Pathophysiology and Management Strategies for Post-Stroke Spasticity: An Update Review
Abstract
:1. Introduction
2. Methods
3. The Anatomy of Descending Motor Conduction Pathways
4. Pathophysiology of PSS
4.1. Cortical and Subcortical Alterations
4.2. Imbalanced Descending Supraspinal Regulations
4.3. Changes in the Spinal Cord
4.3.1. Reflex Circuits
4.3.2. Intrinsic Properties of the Motoneuron
4.4. Secondary Changes in Muscle
4.5. Neurotransmitters
5. Therapeutic Interventions of PSS
5.1. Assessment
5.2. The Recommended Approach
5.3. Progress in the Intervention of PSS
5.3.1. Neuroprotective Therapy
5.3.2. Gene Therapy
5.3.3. Targeted Therapy
5.3.4. Physiotherapy
Motor Therapy
Peripheral Sensory Stimulation
Bioelectronic Medicine
Biofeedback Therapy
5.3.5. NexTGen Therapy
5.3.6. Complementary and Alternative Medicine
Traditional Chinese Medicine Formulas
Acupuncture
5.4. Limitations
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Wei, Y.X.; Zhao, X.; Zhang, B.C. Synergistic effect of moxibustion and rehabilitation training in functional recovery of post-stroke spastic hemiplegia. Complement. Ther. Med. 2016, 26, 55–60. [Google Scholar] [CrossRef] [PubMed]
- Ahmedy, F.; Mohd Tuah, N.; Mohamad Hashim, N.; Sybil Shah, S.; Ahmedy, I.; Tan, S.F. Revisiting spasticity after stroke: Clustering clinical characteristics for identifying at-risk individuals. J. Multidiscip. Healthc. 2021, 14, 2391–2396. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Francisco, G.E.; Rymer, W.Z. A new definition of poststroke spasticity and the interference of spasticity with motor recovery from acute to chronic stages. Neurorehabil. Neural Repair. 2021, 35, 601–610. [Google Scholar] [CrossRef] [PubMed]
- Wissel, J.; Manack, A.; Brainin, M. Toward an epidemiology of poststroke spasticity. Neurology 2013, 80, S13–S19. [Google Scholar] [CrossRef]
- Pundik, S.; McCabe, J.; Skelly, M.; Tatsuoka, C.; Daly, J.J. Association of spasticity and motor dysfunction in chronic stroke. Ann. Phys. Rehabil. Med. 2019, 62, 397–402. [Google Scholar] [CrossRef]
- Sommerfeld, D.K.; Eek, E.U.; Svensson, A.K.; Holmqvist, L.W.; von Arbin, M.H. Spasticity after stroke: Its occurrence and association with motor impairments and activity limitations. Stroke 2004, 35, 134–139. [Google Scholar] [CrossRef]
- Gittler, M.; Davis, A.M. Guidelines for adult stroke rehabilitation and recovery. JAMA 2018, 319, 820–821. [Google Scholar] [CrossRef] [PubMed]
- Francisco, G.E.; McGuire, J.R. Poststroke spasticity management. Stroke 2012, 43, 3132–3136. [Google Scholar] [CrossRef] [PubMed]
- Shaw, L.; Rodgers, H.; Price, C.; van Wijck, F.; Shackley, P.; Steen, N.; Barnes, M.; Ford, G.; Graham, L.; Bo, T.I. BoTULS: A multicentre randomised controlled trial to evaluate the clinical effectiveness and cost-effectiveness of treating upper limb spasticity due to stroke with botulinum toxin type A. Health Technol. Assess. 2010, 14, 1–113, iii–iv. [Google Scholar] [CrossRef]
- Baker, S.N. The primate reticulospinal tract, hand function and functional recovery. J. Physiol. 2011, 589, 5603–5612. [Google Scholar] [CrossRef]
- Mukherjee, A.; Chakravarty, A. Spasticity mechanisms—For the clinician. Front. Neurol. 2010, 1, 149. [Google Scholar] [CrossRef] [PubMed]
- Mayor, D.; Tymianski, M. Neurotransmitters in the mediation of cerebral ischemic injury. Neuropharmacology 2018, 134, 178–188. [Google Scholar] [CrossRef] [PubMed]
- Bolay, H.; Dalkara, T. Mechanisms of motor dysfunction after transient MCA occlusion: Persistent transmission failure in cortical synapses is a major determinant. Stroke 1998, 29, 1988–1993; discussion 1994. [Google Scholar] [CrossRef]
- Yu, Q.; Yin, D.; Kaiser, M.; Xu, G.; Guo, M.; Liu, F.; Li, J.; Fan, M. Pathway-specific mediation effect between structure, function, and motor impairment after subcortical stroke. Neurology 2023, 100, e616–e626. [Google Scholar] [CrossRef] [PubMed]
- Ri, S.J.; Glaess-Leistner, S.; Wissel, J. Early brain imaging predictors of post-stroke spasticity. J. Rehabil. Med. 2021, 53, 6. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.B.; Hong, B.Y.; Kim, J.S.; Sul, B.; Yoon, S.C.; Ji, E.K.; Son, D.B.; Hwang, B.Y.; Lim, S.H. Which brain lesions produce spasticity? An observational study on 45 stroke patients. PLoS ONE 2019, 14, e0210038. [Google Scholar] [CrossRef] [PubMed]
- Cheung, D.K.; Climans, S.A.; Black, S.E.; Gao, F.; Szilagyi, G.M.; Mochizuki, G. Lesion characteristics of individuals with upper limb spasticity after stroke. Neurorehabil. Neural Repair. 2016, 30, 63–70. [Google Scholar] [CrossRef] [PubMed]
- Ganguly, J.; Kulshreshtha, D.; Almotiri, M.; Jog, M. Muscle tone physiology and abnormalities. Toxins 2021, 13, 282. [Google Scholar] [CrossRef]
- Fries, W.; Danek, A.; Scheidtmann, K.; Hamburger, C. Motor recovery following capsular stroke. Role of descending pathways from multiple motor areas. Brain 1993, 116 Pt 2, 369–382. [Google Scholar] [CrossRef]
- McCall, A.A.; Miller, D.M.; Yates, B.J. Descending influences on vestibulospinal and vestibulosympathetic reflexes. Front. Neurol. 2017, 8, 112. [Google Scholar] [CrossRef]
- Li, S.; Chen, Y.T.; Francisco, G.E.; Zhou, P.; Rymer, W.Z. A unifying pathophysiological account for post-stroke spasticity and disordered motor control. Front. Neurol. 2019, 10, 468. [Google Scholar] [CrossRef]
- Jankelowitz, S.K.; Colebatch, J.G. The acoustic startle reflex in ischemic stroke. Neurology 2004, 62, 114–116. [Google Scholar] [CrossRef] [PubMed]
- Bhadane, M.Y.; Gao, F.; Francisco, G.E.; Zhou, P.; Li, S. Correlation of resting elbow angle with spasticity in chronic stroke survivors. Front. Neurol. 2015, 6, 183. [Google Scholar] [CrossRef] [PubMed]
- Hammar, I.; Krutki, P.; Drzymala-Celichowska, H.; Nilsson, E.; Jankowska, E. A trans-spinal loop between neurones in the reticular formation and in the cerebellum. J. Physiol. 2011, 589, 653–665. [Google Scholar] [CrossRef]
- Jankowska, E. On the distribution of information from muscle spindles in the spinal cord; How much does it depend on random factors? J. Anat. 2015, 227, 184–193. [Google Scholar] [CrossRef] [PubMed]
- Lamy, J.C.; Wargon, I.; Mazevet, D.; Ghanim, Z.; Pradat-Diehl, P.; Katz, R. Impaired efficacy of spinal presynaptic mechanisms in spastic stroke patients. Brain 2009, 132, 734–748. [Google Scholar] [CrossRef]
- Burke, D.; Wissel, J.; Donnan, G.A. Pathophysiology of spasticity in stroke. Neurology 2013, 80, S20–S26. [Google Scholar] [CrossRef]
- Nakashima, K.; Rothwell, J.C.; Day, B.L.; Thompson, P.D.; Shannon, K.; Marsden, C.D. Reciprocal inhibition between forearm muscles in patients with writer’s cramp and other occupational cramps, symptomatic hemidystonia and hemiparesis due to stroke. Brain 1989, 112 Pt 3, 681–697. [Google Scholar] [CrossRef] [PubMed]
- Crone, C.; Petersen, N.T.; Gimenez-Roldan, S.; Lungholt, B.; Nyborg, K.; Nielsen, J.B. Reduced reciprocal inhibition is seen only in spastic limbs in patients with neurolathyrism. Exp. Brain Res. 2007, 181, 193–197. [Google Scholar] [CrossRef]
- Cabaj, A.; Stecina, K.; Jankowska, E. Same spinal interneurons mediate reflex actions of group Ib and group II afferents and crossed reticulospinal actions. J. Neurophysiol. 2006, 95, 3911–3922. [Google Scholar] [CrossRef]
- Delwaide, P.J.; Oliver, E. Short-latency autogenic inhibition (IB inhibition) in human spasticity. J. Neurol. Neurosurg. Psychiatry 1988, 51, 1546–1550. [Google Scholar] [CrossRef]
- Crone, C.; Johnsen, L.L.; Biering-Sorensen, F.; Nielsen, J.B. Appearance of reciprocal facilitation of ankle extensors from ankle flexors in patients with stroke or spinal cord injury. Brain 2003, 126, 495–507. [Google Scholar] [CrossRef]
- Morita, H.; Shindo, M.; Momoi, H.; Yanagawa, S.; Ikeda, S.; Yanagisawa, N. Lack of modulation of Ib inhibition during antagonist contraction in spasticity. Neurology 2006, 67, 52–56. [Google Scholar] [CrossRef]
- Marchand-Pauvert, V.; Aymard, C.; Giboin, L.S.; Dominici, F.; Rossi, A.; Mazzocchio, R. Beyond muscular effects: Depression of spinal recurrent inhibition after botulinum neurotoxin A. J. Physiol. 2013, 591, 1017–1029. [Google Scholar] [CrossRef] [PubMed]
- Marque, P.; Simonetta-Moreau, M.; Maupas, E.; Roques, C.F. Facilitation of transmission in heteronymous group II pathways in spastic hemiplegic patients. J. Neurol. Neurosurg. Psychiatry 2001, 70, 36–42. [Google Scholar] [CrossRef] [PubMed]
- Maupas, E.; Marque, P.; Roques, C.F.; Simonetta-Moreau, M. Modulation of the transmission in group II heteronymous pathways by tizanidine in spastic hemiplegic patients. J. Neurol. Neurosurg. Psychiatry 2004, 75, 130–135. [Google Scholar] [PubMed]
- Heckman, C.J.; Johnson, M.; Mottram, C.; Schuster, J. Persistent inward currents in spinal motoneurons and their influence on human motoneuron firing patterns. Neuroscientist 2008, 14, 264–275. [Google Scholar] [CrossRef] [PubMed]
- McPherson, J.G.; Ellis, M.D.; Heckman, C.J.; Dewald, J.P. Evidence for increased activation of persistent inward currents in individuals with chronic hemiparetic stroke. J. Neurophysiol. 2008, 100, 3236–3243. [Google Scholar] [CrossRef]
- Gorassini, M.A.; Knash, M.E.; Harvey, P.J.; Bennett, D.J.; Yang, J.F. Role of motoneurons in the generation of muscle spasms after spinal cord injury. Brain 2004, 127, 2247–2258. [Google Scholar] [CrossRef] [PubMed]
- Mottram, C.J.; Wallace, C.L.; Chikando, C.N.; Rymer, W.Z. Origins of spontaneous firing of motor units in the spastic-paretic biceps brachii muscle of stroke survivors. J. Neurophysiol. 2010, 104, 3168–3179. [Google Scholar] [CrossRef]
- Mirbagheri, M.M.; Tsao, C.C.; Rymer, W.Z. Changes of elbow kinematics and kinetics during 1 year after stroke. Muscle Nerve 2008, 37, 387–395. [Google Scholar] [CrossRef] [PubMed]
- Friden, J.; Lieber, R.L. Spastic muscle cells are shorter and stiffer than normal cells. Muscle Nerve 2003, 27, 157–164. [Google Scholar] [CrossRef] [PubMed]
- Gracies, J.M. Pathophysiology of spastic paresis. II: Emergence of muscle overactivity. Muscle Nerve 2005, 31, 552–571. [Google Scholar] [CrossRef] [PubMed]
- Pandyan, A.D.; Gregoric, M.; Barnes, M.P.; Wood, D.; Van Wijck, F.; Burridge, J.; Hermens, H.; Johnson, G.R. Spasticity: Clinical perceptions, neurological realities and meaningful measurement. Disabil. Rehabil. 2005, 27, 2–6. [Google Scholar] [CrossRef] [PubMed]
- Payenok, A.; Bilobryn, M.; Mitelman, I. Comparison of the dynamic changes of amino acid blood plasma spectrum in patients with the primary cerebral ischemic stroke depending on the postapoplectic spasticity development in the recovery period. EUREKA Health Sci. 2016, 3, 17–23. [Google Scholar] [CrossRef]
- Grigoras, I.F.; Stagg, C.J. Recent advances in the role of excitation-inhibition balance in motor recovery post-stroke. Fac. Rev. 2021, 10, 58. [Google Scholar] [CrossRef] [PubMed]
- Welch, K.M.; Chabi, E.; Buckingham, J.; Bergin, B.; Achar, V.S.; Meyer, J.S. Cathecholamine and 5-hydroxytryptamine levels in ischemic brain. Influence of p-chlorophenylalanine. Stroke 1977, 8, 341–346. [Google Scholar] [CrossRef]
- Seo, N.J.; Fischer, H.W.; Bogey, R.A.; Rymer, W.Z.; Kamper, D.G. Effect of a serotonin antagonist on delay in grip muscle relaxation for persons with chronic hemiparetic stroke. Clin. Neurophysiol. 2011, 122, 796–802. [Google Scholar] [CrossRef]
- Schwarz, P.B.; Peever, J.H. Dopamine triggers skeletal muscle tone by activating D1-like receptors on somatic motoneurons. J. Neurophysiol. 2011, 106, 1299–1309. [Google Scholar] [CrossRef] [PubMed]
- Kawano, T.; Tsutsumi, K.; Miyake, H.; Mori, K. Striatal dopamine in acute cerebral ischemia of stroke-resistant rats. Stroke 1988, 19, 1540–1543. [Google Scholar] [CrossRef] [PubMed]
- Schwarz, P.B.; Yee, N.; Mir, S.; Peever, J.H. Noradrenaline triggers muscle tone by amplifying glutamate-driven excitation of somatic motoneurones in anaesthetized rats. J. Physiol. 2008, 586, 5787–5802. [Google Scholar] [CrossRef] [PubMed]
- Parkis, M.A.; Bayliss, D.A.; Berger, A.J. Actions of norepinephrine on rat hypoglossal motoneurons. J. Neurophysiol. 1995, 74, 1911–1919. [Google Scholar] [CrossRef] [PubMed]
- Fung, S.J.; Barnes, C.D. Evidence of facilitatory coerulospinal action in lumbar motoneurons of cats. Brain Res. 1981, 216, 299–311. [Google Scholar] [CrossRef]
- Kaplan, L.I.; Grynbaum, B.B.; Lloyd, K.E.; Rusk, H.A. Pain and spasticity in patients with spinal cord dysfunction. Results of a follow-up study. JAMA 1962, 182, 918–925. [Google Scholar] [CrossRef]
- Brainin, M.; Norrving, B.; Sunnerhagen, K.S.; Goldstein, L.B.; Cramer, S.C.; Donnan, G.A.; Duncan, P.W.; Francisco, G.; Good, D.; Graham, G.; et al. Poststroke chronic disease management: Towards improved identification and interventions for poststroke spasticity-related complications. Int. J. Stroke 2011, 6, 42–46. [Google Scholar] [CrossRef] [PubMed]
- Francisco, G.E.; Yablon, S.A.; Schiess, M.C.; Wiggs, L.; Cavalier, S.; Grissom, S. Consensus panel guidelines for the use of intrathecal baclofen therapy in poststroke spastic hypertonia. Top. Stroke Rehabil. 2006, 13, 74–85. [Google Scholar] [CrossRef]
- Dong, Y.; Wu, T.; Hu, X.; Wang, T. Efficacy and safety of botulinum toxin type A for upper limb spasticity after stroke or traumatic brain injury: A systematic review with meta-analysis and trial sequential analysis. Eur. J. Phys. Rehabil. Med. 2017, 53, 256–267. [Google Scholar] [CrossRef]
- Zhang, L.; Chopp, M.; Meier, D.H.; Winter, S.; Wang, L.; Szalad, A.; Lu, M.; Wei, M.; Cui, Y.; Zhang, Z.G. Sonic hedgehog signaling pathway mediates cerebrolysin-improved neurological function after stroke. Stroke 2013, 44, 1965–1972. [Google Scholar] [CrossRef]
- Masliah, E.; Diez-Tejedor, E. The pharmacology of neurotrophic treatment with cerebrolysin: Brain protection and repair to counteract pathologies of acute and chronic neurological disorders. Drugs Today 2012, 48, 3–24. [Google Scholar] [CrossRef]
- Guan, X.; Wang, Y.; Kai, G.; Zhao, S.; Huang, T.; Li, Y.; Xu, Y.; Zhang, L.; Pang, T. Cerebrolysin ameliorates focal cerebral ischemia injury through neuroinflammatory inhibition via CREB/PGC-1alpha pathway. Front. Pharmacol. 2019, 10, 1245. [Google Scholar] [CrossRef] [PubMed]
- Asgari Taei, A.; Nasoohi, S.; Hassanzadeh, G.; Kadivar, M.; Dargahi, L.; Farahmandfar, M. Enhancement of angiogenesis and neurogenesis by intracerebroventricular injection of secretome from human embryonic stem cell-derived mesenchymal stem cells in ischemic stroke model. Biomed. Pharmacother. 2021, 140, 111709. [Google Scholar] [CrossRef] [PubMed]
- Cui, C.; Cui, Y.; Gao, J.; Li, R.; Jiang, X.; Tian, Y.; Wang, K.; Cui, J. Intraparenchymal treatment with bone marrow mesenchymal stem cell-conditioned medium exerts neuroprotection following intracerebral hemorrhage. Mol. Med. Rep. 2017, 15, 2374–2382. [Google Scholar] [CrossRef] [PubMed]
- Chacon-Barba, J.C.; Moral-Munoz, J.A.; De Miguel-Rubio, A.; Lucena-Anton, D. Effects of resistance training on spasticity in people with stroke: A systematic review. Brain Sci. 2024, 14, 57. [Google Scholar] [CrossRef]
- Salehi Dehno, N.; Kamali, F.; Shariat, A.; Jaberzadeh, S. Unilateral strength training of the less affected hand improves cortical excitability and clinical outcomes in patients with subacute stroke: A randomized controlled trial. Arch. Phys. Med. Rehabil. 2021, 102, 914–924. [Google Scholar] [CrossRef] [PubMed]
- Ghasemi, E.; Khademi-Kalantari, K.; Khalkhali-Zavieh, M.; Rezasoltani, A.; Ghasemi, M.; Akbarzadeh Baghban, A.; Ghasemi, M. The effect of functional stretching exercises on neural and mechanical properties of the spastic medial gastrocnemius muscle in patients with chronic stroke: A randomized controlled trial. J. Stroke Cerebrovasc. Dis. 2018, 27, 1733–1742. [Google Scholar] [CrossRef]
- Alaca, N.; Ocal, N.M. Proprioceptive based training or modified constraint-induced movement therapy on upper extremity motor functions in chronic stroke patients: A randomized controlled study. Neurorehabilitation 2022, 51, 271–282. [Google Scholar] [CrossRef]
- Gottlieb, A.; Boltzmann, M.; Schmidt, S.B.; Gutenbrunner, C.; Krauss, J.K.; Stangel, M.; Hoglinger, G.U.; Wallesch, C.W.; Rollnik, J.D. Treatment of upper limb spasticity with inhibitory repetitive transcranial magnetic stimulation: A randomized placebo-controlled trial. Neurorehabilitation 2021, 49, 425–434. [Google Scholar] [CrossRef] [PubMed]
- Koyama, S.; Tanabe, S.; Takeda, K.; Sakurai, H.; Kanada, Y. Modulation of spinal inhibitory reflexes depends on the frequency of transcutaneous electrical nerve stimulation in spastic stroke survivors. Somatosens. Mot. Res. 2016, 33, 8–15. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.L.; Jiang, L.J.; Cheng, Y.Y.; Chen, C.; Hu, J.; Zhang, A.J.; Hua, Y.; Bai, Y.L. Focal vibration of the plantarflexor and dorsiflexor muscles improves poststroke spasticity: A randomized single-blind controlled trial. Ann. Phys. Rehabil. Med. 2023, 66, 101670. [Google Scholar] [CrossRef]
- Yang, S.M.; Chen, Y.H.; Lu, Y.L.; Wu, C.H.; Chen, W.S.; Lin, M.T. The dose effectiveness of extracorporeal shockwave on plantar flexor spasticity of ankle in stroke patients: A randomized controlled trial. J. Neuroeng. Rehabil. 2024, 21, 176. [Google Scholar] [CrossRef]
- Lee, J.H.; Kim, E.J. The effects of shock wave therapy on spasticity and walking ability in people with stroke: A comparative study of different application sites. Brain Sci. 2023, 13, 687. [Google Scholar] [CrossRef]
- Daliri, S.S.; Forogh, B.; Emami Razavi, S.Z.; Ahadi, T.; Madjlesi, F.; Ansari, N.N. A single blind, clinical trial to investigate the effects of a single session extracorporeal shock wave therapy on wrist flexor spasticity after stroke. Neurorehabilitation 2015, 36, 67–72. [Google Scholar] [CrossRef] [PubMed]
- Santamato, A.; Micello, M.F.; Panza, F.; Fortunato, F.; Logroscino, G.; Picelli, A.; Manganotti, P.; Smania, N.; Fiore, P.; Ranieri, M. Extracorporeal shock wave therapy for the treatment of poststroke plantar-flexor muscles spasticity: A prospective open-label study. Top. Stroke Rehabil. 2014, 21 (Suppl. S1), S17–S24. [Google Scholar] [CrossRef] [PubMed]
- Gandolfi, M.; Vale, N.; Dimitrova, E.K.; Mazzoleni, S.; Battini, E.; Filippetti, M.; Picelli, A.; Santamato, A.; Gravina, M.; Saltuari, L.; et al. Effectiveness of robot-assisted upper limb training on spasticity, function and muscle activity in chronic stroke patients treated with botulinum toxin: A randomized single-blinded controlled trial. Front. Neurol. 2019, 10, 11. [Google Scholar] [CrossRef] [PubMed]
- Oh, Y.B.; Kim, G.W.; Han, K.S.; Won, Y.H.; Park, S.H.; Seo, J.H.; Ko, M.H. Efficacy of virtual reality combined with real instrument training for patients with stroke: A randomized controlled trial. Arch. Phys. Med. Rehabil. 2019, 100, 1400–1408. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Zhang, S.; Zhang, J.; Tong, Q.; Ye, X.; Wang, K.; Li, J. Electromyographic biofeedback therapy for improving limb function after stroke: A systematic review and meta-analysis. PLoS ONE 2024, 19, e0289572. [Google Scholar] [CrossRef]
- Samuelkamaleshkumar, S.; Reethajanetsureka, S.; Pauljebaraj, P.; Benshamir, B.; Padankatti, S.M.; David, J.A. Mirror therapy enhances motor performance in the paretic upper limb after stroke: A pilot randomized controlled trial. Arch. Phys. Med. Rehabil. 2014, 95, 2000–2005. [Google Scholar] [CrossRef] [PubMed]
- Sieghartsleitner, S.; Sebastian-Romagosa, M.; Cho, W.; Grunwald, J.; Ortner, R.; Scharinger, J.; Kamada, K.; Guger, C. Upper extremity training followed by lower extremity training with a brain-computer interface rehabilitation system. Front. Neurosci. 2024, 18, 1346607. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Li, H.; Huang, M.; Huang, M.; Xu, W.; Chu, K.; Chen, L.; Zhang, Y. Effect of Gua Lou Gui Zhi decoction on focal cerebral ischemia-reperfusion injury through regulating the expression of excitatory amino acids and their receptors. Mol. Med. Rep. 2014, 10, 248–254. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Jia, X.; Yang, J.; Li, Q.; Yan, G.; Xu, Z.; Wang, J. Effects of Shaoyao-Gancao decoction on infarcted cerebral cortical neurons: Suppression of the inflammatory response following cerebral ischemia-reperfusion in a rat model. BioMed Res. Int. 2016, 2016, 1859254. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Zhu, X.; Hu, H.; Lin, X. The inhibitory effect of Gualou Guizhi decoction on post-ischemic neuroinflammation via miR-155 in MCAO rats. Ann. Palliat. Med. 2021, 10, 1370–1379. [Google Scholar] [CrossRef]
- Pan, R.; Cai, J.; Zhan, L.; Guo, Y.; Huang, R.Y.; Li, X.; Zhou, M.; Xu, D.; Zhan, J.; Chen, H. Buyang Huanwu decoction facilitates neurorehabilitation through an improvement of synaptic plasticity in cerebral ischemic rats. BMC Complement. Altern. Med. 2017, 17, 173. [Google Scholar] [CrossRef]
- Yin, M.; Liu, Z.; Wang, J.; Gao, W. Buyang Huanwu decoction alleviates oxidative injury of cerebral ischemia-reperfusion through PKCepsilon/Nrf2 signaling pathway. J. Ethnopharmacol. 2023, 303, 115953. [Google Scholar] [CrossRef]
- Ma, J.; Luo, Y. Effects of electroacupuncture on expressions of angiogenesis factors and anti-angiogenesis factors in brain of experimental cerebral ischemic rats after reperfusion. J. Tradit. Chin. Med. 2008, 28, 217–222. [Google Scholar] [CrossRef] [PubMed]
- Mu, J.D.; Ma, L.X.; Zhang, Z.; Yu, W.Y.; Sun, T.Y.; Qian, X.; Tian, Y.; Wang, J.X. Acupuncture alleviates spinal hyperreflexia and motor dysfunction in post-ischemic stroke rats with spastic hypertonia via KCC2-mediated spinal GABA(A) activation. Exp. Neurol. 2022, 354, 114027. [Google Scholar] [CrossRef] [PubMed]
- Sanchez-Mila, Z.; Salom-Moreno, J.; Fernandez-de-Las-Penas, C. Effects of dry needling on post-stroke spasticity, motor function and stability limits: A randomised clinical trial. Acupunct. Med. 2018, 36, 358–366. [Google Scholar] [CrossRef]
- Marghani, B.H.; Rezk, S.; Ateya, A.I.; Alotaibi, B.S.; Othman, B.H.; Sayed, S.M.; Alshehri, M.A.; Shukry, M.; Mansour, M.M. The effect of cerebrolysin in an animal model of forebrain ischemic-reperfusion injury: New insights into the activation of the Keap1/Nrf2/Antioxidant signaling pathway. Int. J. Mol. Sci. 2023, 24, 12080. [Google Scholar] [CrossRef] [PubMed]
- Chemer, N.; Bilanovskyi, V. Cerebrolysin as a new treatment option for post-stroke spasticity: Patient and physician perspectives. Neurol. Ther. 2019, 8, 25–27. [Google Scholar] [CrossRef]
- Zhang, D.; Dong, Y.; Li, Y.; Chen, J.; Wang, J.; Hou, L. Efficacy and safety of cerebrolysin for acute ischemic stroke: A meta-analysis of randomized controlled trials. BioMed Res. Int. 2017, 2017, 4191670. [Google Scholar] [CrossRef]
- Lang, W.; Stadler, C.H.; Poljakovic, Z.; Fleet, D.; Lyse Study, G. A prospective, randomized, placebo-controlled, double-blind trial about safety and efficacy of combined treatment with alteplase (rt-PA) and Cerebrolysin in acute ischaemic hemispheric stroke. Int. J. Stroke 2013, 8, 95–104. [Google Scholar] [CrossRef]
- Muresanu, D.F.; Heiss, W.D.; Hoemberg, V.; Bajenaru, O.; Popescu, C.D.; Vester, J.C.; Rahlfs, V.W.; Doppler, E.; Meier, D.; Moessler, H.; et al. Cerebrolysin and recovery after stroke (cars): A randomized, placebo-controlled, double-blind, multicenter trial. Stroke 2016, 47, 151–159. [Google Scholar] [CrossRef]
- Abdullahi, A.M.; Abdullahi, I.M.; Sarmast, S.T.; Bhriguvanshi, A. Stem cell therapies for ischemic stroke: A systematic review. Cureus 2021, 13, e13139. [Google Scholar] [CrossRef] [PubMed]
- Ercelen, N.; Karasu, N.; Kahyaoglu, B.; Cerezci, O.; Akduman, R.C.; Ercelen, D.; Erturk, G.; Gulay, G.; Alpaydin, N.; Boyraz, G.; et al. Clinical experience: Outcomes of mesenchymal stem cell transplantation in five stroke patients. Front. Med. 2023, 10, 1051831. [Google Scholar] [CrossRef]
- Abolghasemi, R.; Davoudi-Monfared, E.; Allahyari, F.; Farzanegan, G. Systematic review of the cell therapy efficacy in human chronic spinal cord injury. Tissue Eng. Part. B Rev. 2023, 30, 254–269. [Google Scholar] [CrossRef] [PubMed]
- Stancioiu, F.; Papadakis, G.Z.; Lazopoulos, G.; Spandidos, D.A.; Tsatsakis, A.; Floroiu, M.; Badiu, C. CD271(+) stem cell treatment of patients with chronic stroke. Exp. Ther. Med. 2020, 20, 2055–2062. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Dong, X.; Tian, M.; Liu, C.; Wang, K.; Li, L.; Liu, Z.; Liu, J. Stem cell-based therapies for ischemic stroke: A systematic review and meta-analysis of clinical trials. Stem Cell Res. Ther. 2020, 11, 252. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Dong, N.; Hong, H.; Qi, J.; Zhang, S.; Wang, J. Mesenchymal stem cells: Therapeutic mechanisms for stroke. Int. J. Mol. Sci. 2022, 23, 2550. [Google Scholar] [CrossRef] [PubMed]
- Misra, V.; Ritchie, M.M.; Stone, L.L.; Low, W.C.; Janardhan, V. Stem cell therapy in ischemic stroke: Role of IV and intra-arterial therapy. Neurology 2012, 79, S207–S212. [Google Scholar] [CrossRef]
- Dalakas, M.C.; Alexopoulos, H.; Spaeth, P.J. Complement in neurological disorders and emerging complement-targeted therapeutics. Nat. Rev. Neurol. 2020, 16, 601–617. [Google Scholar] [CrossRef] [PubMed]
- Alawieh, A.; Tomlinson, S. Injury site-specific targeting of complement inhibitors for treating stroke. Immunol. Rev. 2016, 274, 270–280. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Liu, Y.; Zhang, Z.; Yang, G.Y. Significance of complement system in ischemic stroke: A comprehensive review. Aging Dis. 2019, 10, 429–462. [Google Scholar] [CrossRef] [PubMed]
- Aeinehband, S.; Lindblom, R.P.; Al Nimer, F.; Vijayaraghavan, S.; Sandholm, K.; Khademi, M.; Olsson, T.; Nilsson, B.; Ekdahl, K.N.; Darreh-Shori, T.; et al. Complement component C3 and butyrylcholinesterase activity are associated with neurodegeneration and clinical disability in multiple sclerosis. PLoS ONE 2015, 10, e0122048. [Google Scholar] [CrossRef]
- He, X.; Wang, X.; Wang, H.; Wang, T.; Yang, F.; Chen, Y.; Pei, Z.; Bai, Y.; Li, W.; Wu, Z.; et al. NeuroD1 regulated endothelial gene expression to modulate transduction of AAV-PHP.eB and recovery progress after ischemic stroke. Aging Dis. 2023, 15, 2632–2649. [Google Scholar] [CrossRef]
- McClelland, S., 3rd; Teng, Q.; Benson, L.S.; Boulis, N.M. Motor neuron inhibition-based gene therapy for spasticity. Am. J. Phys. Med. Rehabil. 2007, 86, 412–421. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.; Wang, R.; Wang, L.; Liu, Q.; Han, L.; Duan, X.; Zhang, Y.; Shen, A.; Peng, D.; Chen, W.; et al. Exosomes as biomarkers and therapeutic measures for ischemic stroke. Eur. J. Pharmacol. 2023, 939, 175477. [Google Scholar] [CrossRef] [PubMed]
- Moore, T.L.; Bowley, B.G.E.; Pessina, M.A.; Calderazzo, S.M.; Medalla, M.; Go, V.; Zhang, Z.G.; Chopp, M.; Finklestein, S.; Harbaugh, A.G.; et al. Mesenchymal derived exosomes enhance recovery of motor function in a monkey model of cortical injury. Restor. Neurol. Neurosci. 2019, 37, 347–362. [Google Scholar] [CrossRef]
- Patten, C.; Condliffe, E.G.; Dairaghi, C.A.; Lum, P.S. Concurrent neuromechanical and functional gains following upper-extremity power training post-stroke. J. Neuroeng. Rehabil. 2013, 10, 1. [Google Scholar] [CrossRef]
- Smania, N.; Picelli, A.; Munari, D.; Geroin, C.; Ianes, P.; Waldner, A.; Gandolfi, M. Rehabilitation procedures in the management of spasticity. Eur. J. Phys. Rehabil. Med. 2010, 46, 423–438. [Google Scholar]
- Gomez-Cuaresma, L.; Lucena-Anton, D.; Gonzalez-Medina, G.; Martin-Vega, F.J.; Galan-Mercant, A.; Luque-Moreno, C. Effectiveness of stretching in post-stroke spasticity and range of motion: Systematic review and meta-analysis. J. Pers. Med. 2021, 11, 1074. [Google Scholar] [CrossRef]
- Fujita, K.; Kobayashi, Y.; Miaki, H.; Hori, H.; Tsushima, Y.; Sakai, R.; Nomura, T.; Ogawa, T.; Kinoshita, H.; Nishida, T.; et al. Pedaling improves gait ability of hemiparetic patients with stiff-knee gait: Fall prevention during gait. J. Stroke Cerebrovasc. Dis. 2020, 29, 105035. [Google Scholar] [CrossRef]
- Salazar, A.P.; Pinto, C.; Ruschel Mossi, J.V.; Figueiro, B.; Lukrafka, J.L.; Pagnussat, A.S. Effectiveness of static stretching positioning on post-stroke upper-limb spasticity and mobility: Systematic review with meta-analysis. Ann. Phys. Rehabil. Med. 2019, 62, 274–282. [Google Scholar] [CrossRef] [PubMed]
- Winstein, C.J.; Stein, J.; Arena, R.; Bates, B.; Cherney, L.R.; Cramer, S.C.; Deruyter, F.; Eng, J.J.; Fisher, B.; Harvey, R.L.; et al. Guidelines for adult stroke rehabilitation and recovery: A guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke 2016, 47, e98–e169. [Google Scholar] [CrossRef]
- Saikaley, M.; Pauli, G.; Sun, H.; Serra, J.R.; Iruthayarajah, J.; Teasell, R. Network meta-analysis of non-conventional therapies for improving upper limb motor impairment poststroke. Stroke 2022, 53, 3717–3727. [Google Scholar] [CrossRef] [PubMed]
- Marklund, I.; Sefastsson, A.; Fure, B.; Klassbo, M.; Liv, P.; Stalnacke, B.M.; Hu, X. Lower-extremity constraint-induced movement therapy improved motor function, mobility, and walking after stroke. Eur. J. Phys. Rehabil. Med. 2023, 59, 136–144. [Google Scholar] [CrossRef] [PubMed]
- Corbetta, D.; Sirtori, V.; Castellini, G.; Moja, L.; Gatti, R. Constraint-induced movement therapy for upper extremities in people with stroke. Cochrane Database Syst. Rev. 2015, 116, CD004433. [Google Scholar] [CrossRef] [PubMed]
- Marque, P.; Gasq, D.; Castel-Lacanal, E.; De Boissezon, X.; Loubinoux, I. Post-stroke hemiplegia rehabilitation: Evolution of the concepts. Ann. Phys. Rehabil. Med. 2014, 57, 520–529. [Google Scholar] [CrossRef] [PubMed]
- Soros, P.; Teasell, R.; Hanley, D.F.; Spence, J.D. Motor recovery beginning 23 years after ischemic stroke. J. Neurophysiol. 2017, 118, 778–781. [Google Scholar] [CrossRef] [PubMed]
- Dawson, J.; Abdul-Rahim, A.H.; Kimberley, T.J. Neurostimulation for treatment of post-stroke impairments. Nat. Rev. Neurol. 2024, 20, 259–268. [Google Scholar] [CrossRef]
- Liu, X.; Wen, S.; Yan, F.; Liu, K.; Liu, L.; Wang, L.; Zhao, S.; Ji, X. Salidroside provides neuroprotection by modulating microglial polarization after cerebral ischemia. J. Neuroinflamm. 2018, 15, 39. [Google Scholar] [CrossRef]
- Mahmoud, W.; Hultborn, H.; Zuluaga, J.; Zrenner, C.; Zrenner, B.; Ziemann, U.; Ramos-Murguialday, A. Testing spasticity mechanisms in chronic stroke before and after intervention with contralesional motor cortex 1 Hz rTMS and physiotherapy. J. Neuroeng. Rehabil. 2023, 20, 150. [Google Scholar] [CrossRef]
- Dos Santos, R.B.C.; Galvao, S.C.B.; Frederico, L.M.P.; Amaral, N.S.L.; Carneiro, M.I.S.; de Moura Filho, A.G.; Piscitelli, D.; Monte-Silva, K. Cortical and spinal excitability changes after repetitive transcranial magnetic stimulation combined to physiotherapy in stroke spastic patients. Neurol. Sci. 2019, 40, 1199–1207. [Google Scholar] [CrossRef] [PubMed]
- Hirai, T.; Jiang, Y.L.; Sugi, M.; Togo, S.; Yokoi, H. Investigation of motor point shift and contraction force of triceps brachii for functional electrical stimulation. In Proceedings of the 2021 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Mexico City, Mexico, 1–5 November 2021; pp. 6330–6333. [Google Scholar]
- Avvantaggiato, C.; Casale, R.; Cinone, N.; Facciorusso, S.; Turitto, A.; Stuppiello, L.; Picelli, A.; Ranieri, M.; Intiso, D.; Fiore, P.; et al. Localized muscle vibration in the treatment of motor impairment and spasticity in post-stroke patients: A systematic review. Eur. J. Phys. Rehabil. Med. 2021, 57, 44–60. [Google Scholar] [CrossRef]
- Zeng, D.; Lei, W.; Kong, Y.; Ma, F.; Zhao, K.; Ye, X.; Tan, T. Effects of vibration therapy for post-stroke spasticity: A systematic review and meta-analysis of randomized controlled trials. Biomed. Eng. Online 2023, 22, 121. [Google Scholar] [CrossRef] [PubMed]
- Abdullahi, A.; Wong, T.W.L.; Ng, S.S.M. Variation in the rate of recovery in motor function between the upper and lower limbs in patients with stroke: Some proposed hypotheses and their implications for research and practice. Front. Neurol. 2023, 14, 1225924. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.H.; Kim, E.J. A comprehensive review of the effects of extracorporeal shock wave therapy on stroke patients: Balance, pain, spasticity. Medicina 2023, 59, 857. [Google Scholar] [CrossRef]
- Mihai, E.E.; Popescu, M.N.; Beiu, C.; Gheorghe, L.; Berteanu, M. Tele-rehabilitation strategies for a patient with post-stroke spasticity: A powerful tool amid the COVID-19 pandemic. Cureus 2021, 13, e19201. [Google Scholar] [CrossRef] [PubMed]
- Pennati, G.V.; Da Re, C.; Messineo, I.; Bonaiuti, D. How could robotic training and botolinum toxin be combined in chronic post stroke upper limb spasticity? A pilot study. Eur. J. Phys. Rehabil. Med. 2015, 51, 381–387. [Google Scholar] [PubMed]
- Koeppel, T.; Pila, O. Test-retest reliability of kinematic assessments for upper limb robotic rehabilitation. IEEE Trans. Neural Syst. Rehabil. Eng. 2020, 28, 2035–2042. [Google Scholar] [CrossRef]
- Subramanian, S.K.; Massie, C.L.; Malcolm, M.P.; Levin, M.F. Does provision of extrinsic feedback result in improved motor learning in the upper limb poststroke? A systematic review of the evidence. Neurorehabil. Neural Repair. 2010, 24, 113–124. [Google Scholar] [CrossRef] [PubMed]
- Jang, S.H.; You, S.H.; Hallett, M.; Cho, Y.W.; Park, C.M.; Cho, S.H.; Lee, H.Y.; Kim, T.H. Cortical reorganization and associated functional motor recovery after virtual reality in patients with chronic stroke: An experimenter-blind preliminary study. Arch. Phys. Med. Rehabil. 2005, 86, 2218–2223. [Google Scholar] [CrossRef]
- Vieira, D.; Silva, M.B.; Melo, M.C.; Soares, A.B. Effect of myofeedback on the threshold of the stretch reflex response of post-stroke spastic patients. Disabil. Rehabil. 2017, 39, 458–467. [Google Scholar] [CrossRef] [PubMed]
- Michielsen, M.E.; Selles, R.W.; van der Geest, J.N.; Eckhardt, M.; Yavuzer, G.; Stam, H.J.; Smits, M.; Ribbers, G.M.; Bussmann, J.B. Motor recovery and cortical reorganization after mirror therapy in chronic stroke patients: A phase II randomized controlled trial. Neurorehabil. Neural Repair. 2011, 25, 223–233. [Google Scholar] [CrossRef] [PubMed]
- Hung, J.W.; Yen, C.L.; Chang, K.C.; Chiang, W.C.; Chuang, I.C.; Pong, Y.P.; Wu, W.C.; Wu, C.Y. A pilot randomized controlled trial of botulinum toxin treatment combined with robot-assisted therapy, mirror therapy, or active control treatment in patients with spasticity following stroke. Toxins 2022, 14, 415. [Google Scholar] [CrossRef] [PubMed]
- Drew, L. Elon Musk’s Neuralink brain chip: What scientists think of first human trial. Nature 2024. Online ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Kramer, K. AI & robotics briefing: Lack of transparency surrounds Neuralink’s ’brain-reading’ chip. Nature 2024. Online ahead of print. [Google Scholar] [CrossRef]
- Yildirim, Z.; Swanson, K.; Wu, X.; Zou, J.; Wu, J. Next-Gen therapeutics: Pioneering drug discovery with iPSCs, genomics, AI, and clinical trials in a dish. Annu. Rev. Pharmacol. Toxicol. 2024, 65, 19.1–19.20. [Google Scholar] [CrossRef]
- Cai, Y.; Zhang, C.S.; Liu, S.; Wen, Z.; Zhang, A.L.; Guo, X.; Xue, C.C.; Lu, C. Add-on effects of chinese herbal medicine for post-stroke spasticity: A systematic review and meta-analysis. Front. Pharmacol. 2019, 10, 734. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.X.; Yang, X.; Zhang, J.J.; Zhou, T.T.; Zhu, Y.L.; Wang, L.Y. Effects of Shaoyao Gancao decoction on contents of amino acids and expressions of receptors in brains of spastic paralysis rats. Zhongguo Zhong Yao Za Zhi 2016, 41, 1100–1106. [Google Scholar] [CrossRef]
- Nan, L.; Xie, Q.; Chen, Z.; Zhang, Y.; Chen, Y.; Li, H.; Lai, W.; Chen, Y.; Huang, M. Involvement of PARP-1/AIF signaling pathway in protective effects of Gualou Guizhi decoction against ischemia-reperfusion injury-induced apoptosis. Neurochem. Res. 2020, 45, 278–294. [Google Scholar] [CrossRef]
- Zhang, Y.; Cao, Y.; Li, Y.; Xiao, L.; Xu, W.; Xu, W.; Huang, M.; Zhang, X.; Chen, Y.; Nan, L. Gualou Guizhi decoction promotes therapeutic angiogenesis via the miR210/HIF/VEGF pathway in vivo and in vitro. Pharm. Biol. 2023, 61, 779–789. [Google Scholar] [CrossRef]
- Le, X.; Guo, M.; Yao, X.; Sijia, C.; Shen, Z.; Junlin, J.; Ting, Y.; Jianhu, F.; Dong, L.; Fuliang, K.; et al. Efficacy of Baishao Luoshi decoction on synaptic plasticity in rats with post stroke spasticity. J. Tradit. Chin. Med. 2023, 43, 295–302. [Google Scholar] [CrossRef]
- Li, H.; Peng, D.; Zhang, S.J.; Zhang, Y.; Wang, Q.; Guan, L. Buyang Huanwu decoction promotes neurogenesis via sirtuin 1/autophagy pathway in a cerebral ischemia model. Mol. Med. Rep. 2021, 24, 791. [Google Scholar] [CrossRef]
- Birch, S.; Robinson, N. Acupuncture as a post-stroke treatment option: A narrative review of clinical guideline recommendations. Phytomedicine 2022, 104, 154297. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Zhang, A.; Pang, B.; Wu, Y.; Shi, J.; Zhang, N.; Ye, T. Electroacupuncture pretreatment alleviates spasticity after stroke in rats by inducing the NF-kappaB/NLRP3 signaling pathway and the gut-brain axis. Brain Res. 2024, 1822, 148643. [Google Scholar] [CrossRef]
- Kim, J.H.; Choi, K.H.; Jang, Y.J.; Bae, S.S.; Shin, B.C.; Choi, B.T.; Shin, H.K. Electroacupuncture acutely improves cerebral blood flow and attenuates moderate ischemic injury via an endothelial mechanism in mice. PLoS ONE 2013, 8, e56736. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; He, J.; Du, Y.; Cui, J.; Ma, Y.; Zhang, X. Electroacupuncture improves cerebral blood flow and attenuates moderate ischemic injury via Angiotensin II its receptors-mediated mechanism in rats. BMC Complement. Altern. Med. 2014, 14, 441. [Google Scholar] [CrossRef] [PubMed]
- Sun, T.Y.; Ma, L.X.; Mu, J.D.; Zhang, Z.; Yu, W.Y.; Qian, X.; Tian, Y.; Zhang, Y.D.; Wang, J.X. Acupuncture improves the structure of spastic muscle and decreases spasticity by enhancing GABA, KCC2, and GABAAgamma2 in the brainstem in rats after ischemic stroke. Neuroreport 2022, 33, 399–407. [Google Scholar] [CrossRef]
- Schaechter, J.D.; Connell, B.D.; Stason, W.B.; Kaptchuk, T.J.; Krebs, D.E.; Macklin, E.A.; Schnyer, R.N.; Stein, J.; Scarborough, D.M.; Parker, S.W.; et al. Correlated change in upper limb function and motor cortex activation after verum and sham acupuncture in patients with chronic stroke. J. Altern. Complement. Med. 2007, 13, 527–532. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Jiang, Y.; Wang, N.; Yan, H.; Chen, L.; Gao, J.; Zhang, J.; Qu, S.; Liu, S.; Liu, G.; et al. Scalp acupuncture enhances local brain regions functional activities and functional connections between cerebral hemispheres in acute ischemic stroke patients. Anat. Rec. 2021, 304, 2538–2551. [Google Scholar] [CrossRef]
- Yue, X.Y.; Feng, Z.Q.; Yu, X.Y.; Hu, J.M.; He, X.J.; Shu, S. Fire-needle acupuncture for upper limb spastic paralysis after stroke: Study protocol for a randomized controlled trial. J. Integr. Med. 2019, 17, 167–172. [Google Scholar] [CrossRef]
- Mei, J.; Xue, Y.; Li, J.; Zhang, L.; Zhang, J.; Wang, Y.; Su, K.; Gao, J.; Guo, J.; Li, R. Effects of functional acupuncture on upper limb spasticity after ischemic stroke: A protocol for a randomized controlled parallel clinical trial. Front. Neurol. 2022, 13, 835408. [Google Scholar] [CrossRef]
- Xue, C.; Jiang, C.; Zhu, Y.; Liu, X.; Zhong, D.; Li, Y.; Zhang, H.; Tang, W.; She, J.; Xie, C.; et al. Effectiveness and safety of acupuncture for post-stroke spasticity: A systematic review and meta-analysis. Front. Neurol. 2022, 13, 942597. [Google Scholar] [CrossRef] [PubMed]
Intervention Strategies | Intervention Given Outcomes | Potential Mechanisms | Advantages | Disadvantages | References |
---|---|---|---|---|---|
Cerebrolysin |
|
|
|
| [58,59,60] |
Stem cell therapy |
|
|
|
| [61,62] |
Strength training |
|
|
|
| [63,64] |
Dynamic stretching |
|
|
|
| [65] |
Constraint-induced movement therapy |
|
|
|
| [66] |
Repetitive transcranial magnetic stimulation |
|
|
|
| [67] |
Transcutaneous electrical stimulation |
|
|
|
| [68] |
Vibration therapy |
|
|
|
| [69] |
Extracorporeal shock wave therapy |
|
|
|
| [70,71,72,73] |
Robotic training |
|
|
|
| [74] |
Virtual reality |
|
|
|
| [75] |
Electromyographic biofeedback |
|
|
|
| [76] |
Mirror therapy |
|
|
|
| [77] |
Brain–computer interfaces |
|
|
|
| [78] |
Shaoyao Gancao Decoction |
|
|
|
| [79,80] |
Gualou Guizhi Decoction |
|
|
|
| [81] |
Baishao Luoshi Decoction |
|
|
|
| [82] |
Buyang Huanwu Decoction |
|
|
|
| [83] |
Electroacupuncture |
|
|
|
| [84] |
Waggle needling |
|
|
|
| [85] |
Dry needling |
|
|
|
| [86] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, B.; Yang, T.; Liao, Z.; Sun, F.; Mei, Z.; Zhang, W. Pathophysiology and Management Strategies for Post-Stroke Spasticity: An Update Review. Int. J. Mol. Sci. 2025, 26, 406. https://doi.org/10.3390/ijms26010406
Chen B, Yang T, Liao Z, Sun F, Mei Z, Zhang W. Pathophysiology and Management Strategies for Post-Stroke Spasticity: An Update Review. International Journal of Molecular Sciences. 2025; 26(1):406. https://doi.org/10.3390/ijms26010406
Chicago/Turabian StyleChen, Bei, Tong Yang, Zi Liao, Feiyue Sun, Zhigang Mei, and Wenli Zhang. 2025. "Pathophysiology and Management Strategies for Post-Stroke Spasticity: An Update Review" International Journal of Molecular Sciences 26, no. 1: 406. https://doi.org/10.3390/ijms26010406
APA StyleChen, B., Yang, T., Liao, Z., Sun, F., Mei, Z., & Zhang, W. (2025). Pathophysiology and Management Strategies for Post-Stroke Spasticity: An Update Review. International Journal of Molecular Sciences, 26(1), 406. https://doi.org/10.3390/ijms26010406