yotova, V.; et al. Alveolar macrophages from persons living with HIV show impaired epigenetic response to Mycobacterium tuberculosis. J. Clin. Investig. 2021, 131, e148013. [Google Scholar] [CrossRef]
  352. Walker-Sperling, V.E.; Merlo, C.A.; Buckheit, R.W., 3rd; Lambert, A.; Tarwater, P.; Kirk, G.D.; Drummond, M.B.; Blankson, J.N. Short Communication: HIV Controller T Cells Effectively Inhibit Viral Replication in Alveolar Macrophages. AIDS Res. Hum. Retroviruses 2016, 32, 1097–1099. [Google Scholar] [CrossRef]
  353. Coffey, M.J.; Woffendin, C.; Phare, S.M.; Strieter, R.M.; Markovitz, D.M. RANTES inhibits HIV-1 replication in human peripheral blood monocytes and alveolar macrophages. Am. J. Physiol. 1997, 272, L1025–L1029. [Google Scholar] [CrossRef]
  354. Clarke, J.R.; Krishnan, V.; Bennett, J.; Mitchell, D.; Jeffries, D.J. Detection of HIV-1 in human lung macrophages using the polymerase chain reaction. Aids 1990, 4, 1133–1136. [Google Scholar] [CrossRef]
  355. Landay, A.L.; Schade, S.Z.; Takefman, D.M.; Kuhns, M.C.; McNamara, A.L.; Rosen, R.L.; Kessler, H.A.; Spear, G.T. Detection of HIV-1 provirus in bronchoalveolar lavage cells by polymerase chain reaction. J. Acquir. Immune Defic. Syndr. (1988) 1993, 6, 171–175. [Google Scholar]
  356. Nakata, K.; Weiden, M.; Harkin, T.; Ho, D.; Rom, W.N. Low copy number and limited variability of proviral DNA in alveolar macrophages from HIV-1-infected patients: Evidence for genetic differences in HIV-1 between lung and blood macrophage populations. Mol. Med. 1995, 1, 744–757. [Google Scholar] [CrossRef] [PubMed]
  357. Koziel, H.; Kim, S.; Reardon, C.; Li, X.; Garland, R.; Pinkston, P.; Kornfeld, H. Enhanced In Vivo Human Immunodeficiency Virus-1 Replication in the Lungs of Human Immunodeficiency Virus–Infected Persons with Pneumocystis carinii Pneumonia. Am. J. Respir. Crit. Care Med. 1999, 160, 2048–2055. [Google Scholar] [CrossRef]
  358. Lewin, S.R.; Kirihara, J.; Sonza, S.; Irving, L.; Mills, J.; Crowe, S.M. HIV-1 DNA and mRNA concentrations are similar in peripheral blood monocytes and alveolar macrophages in HIV-1-infected individuals. Aids 1998, 12, 719–727. [Google Scholar] [CrossRef] [PubMed]
  359. Moreno, P.; Rebollo, M.J.; Pulido, F.; Rubio, R.; Noriega, A.R.; Delgado, R. Alveolar macrophages are not an important source of viral production in HIV-1 infected patients. Aids 1996, 10, 682–684. [Google Scholar] [CrossRef] [PubMed]
  360. Weiden, M.D.; Hoshino, S.; Levy, D.N.; Li, Y.; Kumar, R.; Burke, S.A.; Dawson, R.; Hioe, C.E.; Borkowsky, W.; Rom, W.N.; et al. Adenosine deaminase acting on RNA-1 (ADAR1) inhibits HIV-1 replication in human alveolar macrophages. PLoS ONE 2014, 9, e108476. [Google Scholar] [CrossRef] [PubMed]
  361. Watt, N.J.; MacIntyre, N.; Collie, D.; Sargan, D.; McConnell, I. Phenotypic analysis of lymphocyte populations in the lungs and regional lymphoid tissue of sheep naturally infected with maedi visna virus. Clin. Exp. Immunol. 1992, 90, 204–208. [Google Scholar] [CrossRef]
  362. Brodie, S.J.; Marcom, K.A.; Pearson, L.D.; Anderson, B.C.; de la Concha-Bermejillo, A.; Ellis, J.A.; DeMartini, J.C. Effects of virus load in the pathogenesis of lentivirus-induced lymphoid interstitial pneumonia. J. Infect. Dis. 1992, 166, 531–541. [Google Scholar] [CrossRef] [PubMed]
  363. Carrozza, M.L.; Mazzei, M.; Bandecchi, P.; Arispici, M.; Tolari, F. In situ PCR-associated immunohistochemistry identifies cell types harbouring the Maedi-Visna virus genome in tissue sections of sheep infected naturally. J. Virol. Methods 2003, 107, 121–127. [Google Scholar] [CrossRef]
  364. de la Concha-Bermejillo, A.; Brodie, S.J.; Magnus-Corral, S.; Bowen, R.A.; DeMartini, J.C. Pathologic and serologic responses of isogeneic twin lambs to phenotypically distinct lentiviruses. J. Acquir. Immune Defic. Syndr. Hum. Retrovirol. 1995, 8, 116–123. [Google Scholar] [CrossRef]
  365. Geballe, A.P.; Ventura, P.; Stowring, L.; Haase, A.T. Quantitative analysis of visna virus replication in vivo. Virology 1985, 141, 148–154. [Google Scholar] [CrossRef] [PubMed]
  366. Gendelman, H.E.; Narayan, O.; Molineaux, S.; Clements, J.E.; Ghotbi, Z. Slow, persistent replication of lentiviruses: Role of tissue macrophages and macrophage precursors in bone marrow. Proc. Natl. Acad. Sci. USA 1985, 82, 7086–7090. [Google Scholar] [CrossRef]
  367. Luján, L.; Begara, I.; Collie, D.; Watt, N.J. Ovine lentivirus (maedi-visna virus) protein expression in sheep alveolar macrophages. Vet. Pathol. 1994, 31, 695–703. [Google Scholar] [CrossRef]
  368. Ellis, T.M.; Robinson, W.F.; Wilcox, G.E. The pathology and aetiology of lung lesions in goats infected with caprine arthritis-encephalitis virus. Aust. Vet. J. 1988, 65, 69–73. [Google Scholar] [CrossRef]
  369. McNeilly, T.N.; Baker, A.; Brown, J.K.; Collie, D.; Maclachlan, G.; Rhind, S.M.; Harkiss, G.D. Role of alveolar macrophages in respiratory transmission of visna/maedi virus. J. Virol. 2008, 82, 1526–1536. [Google Scholar] [CrossRef] [PubMed]
  370. Ellis, J.A.; Russell, H.I.; Du, C.W. Effect of selected cytokines on the replication of Corynebacterium pseudotuberculosis and ovine lentiviruses in pulmonary macrophages. Vet. Immunol. Immunopathol. 1994, 40, 31–47. [Google Scholar] [CrossRef]
  371. Cordier, G.; Cozon, G.; Greenland, T.; Rocher, F.; Guiguen, F.; Guerret, S.; Brune, J.; Mornex, J.F. In vivo activation of alveolar macrophages in ovine lentivirus infection. Clin. Immunol. Immunopathol. 1990, 55, 355–367. [Google Scholar] [CrossRef] [PubMed]
  372. Legastelois, I.; Cordier, G.; Cozon, G.; Cadoré, J.L.; Guiguen, F.; Greenland, T.; Mornex, J.F. Visna-maedi virus-induced expression of interleukin-8 gene in sheep alveolar cells following experimental in vitro and in vivo infection. Res. Virol. 1996, 147, 191–197. [Google Scholar] [CrossRef] [PubMed]
  373. Legastelois, I.; Cottin, V.; Mornex, J.F.; Cordier, G. Alveolar macrophages from sheep naturally infected by visna-maedi virus contribute to IL-8 production in the lung. Vet. Immunol. Immunopathol. 1997, 59, 131–139. [Google Scholar] [CrossRef]
  374. Legastelois, I.; Levrey, H.; Greenland, T.; Mornex, J.F.; Cordier, G. Visna-maedi virus induces interleukin-8 in sheep alveolar macrophages through a tyrosine-kinase signaling pathway. Am. J. Respir. Cell. Mol. Biol. 1998, 18, 532–537. [Google Scholar] [CrossRef]
  375. Moreno, B.; Woodall, C.J.; Watt, N.J.; Harkiss, G.D. Transforming growth factor-beta 1 (TGF-beta1) expression in ovine lentivirus-induced lymphoid interstitial pneumonia. Clin. Exp. Immunol. 1998, 112, 74–83. [Google Scholar] [CrossRef] [PubMed]
  376. Zhang, Z.; Harkiss, G.D.; Hopkins, J.; Woodall, C.J. Granulocyte macrophage colony stimulating factor is elevated in alveolar macrophages from sheep naturally infected with maedi-visna virus and stimulates maedi-visna virus replication in macrophages in vitro. Clin. Exp. Immunol. 2002, 129, 240–246. [Google Scholar] [CrossRef]
  377. Cottin, V.; Court-Fortune, I.; Crevon, J.; Mornex, J.F. Oxidant-antioxidant imbalance in the experimental interstitial lung disease induced in sheep by visna-maedi virus. Eur. Respir. J. 1996, 9, 1983–1988. [Google Scholar] [CrossRef] [PubMed]
  378. Monleón, E.; Pacheco, M.C.; Luján, L.; Bolea, R.; Luco, D.F.; Vargas, M.A.; Alabart, J.L.; Badiola, J.J.; Amorena, B. Effect of in vitro maedi-visna virus infection on adherence and phagocytosis of staphylococci by ovine cells. Vet. Microbiol. 1997, 57, 13–28. [Google Scholar] [CrossRef]
  379. Ma, J.; Kennedy-Stoskopf, S.; Sellon, R.; Tonkonogy, S.; Hawkins, E.C.; Tompkins, M.B.; Tompkins, W.A. Tumor necrosis factor-alpha responses are depressed and interleukin-6 responses unaltered in feline immunodeficiency virus infected cats. Vet. Immunol. Immunopathol. 1995, 46, 35–50. [Google Scholar] [CrossRef] [PubMed]
  380. Bueno, B.L.; Câmara, R.J.F.; Moreira, M.V.L.; Galinari, G.C.F.; Souto, F.M.; Victor, R.M.; Bicalho, J.M.; Ecco, R.; Dos Reis, J.K.P. Molecular detection, histopathological analysis, and immunohistochemical characterization of equine infectious anemia virus in naturally infected equids. Arch. Virol. 2020, 165, 1333–1342. [Google Scholar] [CrossRef]
  381. Moore, B.D.; Balasuriya, U.B.; Watson, J.L.; Bosio, C.M.; MacKay, R.J.; MacLachlan, N.J. Virulent and avirulent strains of equine arteritis virus induce different quantities of TNF-alpha and other proinflammatory cytokines in alveolar and blood-derived equine macrophages. Virology 2003, 314, 662–670. [Google Scholar] [CrossRef] [PubMed]
  382. Oda, S.S.; Youssef, S.A. Immunohistochemical and histopathological findings of ovine pulmonary adenocarcinoma (Jaagsiekte) in Egyptian sheep. Trop. Anim. Health Prod. 2011, 43, 1611–1615. [Google Scholar] [CrossRef]
  383. Sanna, M.P.; Sanna, E.; De Las Heras, M.; Leoni, A.; Nieddu, A.M.; Pirino, S.; Sharp, J.M.; Palmarini, M. Association of jaagsiekte sheep retrovirus with pulmonary carcinoma in Sardinian moufflon (Ovis musimon). J. Comp. Pathol. 2001, 125, 145–152. [Google Scholar] [CrossRef]
  384. Benkő, M.; Aoki, K.; Arnberg, N.; Davison, A.J.; Echavarría, M.; Hess, M.; Jones, M.S.; Kaján, G.L.; Kajon, A.E.; Mittal, S.K.; et al. ICTV Virus Taxonomy Profile: Adenoviridae 2022. J. Gen. Virol. 2022, 103, 001721. [Google Scholar] [CrossRef]
  385. Greber, U.F.; Flatt, J.W. Adenovirus Entry: From Infection to Immunity. Annu. Rev. Virol. 2019, 6, 177–197. [Google Scholar] [CrossRef] [PubMed]
  386. Conron, M.; Bondeson, J.; Pantelidis, P.; Beynon, H.L.; Feldmann, M.; duBois, R.M.; Foxwell, B.M. Alveolar macrophages and T cells from sarcoid, but not normal lung, are permissive to adenovirus infection and allow analysis of NF-kappa b-dependent signaling pathways. Am. J. Respir. Cell. Mol. Biol. 2001, 25, 141–149. [Google Scholar] [CrossRef]
  387. Worgall, S.; Leopold, P.L.; Wolff, G.; Ferris, B.; Van Roijen, N.; Crystal, R.G. Role of alveolar macrophages in rapid elimination of adenovirus vectors administered to the epithelial surface of the respiratory tract. Hum. Gene Ther. 1997, 8, 1675–1684. [Google Scholar] [CrossRef]
  388. Stichling, N.; Suomalainen, M.; Flatt, J.W.; Schmid, M.; Pacesa, M.; Hemmi, S.; Jungraithmayr, W.; Maler, M.D.; Freudenberg, M.A.; Plückthun, A.; et al. Lung macrophage scavenger receptor SR-A6 (MARCO) is an adenovirus type-specific virus entry receptor. PLoS Pathog. 2018, 14, e1006914. [Google Scholar] [CrossRef] [PubMed]
  389. Maler, M.D.; Nielsen, P.J.; Stichling, N.; Cohen, I.; Ruzsics, Z.; Wood, C.; Engelhard, P.; Suomalainen, M.; Gyory, I.; Huber, M.; et al. Key Role of the Scavenger Receptor MARCO in Mediating Adenovirus Infection and Subsequent Innate Responses of Macrophages. mBio 2017, 8, 10–1128. [Google Scholar] [CrossRef] [PubMed]
  390. Carey, B.; Staudt, M.K.; Bonaminio, D.; van der Loo, J.C.; Trapnell, B.C. PU. 1 redirects adenovirus to lysosomes in alveolar macrophages, uncoupling internalization from infection. J. Immunol. 2007, 178, 2440–2447. [Google Scholar] [CrossRef] [PubMed]
  391. Berclaz, P.Y.; Zsengellér, Z.; Shibata, Y.; Otake, K.; Strasbaugh, S.; Whitsett, J.A.; Trapnell, B.C. Endocytic internalization of adenovirus, nonspecific phagocytosis, and cytoskeletal organization are coordinately regulated in alveolar macrophages by GM-CSF and PU.1. J. Immunol. 2002, 169, 6332–6342. [Google Scholar] [CrossRef] [PubMed]
  392. Zsengellér, Z.; Otake, K.; Hossain, S.A.; Berclaz, P.Y.; Trapnell, B.C. Internalization of adenovirus by alveolar macrophages initiates early proinflammatory signaling during acute respiratory tract infection. J. Virol. 2000, 74, 9655–9667. [Google Scholar] [CrossRef]
  393. Zsengellér, Z.K.; Ross, G.F.; Trapnell, B.C.; Szabó, C.; Whitsett, J.A. Adenovirus infection increases iNOS and peroxynitrite production in the lung. Am. J. Physiol. Lung Cell Mol. Physiol. 2001, 280, L503–L511. [Google Scholar] [CrossRef]
  394. Radke, J.R.; Yong, S.L.; Cook, J.L. Low-Level Expression of the E1B 20-Kilodalton Protein by Adenovirus 14p1 Enhances Viral Immunopathogenesis. J. Virol. 2016, 90, 497–505. [Google Scholar] [CrossRef] [PubMed]
  395. Wu, W.; Booth, J.L.; Duggan, E.S.; Patel, K.B.; Coggeshall, K.M.; Metcalf, J.P. Human lung innate immune cytokine response to adenovirus type 7. J. Gen. Virol. 2010, 91, 1155–1163. [Google Scholar] [CrossRef] [PubMed]
  396. Harrod, K.S.; Trapnell, B.C.; Otake, K.; Korfhagen, T.R.; Whitsett, J.A. SP-A enhances viral clearance and inhibits inflammation after pulmonary adenoviral infection. Am. J. Physiol. 1999, 277, L580–L588. [Google Scholar] [CrossRef] [PubMed]
  397. Ducatelle, R.; Palmer, D.; Ossent, P.; Hoorens, J. Immunoperoxidase study of adenovirus pneumonia in dogs. Vet. Q. 1985, 7, 290–296. [Google Scholar] [CrossRef]
  398. Damián, M.; Morales, E.; Salas, G.; Trigo, F.J. Immunohistochemical detection of antigens of distemper, adenovirus and parainfluenza viruses in domestic dogs with pneumonia. J. Comp. Pathol. 2005, 133, 289–293. [Google Scholar] [CrossRef]
  399. Rima, B.; Balkema-Buschmann, A.; Dundon, W.G.; Duprex, P.; Easton, A.; Fouchier, R.; Kurath, G.; Lamb, R.; Lee, B.; Rota, P.; et al. ICTV Virus Taxonomy Profile: Paramyxoviridae. J. Gen. Virol. 2019, 100, 1593–1594. [Google Scholar] [CrossRef] [PubMed]
  400. Shimizu, A.; Tanabe, O.; Anzai, C.; Uchida, K.; Tada, H.; Yoshimura, K. Detection of measles virus genome in bronchoalveolar lavage cells in a patient with measles pneumonia. Eur. Respir. J. 2000, 15, 619–622. [Google Scholar] [CrossRef]
  401. Allen, I.V.; McQuaid, S.; Penalva, R.; Ludlow, M.; Duprex, W.P.; Rima, B.K. Macrophages and Dendritic Cells Are the Predominant Cells Infected in Measles in Humans. mSphere 2018, 3, 10–1128. [Google Scholar] [CrossRef]
  402. de Vries, R.D.; Lemon, K.; Ludlow, M.; McQuaid, S.; Yüksel, S.; van Amerongen, G.; Rennick, L.J.; Rima, B.K.; Osterhaus, A.D.; de Swart, R.L.; et al. In vivo tropism of attenuated and pathogenic measles virus expressing green fluorescent protein in macaques. J. Virol. 2010, 84, 4714–4724. [Google Scholar] [CrossRef] [PubMed]
  403. Ferreira, C.S.; Frenzke, M.; Leonard, V.H.; Welstead, G.G.; Richardson, C.D.; Cattaneo, R. Measles virus infection of alveolar macrophages and dendritic cells precedes spread to lymphatic organs in transgenic mice expressing human signaling lymphocytic activation molecule (SLAM, CD150). J. Virol. 2010, 84, 3033–3042. [Google Scholar] [CrossRef]
  404. de Swart, R.L.; de Vries, R.D.; Rennick, L.J.; van Amerongen, G.; McQuaid, S.; Verburgh, R.J.; Yüksel, S.; de Jong, A.; Lemon, K.; Nguyen, D.T.; et al. Needle-free delivery of measles virus vaccine to the lower respiratory tract of non-human primates elicits optimal immunity and protection. NPJ Vaccines 2017, 2, 22. [Google Scholar] [CrossRef]
  405. Lemon, K.; de Vries, R.D.; Mesman, A.W.; McQuaid, S.; van Amerongen, G.; Yüksel, S.; Ludlow, M.; Rennick, L.J.; Kuiken, T.; Rima, B.K.; et al. Early target cells of measles virus after aerosol infection of non-human primates. PLoS Pathog. 2011, 7, e1001263. [Google Scholar] [CrossRef]
  406. de Vries, R.D.; Ludlow, M.; de Jong, A.; Rennick, L.J.; Verburgh, R.J.; van Amerongen, G.; van Riel, D.; van Run, P.; Herfst, S.; Kuiken, T.; et al. Delineating morbillivirus entry, dissemination and airborne transmission by studying in vivo competition of multicolor canine distemper viruses in ferrets. PLoS Pathog. 2017, 13, e1006371. [Google Scholar] [CrossRef]
  407. Gonzales-Viera, O.; Woolard, K.D.; Keel, M.K. Lung and lymph node explants to study the interaction between host cells and canine distemper virus. Res. Vet. Sci. 2023, 154, 44–51. [Google Scholar] [CrossRef]
  408. Chludzinski, E.; Klemens, J.; Ciurkiewicz, M.; Geffers, R.; Pöpperl, P.; Stoff, M.; Shin, D.L.; Herrler, G.; Beineke, A. Phenotypic and Transcriptional Changes of Pulmonary Immune Responses in Dogs Following Canine Distemper Virus Infection. Int. J. Mol. Sci. 2022, 23, 10019. [Google Scholar] [CrossRef] [PubMed]
  409. de Vries, R.D.; Mesman, A.W.; Geijtenbeek, T.B.; Duprex, W.P.; de Swart, R.L. The pathogenesis of measles. Curr. Opin. Virol. 2012, 2, 248–255. [Google Scholar] [CrossRef]
  410. Kennedy, S.; Smyth, J.A.; Cush, P.F.; McAliskey, M.; McCullough, S.J.; Rima, B.K. Histopathologic and immunocytochemical studies of distemper in harbor porpoises. Vet. Pathol. 1991, 28, 1–7. [Google Scholar] [CrossRef] [PubMed]
  411. Kennedy, S.; Smyth, J.A.; Cush, P.F.; Duignan, P.; Platten, M.; McCullough, S.J.; Allan, G.M. Histopathologic and immunocytochemical studies of distemper in seals. Vet. Pathol. 1989, 26, 97–103. [Google Scholar] [CrossRef]
  412. Kennedy, S.; Kuiken, T.; Ross, H.M.; McAliskey, M.; Moffett, D.; McNiven, C.M.; Carole, M. Morbillivirus infection in two common porpoises (Phocoena phocoena) from the coasts of England and Scotland. Vet. Rec. 1992, 131, 286–290. [Google Scholar] [CrossRef] [PubMed]
  413. Soto, S.; González, B.; Willoughby, K.; Maley, M.; Olvera, A.; Kennedy, S.; Marco, A.; Domingo, M. Systemic herpesvirus and morbillivirus co-infection in a striped dolphin (Stenella coeruleoalba). J. Comp. Pathol. 2012, 146, 269–273. [Google Scholar] [CrossRef]
  414. Hooper, P.T.; Ketterer, P.J.; Hyatt, A.D.; Russell, G.M. Lesions of experimental equine morbillivirus pneumonia in horses. Vet. Pathol. 1997, 34, 312–322. [Google Scholar] [CrossRef]
  415. De Luca, E.; Crisi, P.E.; Marcacci, M.; Malatesta, D.; Di Sabatino, D.; Cito, F.; D’Alterio, N.; Puglia, I.; Berjaoui, S.; Colaianni, M.L.; et al. Epidemiology, pathological aspects and genome heterogeneity of feline morbillivirus in Italy. Vet. Microbiol. 2020, 240, 108484. [Google Scholar] [CrossRef] [PubMed]
  416. Brown, C.C.; Mariner, J.C.; Olander, H.J. An immunohistochemical study of the pneumonia caused by peste des petits ruminants virus. Vet. Pathol. 1991, 28, 166–170. [Google Scholar] [CrossRef]
  417. Kumar, P.; Tripathi, B.N.; Sharma, A.K.; Kumar, R.; Sreenivasa, B.P.; Singh, R.P.; Dhar, P.; Bandyopadhyay, S.K. Pathological and immunohistochemical study of experimental peste des petits ruminants virus infection in goats. J. Vet. Med. B Infect. Dis. Vet. Public Health 2004, 51, 153–159. [Google Scholar] [CrossRef]
  418. Chowdhury, E.H.; Bhuiyan, A.R.; Rahman, M.M.; Siddique, M.S.; Islam, M.R. Natural peste des petits ruminants virus infection in Black Bengal goats: Virological, pathological and immunohistochemical investigation. BMC Vet. Res. 2014, 10, 263. [Google Scholar] [CrossRef] [PubMed]
  419. Wu, J.; Yang, W.; Li, L.; Wu, J.; He, J.; Ru, Y.; Ren, J.; Wang, Y.; Zheng, H.; Shang, Y.; et al. Plasminogen activator urokinase interacts with the fusion protein and antagonizes the growth of Peste des petits ruminants virus. J. Virol. 2024, 98, e0014624. [Google Scholar] [CrossRef]
  420. Chludzinski, E. 2023. Pulmonary Defense Responses in Morbilliviral Diseases: Insights from Natural and Ex Vivo Canine Distemper Virus Infection. Ph.D. Thesis, Stiftung Tierärztliche Hochschule Hannover, Hannover; Germany.
  421. Laegreid, W.W.; Liggitt, H.D.; Silflow, R.M.; Evermann, J.R.; Taylor, S.M.; Leid, R.W. Reversal of virus-induced alveolar macrophage bactericidal dysfunction by cyclooxygenase inhibition in vitro. J. Leukoc. Biol. 1989, 45, 293–300. [Google Scholar] [CrossRef]
  422. Schrijver, R.S.; Kramps, J.A.; Middel, W.G.; Langedijk, J.P.; van Oirschot, J.T. Bovine respiratory syncytial virus replicates minimally in bovine alveolar macrophages. Arch. Virol. 1995, 140, 1905–1917. [Google Scholar] [CrossRef]
  423. Slauson, D.O.; Lay, J.C.; Castleman, W.L.; Neilsen, N.R. Alveolar macrophage phagocytic kinetics following pulmonary parainfluenza-3 virus infection. J. Leukoc. Biol. 1987, 41, 412–420. [Google Scholar] [CrossRef]
  424. Olchowy, T.W.; Slauson, D.O.; Bochsler, P.N. Induction of procoagulant activity in virus infected bovine alveolar macrophages and the effect of lipopolysaccharide. Vet. Immunol. Immunopathol. 1997, 58, 27–37. [Google Scholar] [CrossRef]
  425. Laegreid, W.W.; Taylor, S.M.; Leid, R.W.; Silflow, R.M.; Evermann, J.R.; Breeze, R.G.; Liggitt, H.D. Virus-induced enhancement of arachidonate metabolism by bovine alveolar macrophages in vitro. J. Leukoc. Biol. 1989, 45, 283–292. [Google Scholar] [CrossRef]
  426. Radi, Z.A.; Meyerholz, D.K.; Ackermann, M.R. Pulmonary cyclooxygenase-1 (COX-1) and COX-2 cellular expression and distribution after respiratory syncytial virus and parainfluenza virus infection. Viral. Immunol. 2010, 23, 43–48. [Google Scholar] [CrossRef]
  427. Carthew, P.; Riley, J.; Dinsdale, D. Amelioration of established Sendai viral pneumonia in the nude mouse using a monoclonal antibody to the virus fusion protein. Br. J. Exp. Pathol. 1989, 70, 727–735. [Google Scholar]
  428. Uhl, E.W.; Moldawer, L.L.; Busse, W.W.; Jack, T.J.; Castleman, W.L. Increased tumor necrosis factor-alpha (TNF-alpha) gene expression in parainfluenza type 1 (Sendai) virus-induced bronchiolar fibrosis. Am. J. Pathol. 1998, 152, 513–522. [Google Scholar] [PubMed]
  429. Castro, Í.A.; Yang, Y.; Gnazzo, V.; Kim, D.H.; Van Dyken, S.J.; López, C.B. Murine parainfluenza virus persists in lung innate immune cells sustaining chronic lung pathology. Nat. Microbiol. 2024, 9, 2803–2816. [Google Scholar] [CrossRef] [PubMed]
  430. Hazan, G.; Eubanks, A.; Gierasch, C.; Atkinson, J.; Fox, C.; Hernandez-Leyva, A.; Rosen, A.L.; Kau, A.L.; Agapov, E.; Alexander-Brett, J.; et al. Age-Dependent Reduction in Asthmatic Pathology through Reprogramming of Postviral Inflammatory Responses. J. Immunol. 2022, 208, 1467–1482. [Google Scholar] [CrossRef] [PubMed]
  431. Breitbart, M.; Delwart, E.; Rosario, K.; Segalés, J.; Varsani, A.; Consortium, I.R. ICTV Virus Taxonomy Profile: Circoviridae. J. Gen. Virol. 2017, 98, 1997–1998. [Google Scholar] [CrossRef] [PubMed]
  432. Gillespie, J.; Opriessnig, T.; Meng, X.J.; Pelzer, K.; Buechner-Maxwell, V. Porcine Circovirus Type 2 and Porcine Circovirus-Associated Disease. J. Vet. Intern. Med. 2009, 23, 1151–1163. [Google Scholar] [CrossRef] [PubMed]
  433. Oh, T.; Suh, J.; Chae, C. Pathogenicity of Porcine Circovirus Type 2e in Experimentally Infected Pigs. J. Comp. Pathol. 2022, 195, 19–27. [Google Scholar] [CrossRef]
  434. Qi, W.; Zhu, R.; Bao, C.; Xiao, J.; Liu, B.; Sun, M.; Feng, X.; Gu, J.; Li, Y.; Lei, L. Porcine circovirus type 2 promotes Actinobacillus pleuropneumoniae survival during coinfection of porcine alveolar macrophages by inhibiting ROS production. Vet. Microbiol. 2019, 233, 93–101. [Google Scholar] [CrossRef]
  435. Chang, H.-W.; Jeng, C.-R.; Lin, T.-L.; Liu, J.J.; Chiou, M.-T.; Tsai, Y.-C.; Chia, M.-Y.; Jan, T.-R.; Pang, V.F. Immunopathological effects of porcine circovirus type 2 (PCV2) on swine alveolar macrophages by in vitro inoculation. Vet. Immunol. Immunopathol. 2006, 110, 207–219. [Google Scholar] [CrossRef]
  436. Chang, H.W.; Jeng, C.R.; Liu, J.J.; Lin, T.L.; Chang, C.C.; Chia, M.Y.; Tsai, Y.C.; Pang, V.F. Reduction of porcine reproductive and respiratory syndrome virus (PRRSV) infection in swine alveolar macrophages by porcine circovirus 2 (PCV2)-induced interferon-alpha. Vet. Microbiol. 2005, 108, 167–177. [Google Scholar] [CrossRef] [PubMed]
  437. Chen, M.; Han, J.; Zhang, Y.; Duan, D.; Zhang, S. Porcine circovirus type 2 induces type I interferon production via MyD88-IKKα-IRFs signaling rather than NF-κB in porcine alveolar macrophages in vitro. Res. Vet. Sci. 2016, 104, 188–194. [Google Scholar] [CrossRef] [PubMed]
  438. Qin, Y.; Li, H.; Qiao, J. TLR2/MyD88/NF-κB signalling pathway regulates IL-8 production in porcine alveolar macrophages infected with porcine circovirus 2. J. Gen. Virol. 2016, 97, 445–452. [Google Scholar] [CrossRef]
  439. Yang, S.; Liu, B.; Yin, S.; Shang, Y.; Zhang, X.; Khan, M.U.Z.; Liu, X.; Cai, J. Porcine Circovirus Type 2 Induces Single Immunoglobulin Interleukin-1 Related Receptor (SIGIRR) Downregulation to Promote Interleukin-1β Upregulation in Porcine Alveolar Macrophage. Viruses 2019, 11, 1021. [Google Scholar] [CrossRef]
  440. Li, W.; Liu, S.; Wang, Y.; Deng, F.; Yan, W.; Yang, K.; Chen, H.; He, Q.; Charreyre, C.; Audoneet, J.C. Transcription analysis of the porcine alveolar macrophage response to porcine circovirus type 2. BMC Genom. 2013, 14, 353. [Google Scholar] [CrossRef]
  441. Shi, R.; Hou, L.; Liu, J. Host immune response to infection with porcine circoviruses. Anim. Dis. 2021, 1, 23. [Google Scholar] [CrossRef]
  442. Yang, S.; Zafar Khan, M.U.; Liu, B.; Humza, M.; Yin, S.; Cai, J. In Vitro Analysis of TGF-β Signaling Modulation of Porcine Alveolar Macrophages in Porcine Circovirus Type 2b Infection. Vet. Sci. 2022, 9, 101. [Google Scholar] [CrossRef] [PubMed]
  443. Du, Q.; Huang, Y.; Wang, T.; Zhang, X.; Chen, Y.; Cui, B.; Li, D.; Zhao, X.; Zhang, W.; Chang, L.; et al. Porcine circovirus type 2 activates PI3K/Akt and p38 MAPK pathways to promote interleukin-10 production in macrophages via Cap interaction of gC1qR. Oncotarget 2016, 7, 17492–17507. [Google Scholar] [CrossRef]
  444. Du, Q.; Wu, X.; Wang, T.; Yang, X.; Wang, Z.; Niu, Y.; Zhao, X.; Liu, S.L.; Tong, D.; Huang, Y. Porcine Circovirus Type 2 Suppresses IL-12p40 Induction via Capsid/gC1qR-Mediated MicroRNAs and Signalings. J. Immunol. 2018, 201, 533–547. [Google Scholar] [CrossRef] [PubMed]
  445. Brinton, M.A.; Gulyaeva, A.A.; Balasuriya, U.B.R.; Dunowska, M.; Faaberg, K.S.; Goldberg, T.; Leung, F.C.C.; Nauwynck, H.J.; Snijder, E.J.; Stadejek, T.; et al. ICTV Virus Taxonomy Profile: Arteriviridae 2021. J. Gen. Virol. 2021, 102, 001632. [Google Scholar] [CrossRef] [PubMed]
  446. Gómez-Laguna, J.; Salguero, F.J.; Pallarés, F.J.; Carrasco, L. Immunopathogenesis of porcine reproductive and respiratory syndrome in the respiratory tract of pigs. Vet. J. 2013, 195, 148–155. [Google Scholar] [CrossRef] [PubMed]
  447. Duan, X.; Nauwynck, H.J.; Pensaert, M.B. Virus quantification and identification of cellular targets in the lungs and lymphoid tissues of pigs at different time intervals after inoculation with porcine reproductive and respiratory syndrome virus (PRRSV). Vet. Microbiol. 1997, 56, 9–19. [Google Scholar] [CrossRef]
  448. Renson, P.; Rose, N.; Le Dimna, M.; Mahé, S.; Keranflec’h, A.; Paboeuf, F.; Belloc, C.; Le Potier, M.F.; Bourry, O. Dynamic changes in bronchoalveolar macrophages and cytokines during infection of pigs with a highly or low pathogenic genotype 1 PRRSV strain. Vet. Res. 2017, 48, 15. [Google Scholar] [CrossRef]
  449. De Baere, M.I.; Van Gorp, H.; Delputte, P.L.; Nauwynck, H.J. Interaction of the European genotype porcine reproductive and respiratory syndrome virus (PRRSV) with sialoadhesin (CD169/Siglec-1) inhibits alveolar macrophage phagocytosis. Vet. Res. 2012, 43, 47. [Google Scholar] [CrossRef]
  450. Thanawongnuwech, R.; Thacker, E.L.; Halbur, P.G. Effect of porcine reproductive and respiratory syndrome virus (PRRSV) (isolate ATCC VR-2385) infection on bactericidal activity of porcine pulmonary intravascular macrophages (PIMs): In vitro comparisons with pulmonary alveolar macrophages (PAMs). Vet. Immunol. Immunopathol. 1997, 59, 323–335. [Google Scholar] [CrossRef]
  451. Hu, S.P.; Zhang, Z.; Liu, Y.G.; Tian, Z.J.; Wu, D.L.; Cai, X.H.; He, X.J. Pathogenicity and distribution of highly pathogenic porcine reproductive and respiratory syndrome virus in pigs. Transbound. Emerg. Dis. 2013, 60, 351–359. [Google Scholar] [CrossRef]
  452. Montaner-Tarbes, S.; Del Portillo, H.A.; Montoya, M.; Fraile, L. Key Gaps in the Knowledge of the Porcine Respiratory Reproductive Syndrome Virus (PRRSV). Front. Vet. Sci. 2019, 6, 38. [Google Scholar] [CrossRef] [PubMed]
  453. Gong, X.; Ma, T.; Zhang, Q.; Wang, Y.; Song, C.; Lai, M.; Zhang, C.; Fang, X.; Chen, X. Porcine Reproductive and Respiratory Syndrome Virus Modulates the Switch of Macrophage Polarization from M1 to M2 by Upregulating MoDC-Released sCD83. Viruses 2023, 15, 773. [Google Scholar] [CrossRef]
  454. Wang, L.; Hu, S.; Liu, Q.; Li, Y.; Xu, L.; Zhang, Z.; Cai, X.; He, X. Porcine alveolar macrophage polarization is involved in inhibition of porcine reproductive and respiratory syndrome virus (PRRSV) replication. J. Vet. Med. Sci. 2017, 79, 1906–1915. [Google Scholar] [CrossRef]
  455. Su, C.M.; Rowland, R.R.R.; Yoo, D. Recent Advances in PRRS Virus Receptors and the Targeting of Receptor-Ligand for Control. Vaccines 2021, 9, 354. [Google Scholar] [CrossRef] [PubMed]
  456. Liu, Q.; Yu, Y.Y.; Wang, H.Y.; Wang, J.F.; He, X.J. The IFN-γ-induced immunoproteasome is suppressed in highly pathogenic porcine reproductive and respiratory syndrome virus-infected alveolar macrophages. Vet. Immunol. Immunopathol. 2020, 226, 110069. [Google Scholar] [CrossRef] [PubMed]
  457. Cao, J.; Grauwet, K.; Vermeulen, B.; Devriendt, B.; Jiang, P.; Favoreel, H.; Nauwynck, H. Suppression of NK cell-mediated cytotoxicity against PRRSV-infected porcine alveolar macrophages in vitro. Vet. Microbiol. 2013, 164, 261–269. [Google Scholar] [CrossRef] [PubMed]
  458. Chaudhari, J.; Liew, C.S.; Riethoven, J.M.; Sillman, S.; Vu, H.L.X. Porcine Reproductive and Respiratory Syndrome Virus Infection Upregulates Negative Immune Regulators and T-Cell Exhaustion Markers. J. Virol. 2021, 95, e0105221. [Google Scholar] [CrossRef] [PubMed]
  459. Sánchez-Carvajal, J.M.; Rodríguez-Gómez, I.M.; Ruedas-Torres, I.; Zaldívar-López, S.; Larenas-Muñoz, F.; Bautista-Moreno, R.; Garrido, J.J.; Pallarés, F.J.; Carrasco, L.; Gómez-Laguna, J. Time Series Transcriptomic Analysis of Bronchoalveolar Lavage Cells from Piglets Infected with Virulent or Low-Virulent Porcine Reproductive and Respiratory Syndrome Virus 1. J. Virol. 2022, 96, e0114021. [Google Scholar] [CrossRef]
  460. Song, S.; Bi, J.; Wang, D.; Fang, L.; Zhang, L.; Li, F.; Chen, H.; Xiao, S. Porcine reproductive and respiratory syndrome virus infection activates IL-10 production through NF-κB and p38 MAPK pathways in porcine alveolar macrophages. Dev. Comp. Immunol. 2013, 39, 265–272. [Google Scholar] [CrossRef] [PubMed]
  461. Yu, J.; Liu, Y.; Zhang, Y.; Zhu, X.; Ren, S.; Guo, L.; Liu, X.; Sun, W.; Chen, Z.; Cong, X.; et al. The integrity of PRRSV nucleocapsid protein is necessary for up-regulation of optimal interleukin-10 through NF-κB and p38 MAPK pathways in porcine alveolar macrophages. Microb. Pathog. 2017, 109, 319–324. [Google Scholar] [CrossRef] [PubMed]
  462. Gómez-Laguna, J.; Salguero, F.J.; Barranco, I.; Pallarés, F.J.; Rodríguez-Gómez, I.M.; Bernabé, A.; Carrasco, L. Cytokine expression by macrophages in the lung of pigs infected with the porcine reproductive and respiratory syndrome virus. J. Comp. Pathol. 2010, 142, 51–60. [Google Scholar] [CrossRef] [PubMed]
  463. Liu, J.; Su, G.; Duan, C.; Sun, Z.; Xiao, S.; Zhou, Y.; Fang, L. Porcine reproductive and respiratory syndrome virus infection activates ADAM17 to induce inflammatory responses. Vet. Microbiol. 2024, 292, 110066. [Google Scholar] [CrossRef]
  464. Sun, W.; Wu, W.; Jiang, N.; Ge, X.; Zhang, Y.; Han, J.; Guo, X.; Zhou, L.; Yang, H. Highly Pathogenic PRRSV-Infected Alveolar Macrophages Impair the Function of Pulmonary Microvascular Endothelial Cells. Viruses 2022, 14, 452. [Google Scholar] [CrossRef]
  465. Sun, Z.; Chen, X.; Liu, J.; Du, Y.; Duan, C.; Xiao, S.; Zhou, Y.; Fang, L. PRRSV-induced inflammation in pulmonary intravascular macrophages (PIMs) and pulmonary alveolar macrophages (PAMs) contributes to endothelial barrier function injury. Vet. Microbiol. 2023, 281, 109730. [Google Scholar] [CrossRef]
  466. Jung, K.; Renukaradhya, G.J.; Alekseev, K.P.; Fang, Y.; Tang, Y.; Saif, L.J. Porcine reproductive and respiratory syndrome virus modifies innate immunity and alters disease outcome in pigs subsequently infected with porcine respiratory coronavirus: Implications for respiratory viral co-infections. J. Gen. Virol. 2009, 90, 2713–2723. [Google Scholar] [CrossRef] [PubMed]
  467. Costers, S.; Lefebvre, D.J.; Delputte, P.L.; Nauwynck, H.J. Porcine reproductive and respiratory syndrome virus modulates apoptosis during replication in alveolar macrophages. Arch. Virol. 2008, 153, 1453–1465. [Google Scholar] [CrossRef] [PubMed]
  468. He, S.; Li, L.; Chen, H.; Hu, X.; Wang, W.; Zhang, H.; Wei, R.; Zhang, X.; Chen, Y.; Liu, X. PRRSV Infection Induces Gasdermin D-Driven Pyroptosis of Porcine Alveolar Macrophages through NLRP3 Inflammasome Activation. J. Virol. 2022, 96, e0212721. [Google Scholar] [CrossRef] [PubMed]
  469. Wei, R.; Li, L.; Chen, H.; Wang, X.; Chen, Y.; Liu, X. Inhibition of porcine reproductive and respiratory syndrome virus replication by rifampicin in vitro. Front. Vet. Sci. 2024, 11, 1439015. [Google Scholar] [CrossRef]
  470. Zhu, J.; He, X.; Bernard, D.; Shen, J.; Su, Y.; Wolek, A.; Issacs, B.; Mishra, N.; Tian, X.; Garmendia, A.; et al. Identification of New Compounds against PRRSV Infection by Directly Targeting CD163. J. Virol. 2023, 97, e0005423. [Google Scholar] [CrossRef] [PubMed]
  471. Balasuriya, U.B.; Go, Y.Y.; MacLachlan, N.J. Equine arteritis virus. Vet. Microbiol. 2013, 167, 93–122. [Google Scholar] [CrossRef]
  472. Del Piero, F. Equine viral arteritis. Vet. Pathol. 2000, 37, 287–296. [Google Scholar] [CrossRef] [PubMed]
  473. Feng, H.; Blanco, G.; Segalés, J.; Sibila, M. Can Porcine circovirus type 2 (PCV2) infection be eradicated by mass vaccination? Vet. Microbiol. 2014, 172, 92–99. [Google Scholar] [CrossRef] [PubMed]
  474. Sun, N.; Sun, P.; Lv, H.; Sun, Y.; Guo, J.; Wang, Z.; Luo, T.; Wang, S.; Li, H. Matrine displayed antiviral activity in porcine alveolar macrophages co-infected by porcine reproductive and respiratory syndrome virus and porcine circovirus type 2. Sci. Rep. 2016, 6, 24401. [Google Scholar] [CrossRef]
Figure 1. Interaction of alveolar macrophages (AlvMϕ) with their anatomical niche under homeostatic conditions. (A). AlvMϕ metabolize and recycle alveolar surfactant. (B) AlvMϕ clear apoptotic cells from the alveolar space (efferocytosis) and promote epithelial repair. (C) Suppressor of cytokine signaling (SOCS) protein secretion by AlvMϕ influences epithelial responsiveness to cytokines and is enhanced by epithelial-derived Prostaglandin E2 (PGE2). (D) Regulatory interactions between AlvMϕ and epithelial cells secure the tight regulation of AlvMϕ inflammatory reactions via interleukin 10 (IL-10), granulocyte-macrophage colony-stimulating factor (GM-CSF), transforming growth factor-β (TGF-β), and CD200. (E) Direct intercellular transduction via gap junction formation between AlvMϕ and epithelial cells and Ca2+ waves. (F). AlvMϕ mediate suppression of antigen presentation by dendritic cells and T cell proliferation via TGF-β and prostaglandin signaling.
Figure 1. Interaction of alveolar macrophages (AlvMϕ) with their anatomical niche under homeostatic conditions. (A). AlvMϕ metabolize and recycle alveolar surfactant. (B) AlvMϕ clear apoptotic cells from the alveolar space (efferocytosis) and promote epithelial repair. (C) Suppressor of cytokine signaling (SOCS) protein secretion by AlvMϕ influences epithelial responsiveness to cytokines and is enhanced by epithelial-derived Prostaglandin E2 (PGE2). (D) Regulatory interactions between AlvMϕ and epithelial cells secure the tight regulation of AlvMϕ inflammatory reactions via interleukin 10 (IL-10), granulocyte-macrophage colony-stimulating factor (GM-CSF), transforming growth factor-β (TGF-β), and CD200. (E) Direct intercellular transduction via gap junction formation between AlvMϕ and epithelial cells and Ca2+ waves. (F). AlvMϕ mediate suppression of antigen presentation by dendritic cells and T cell proliferation via TGF-β and prostaglandin signaling.
Ijms 26 00407 g001
Figure 2. Suggested role of alveolar macrophages (AlvMϕ) in SARS-CoV-2 pathogenesis. (A) Activation of AlvMϕ by contact with viral products and subsequent induction of proinflammatory and chemotactic cytokines and chemokines. (B) Recruitment of T cells and inflammatory monocytes from the peripheral blood. (C) T cell-derived interferon-γ (IFN-γ) further stimulates AlvMϕ activation. (D) This hyperinflammatory microenvironment favors dysregulation and death of AlvMϕ. (E) Replenishing the lost AlvMϕ; interferon-stimulated, recruited monocytes accumulate within the alveolus and may cause tissue damage. (F). In convalescing patients, recruited monocytes differentiate into homeostatic AlvMϕ and alveolar homeostasis is restored.
Figure 2. Suggested role of alveolar macrophages (AlvMϕ) in SARS-CoV-2 pathogenesis. (A) Activation of AlvMϕ by contact with viral products and subsequent induction of proinflammatory and chemotactic cytokines and chemokines. (B) Recruitment of T cells and inflammatory monocytes from the peripheral blood. (C) T cell-derived interferon-γ (IFN-γ) further stimulates AlvMϕ activation. (D) This hyperinflammatory microenvironment favors dysregulation and death of AlvMϕ. (E) Replenishing the lost AlvMϕ; interferon-stimulated, recruited monocytes accumulate within the alveolus and may cause tissue damage. (F). In convalescing patients, recruited monocytes differentiate into homeostatic AlvMϕ and alveolar homeostasis is restored.
Ijms 26 00407 g002
Figure 3. Detection of CDV nucleoprotein (NP) in Iba1+ airway histiocytes (white arrows). The photomicrograph by Elisa Chludzinski was published in “Phenotypic and Transcriptional Changes of Pulmonary Immune Responses in Dogs Following Canine Distemper Virus Infection” licensed under CC BY 4.0 (https://creativecommons.org/licenses/by/4.0/, accessed on 1 December 2024) [408].
Figure 3. Detection of CDV nucleoprotein (NP) in Iba1+ airway histiocytes (white arrows). The photomicrograph by Elisa Chludzinski was published in “Phenotypic and Transcriptional Changes of Pulmonary Immune Responses in Dogs Following Canine Distemper Virus Infection” licensed under CC BY 4.0 (https://creativecommons.org/licenses/by/4.0/, accessed on 1 December 2024) [408].
Ijms 26 00407 g003
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Pöpperl, P.; Stoff, M.; Beineke, A. Alveolar Macrophages in Viral Respiratory Infections: Sentinels and Saboteurs of Lung Defense. Int. J. Mol. Sci. 2025, 26, 407. https://doi.org/10.3390/ijms26010407

AMA Style

Pöpperl P, Stoff M, Beineke A. Alveolar Macrophages in Viral Respiratory Infections: Sentinels and Saboteurs of Lung Defense. International Journal of Molecular Sciences. 2025; 26(1):407. https://doi.org/10.3390/ijms26010407

Chicago/Turabian Style

Pöpperl, Pauline, Melanie Stoff, and Andreas Beineke. 2025. "Alveolar Macrophages in Viral Respiratory Infections: Sentinels and Saboteurs of Lung Defense" International Journal of Molecular Sciences 26, no. 1: 407. https://doi.org/10.3390/ijms26010407

APA Style

Pöpperl, P., Stoff, M., & Beineke, A. (2025). Alveolar Macrophages in Viral Respiratory Infections: Sentinels and Saboteurs of Lung Defense. International Journal of Molecular Sciences, 26(1), 407. https://doi.org/10.3390/ijms26010407

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop