Application of RNA-Based Next-Generation Sequencing Fusion Assay for Hematological Malignancies
Abstract
:1. Introduction
2. Results
2.1. Case Cohort Characteristics
2.2. Distribution of Fusions in Hematological Malignancies
2.3. Comparison of Fusions Detected by RNA-Based NGS Fusion Assay and Cytogenetic/FISH Studies
2.4. RNA-Based NGS Fusion Enables Monitoring in a Greater Proportion of Patients
3. Discussion
4. Materials and Methods
4.1. Patients and Specimens
4.2. RNA-Based NGS Fusion Assay
4.3. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- He, J.; Abdel-Wahab, O.; Nahas, M.K.; Wang, K.; Rampal, R.K.; Intlekofer, A.M.; Patel, J.; Krivstov, A.; Frampton, G.M.; Young, L.E.; et al. Integrated genomic DNA/RNA profiling of hematologic malignancies in the clinical setting. Blood 2016, 127, 3004–3014. [Google Scholar] [CrossRef] [PubMed]
- Alaggio, R.; Amador, C.; Anagnostopoulos, I.; Attygalle, A.D.; Araujo, I.B.O.; Berti, E.; Bhagat, G.; Borges, A.M.; Boyer, D.; Calaminici, M.; et al. The 5th edition of the World Health Organization Classification of Haematolymphoid Tumours: Lymphoid Neoplasms. Leukemia 2022, 36, 1720–1748. [Google Scholar] [CrossRef] [PubMed]
- Huber, S.; Baer, C.; Hutter, S.; Dicker, F.; Meggendorfer, M.; Pohlkamp, C.; Kern, W.; Haferlach, T.; Haferlach, C.; Hoermann, G. AML classification in the year 2023: How to avoid a Babylonian confusion of languages. Leukemia 2023, 37, 1413–1420. [Google Scholar] [CrossRef] [PubMed]
- Khoury, J.D.; Solary, E.; Abla, O.; Akkari, Y.; Alaggio, R.; Apperley, J.F.; Bejar, R.; Berti, E.; Busque, L.; Chan, J.K.C.; et al. The 5th edition of the World Health Organization Classification of Haematolymphoid Tumours: Myeloid and Histiocytic/Dendritic Neoplasms. Leukemia 2022, 36, 1703–1719. [Google Scholar] [CrossRef] [PubMed]
- Hoffmeister, L.M.; Suttorp, J.; Walter, C.; Antoniou, E.; Behrens, Y.L.; Gohring, G.; Awada, A.; von Neuhoff, N.; Reinhardt, D.; Schneider, M. Panel-based RNA fusion sequencing improves diagnostics of pediatric acute myeloid leukemia. Leukemia 2024, 38, 538–544. [Google Scholar] [CrossRef] [PubMed]
- Hollink, I.H.; van den Heuvel-Eibrink, M.M.; Arentsen-Peters, S.T.; Pratcorona, M.; Abbas, S.; Kuipers, J.E.; van Galen, J.F.; Beverloo, H.B.; Sonneveld, E.; Kaspers, G.J.; et al. NUP98/NSD1 characterizes a novel poor prognostic group in acute myeloid leukemia with a distinct HOX gene expression pattern. Blood 2011, 118, 3645–3656. [Google Scholar] [CrossRef]
- Meyer, C.; Larghero, P.; Almeida Lopes, B.; Burmeister, T.; Groger, D.; Sutton, R.; Venn, N.C.; Cazzaniga, G.; Corral Abascal, L.; Tsaur, G.; et al. The KMT2A recombinome of acute leukemias in 2023. Leukemia 2023, 37, 988–1005. [Google Scholar] [CrossRef]
- Chen, X.; Wang, W.; Yeh, J.; Wu, Y.; Oehler, V.G.; Naresh, K.N.; Liu, Y.J. Clinical Validation of FusionPlex RNA Sequencing and Its Utility in the Diagnosis and Classification of Hematologic Neoplasms. J. Mol. Diagn. 2023, 25, 932–944. [Google Scholar] [CrossRef]
- Cho, Y.U. The role of next-generation sequencing in hematologic malignancies. Blood Res. 2024, 59, 11. [Google Scholar] [CrossRef]
- Ramkissoon, L.A.; Montgomery, N.D. Applications of next-generation sequencing in hematologic malignancies. Hum. Immunol. 2021, 82, 859–870. [Google Scholar] [CrossRef]
- Kim, B.; Lee, H.; Shin, S.; Lee, S.T.; Choi, J.R. Clinical Evaluation of Massively Parallel RNA Sequencing for Detecting Recurrent Gene Fusions in Hematologic Malignancies. J. Mol. Diagn. 2019, 21, 163–170. [Google Scholar] [CrossRef] [PubMed]
- Stengel, A.; Nadarajah, N.; Haferlach, T.; Dicker, F.; Kern, W.; Meggendorfer, M.; Haferlach, C. Detection of recurrent and of novel fusion transcripts in myeloid malignancies by targeted RNA sequencing. Leukemia 2018, 32, 1229–1238. [Google Scholar] [CrossRef]
- Shimony, S.; Stahl, M.; Stone, R.M. Acute myeloid leukemia: 2023 update on diagnosis, risk-stratification, and management. Am. J. Hematol. 2023, 98, 502–526. [Google Scholar] [CrossRef]
- Xie, W.; Raess, P.W.; Dunlap, J.; Hoyos, C.M.; Li, H.; Li, P.; Swords, R.; Olson, S.B.; Yang, F.; Anekpuritanang, T.; et al. Adult acute myeloid leukemia patients with NUP98 rearrangement have frequent cryptic translocations and unfavorable outcome. Leuk. Lymphoma 2022, 63, 1907–1916. [Google Scholar] [CrossRef]
- Heald, J.S.; Lopez, A.M.; Pato, M.L.; Ruiz-Xiville, N.; Cabezon, M.; Zamora, L.; Vives, S.; Coll, R.; Maluquer, C.; Granada, I.; et al. Identification of novel NUP98 fusion partners and comutations in acute myeloid leukemia: An adult cohort study. Blood Adv. 2024, 8, 2691–2694. [Google Scholar] [CrossRef] [PubMed]
- Roberts, K.G.; Gu, Z.; Payne-Turner, D.; McCastlain, K.; Harvey, R.C.; Chen, I.M.; Pei, D.; Iacobucci, I.; Valentine, M.; Pounds, S.B.; et al. High Frequency and Poor Outcome of Philadelphia Chromosome-Like Acute Lymphoblastic Leukemia in Adults. J. Clin. Oncol. 2017, 35, 394–401. [Google Scholar] [CrossRef] [PubMed]
- Jain, N.; Roberts, K.G.; Jabbour, E.; Patel, K.; Eterovic, A.K.; Chen, K.; Zweidler-McKay, P.; Lu, X.; Fawcett, G.; Wang, S.A.; et al. Ph-like acute lymphoblastic leukemia: A high-risk subtype in adults. Blood 2017, 129, 572–581. [Google Scholar] [CrossRef]
- Kim, Y.; Kim, B.; Seong, M.W.; Lee, D.S.; Hong, K.T.; Kang, H.J.; Yun, J.; Chang, Y.H. Cryptic KMT2A/MLLT10 fusion detected by next-generation sequencing in a case of pediatric acute megakaryoblastic leukemia. Cancer Genet. 2023, 276–277, 36–39. [Google Scholar] [CrossRef] [PubMed]
- Romana, S.P.; Radford-Weiss, I.; Ben Abdelali, R.; Schluth, C.; Petit, A.; Dastugue, N.; Talmant, P.; Bilhou-Nabera, C.; Mugneret, F.; Lafage-Pochitaloff, M.; et al. NUP98 rearrangements in hematopoietic malignancies: A study of the Groupe Francophone de Cytogenetique Hematologique. Leukemia 2006, 20, 696–706. [Google Scholar] [CrossRef]
- La Starza, R.; Gorello, P.; Rosati, R.; Riezzo, A.; Veronese, A.; Ferrazzi, E.; Martelli, M.F.; Negrini, M.; Mecucci, C. Cryptic insertion producing two NUP98/NSD1 chimeric transcripts in adult refractory anemia with an excess of blasts. Genes Chromosomes Cancer 2004, 41, 395–399. [Google Scholar] [CrossRef]
- Miyajima, T.; Onozawa, M.; Yoshida, S.; Miyashita, N.; Kimura, H.; Takahashi, S.; Yokoyama, S.; Matsukawa, T.; Goto, H.; Sugita, J.; et al. Clinical implications of NUP98::NSD1 fusion at diagnosis in adult FLT3-ITD positive AML. Eur. J. Haematol. 2023, 111, 620–627. [Google Scholar] [CrossRef] [PubMed]
- Heikamp, E.B.; Henrich, J.A.; Perner, F.; Wong, E.M.; Hatton, C.; Wen, Y.; Barwe, S.P.; Gopalakrishnapillai, A.; Xu, H.; Uckelmann, H.J.; et al. The menin-MLL1 interaction is a molecular dependency in NUP98-rearranged AML. Blood 2022, 139, 894–906. [Google Scholar] [CrossRef]
- Aldoss, I.; Yang, D.; Tomasian, V.; Mokhtari, S.; Jackson, R.; Gu, Z.; Telatar, M.; Yew, H.; Al Malki, M.M.; Salhotra, A.; et al. Outcomes of allogeneic hematopoietic cell transplantation in adults with fusions associated with Ph-like ALL. Blood Adv. 2022, 6, 4936–4948. [Google Scholar] [CrossRef]
- Paietta, E.; Roberts, K.G.; Wang, V.; Gu, Z.; Buck, G.A.N.; Pei, D.; Cheng, C.; Levine, R.L.; Abdel-Wahab, O.; Cheng, Z.; et al. Molecular classification improves risk assessment in adult BCR-ABL1-negative B-ALL. Blood 2021, 138, 948–958. [Google Scholar] [CrossRef] [PubMed]
- Gil, J.V.; Miralles, A.; de Las Heras, S.; Such, E.; Avetisyan, G.; Diaz-Gonzalez, A.; Santiago, M.; Fuentes, C.; Fernandez, J.M.; Lloret, P.; et al. Comprehensive detection of CRLF2 alterations in acute lymphoblastic leukemia: A rapid and accurate novel approach. Front. Mol. Biosci. 2024, 11, 1362081. [Google Scholar] [CrossRef] [PubMed]
- Krivtsov, A.V.; Armstrong, S.A. MLL translocations, histone modifications and leukaemia stem-cell development. Nat. Rev. Cancer 2007, 7, 823–833. [Google Scholar] [CrossRef]
- Peterson, J.F.; Sukov, W.R.; Pitel, B.A.; Smoley, S.A.; Pearce, K.E.; Meyer, R.G.; Williamson, C.M.; Smadbeck, J.B.; Vasmatzis, G.; Hoppman, N.L.; et al. Acute leukemias harboring KMT2A/MLLT10 fusion: A 10-year experience from a single genomics laboratory. Genes Chromosomes Cancer 2019, 58, 567–577. [Google Scholar] [CrossRef] [PubMed]
- Chaum, M.; Vail, E.; Schreck, R.; Lorber, J.; Eno, C.C. KMT2A-CBL fusion in rapidly progressive myeloid disorder. Cancer Genet. 2022, 266–267, 90–92. [Google Scholar] [CrossRef]
- Bataller, A.; Guijarro, F.; Caye-Eude, A.; Strullu, M.; Sterin, A.; Molina, O.; Chevallier, P.; Zaliova, M.; Zuna, J.; Mozas, P.; et al. KMT2A-CBL rearrangements in acute leukemias: Clinical characteristics and genetic breakpoints. Blood Adv. 2021, 5, 5617–5620. [Google Scholar] [CrossRef] [PubMed]
- Engvall, M.; Cahill, N.; Jonsson, B.I.; Hoglund, M.; Hallbook, H.; Cavelier, L. Detection of leukemia gene fusions by targeted RNA-sequencing in routine diagnostics. BMC Med. Genom. 2020, 13, 106. [Google Scholar] [CrossRef] [PubMed]
- Thomas, X. Small Molecule Menin Inhibitors: Novel Therapeutic Agents Targeting Acute Myeloid Leukemia with KMT2A Rearrangement or NPM1 Mutation. Oncol. Ther. 2024, 12, 57–72. [Google Scholar] [CrossRef] [PubMed]
- Issa, G.C.; Aldoss, I.; DiPersio, J.; Cuglievan, B.; Stone, R.; Arellano, M.; Thirman, M.J.; Patel, M.R.; Dickens, D.S.; Shenoy, S.; et al. The menin inhibitor revumenib in KMT2A-rearranged or NPM1-mutant leukaemia. Nature 2023, 615, 920–924. [Google Scholar] [CrossRef] [PubMed]
- Conesa, A.; Madrigal, P.; Tarazona, S.; Gomez-Cabrero, D.; Cervera, A.; McPherson, A.; Szczesniak, M.W.; Gaffney, D.J.; Elo, L.L.; Zhang, X.; et al. A survey of best practices for RNA-seq data analysis. Genome Biol. 2016, 17, 13. [Google Scholar] [CrossRef] [PubMed]
- Kerbs, P.; Vosberg, S.; Krebs, S.; Graf, A.; Blum, H.; Swoboda, A.; Batcha, A.M.N.; Mansmann, U.; Metzler, D.; Heckman, C.A.; et al. Fusion gene detection by RNA-sequencing complements diagnostics of acute myeloid leukemia and identifies recurring NRIP1-MIR99AHG rearrangements. Haematologica 2022, 107, 100–111. [Google Scholar] [CrossRef]
- Roloff, G.W.; Lai, C.; Hourigan, C.S.; Dillon, L.W. Technical Advances in the Measurement of Residual Disease in Acute Myeloid Leukemia. J. Clin. Med. 2017, 6, 87. [Google Scholar] [CrossRef] [PubMed]
- Dillon, L.W.; Hayati, S.; Roloff, G.W.; Tunc, I.; Pirooznia, M.; Mitrofanova, A.; Hourigan, C.S. Targeted RNA-sequencing for the quantification of measurable residual disease in acute myeloid leukemia. Haematologica 2019, 104, 297–304. [Google Scholar] [CrossRef] [PubMed]
- de Boer, E.N.; Johansson, L.F.; de Lange, K.; Bosga-Brouwer, A.G.; van den Berg, E.; Sikkema-Raddatz, B.; van Diemen, C.C. Detection of Fusion Genes to Determine Minimal Residual Disease in Leukemia Using Next-Generation Sequencing. Clin. Chem. 2020, 66, 1084–1092. [Google Scholar] [CrossRef] [PubMed]
Disease Type (n, %) | |||
---|---|---|---|
Total | Positive | Negative | |
(n = 3101) | (n = 545) | (n = 2556) | |
AML | 1377 | 319 (23.2%) | 1058 (76.8%) |
B-ALL | 616 | 191 (31.0%) | 425 (69.0%) |
T-ALL | 102 | 16 (15.7%) | 86 (84.3%) |
Mixed phenotype acute leukemia | 12 | 3 (25.0%) | 9 (75.0%) |
MDS | 455 | 9 (2.0%) | 446 (98.0%) |
MPN | 440 | 4 (0.9%) | 436 (99.1%) |
MDS/MPN | 58 | 0 (0%) | 58 (100%) |
Myeloid neoplasm | 29 | 1 (3.4%) | 28 (96.6%) |
Myeloid sarcoma | 12 | 2 (16.7%) | 10 (83.3%) |
Characteristics | Value |
---|---|
Age, mean (range), y | 46.6 (1–87) |
Sex, n (%) | |
Male | 291 (53.4%) |
Female | 254(46.6%) |
Diagnosis, n (%) | |
AML | 319 (58.5%) |
B-ALL | 191 (35.1%) |
T-ALL | 16 (2.9%) |
Mixed phenotype acute leukemia | 3 (0.6%) |
MDS | 9 (1.6%) |
MPN | 4 (0.7%) |
Myeloid neoplasm | 2 (0.4%) |
Myeloid sarcoma | 1 (0.2%) |
Specimen Type, n (%) | |
Bone Marrow Aspirate | 372 (68.3%) |
Peripheral Blood | 166 (30.4%) |
Bone marrow clot sections (FFPE) | 7 (1.3%) |
Tumor content (%), mean (range) | 0–98% (47.4%) |
Low tumor content (<5%), n (%) | 66 (12.1%) |
Analyzed with Cytogenetics/FISH Studies | |
Cytogenetics, n (%) | 462 (84.8%) |
FISH, n (%) | 454 (83.3%) |
Novel Fusions | Diagnosis | Case Number | Identified by Cytogenetic/FISH Studies |
---|---|---|---|
ATP8B4::MECOM | AML | 1 | Yes |
BANP::RARA | AML | 1 | Yes |
ELF1::PRDM16 | AML | 1 | Yes |
LARP1::NUTM1 | AML | 1 | Yes |
XBP1::JAK2 | B-ALL | 1 | Yes |
ARHGAP15::NUTM1 | AML | 1 | No |
ATXN3::ETV6 | AML | 1 | No |
BCL11B::DEK | AML | 1 | No |
ELF1::MECOM | AML | 1 | No |
ENO1::PRDM16 | AML | 1 | No |
EPOR::ANKRD24 | AML | 1 | No |
ETV6::BLK | AML | 1 | No |
GABPB1::NUTM1 | AML | 1 | No |
GNB1::PRDM16 | MDS | 1 | No |
IQGAP2::FLT3 | AML | 1 | No |
MAP4K4::ABL1 | B-ALL | 1 | No |
PAX5::GNE | B-ALL | 1 | No |
RCAN1::BCL2 | B-ALL | 1 | No |
RNF220::PRDM16 | AML | 1 | No |
SETD2::MME | B-ALL | 1 | No |
TCF12::DMXL2 | AML | 1 | No |
ACTB::MYC | B-ALL | 1 | N/A |
DPP10::PBX1 | MPN | 1 | N/A |
SNAPC4::NOTCH1 | B-ALL | 1 | N/A |
Novel Fusions | Diagnosis | Case Number | Identified by Cytogenetic/FISH Studies |
---|---|---|---|
BCR::ABL1 (p190) & ETV6::NTRK3 | AML | 1 | Yes |
CBFB::MYH11 & SSBP2::CHD1 | AML | 1 | Yes |
KMT2A::MLLT10 & SSBP2::CHD1 | AML | 1 | Yes |
KMT2A::MLLT10 & TBL1XR1::TP63 | AML | 1 | Yes |
KMT2A::MLLT4 & ZBTB16::RARA | AML | 1 | Yes |
BCR::ABL1 (p190) & RCAN1::BCL2 | B-ALL | 1 | No |
BCR::ABL1 (p190) & SLC12A7::TERT | B-ALL | 1 | No |
BCR::ABL1 (p210) & NUP98::PSIP1 | AML | 1 | No |
ETV6::ABL1 & NUP98::NSD1 | AML | 1 | No |
ETV6::BORCS5 & PAX5::ZCCHC7 | B-ALL | 1 | No |
GNB1::PRDM16 & RNF220::PRDM16 | MDS | 1 | No |
HOOK3::FGFR1 & CHIC2::ETV6 | AML | 1 | No |
IGH::CRLF2 & P2RY8::IGH | B-ALL | 1 | No |
RUNX1:: ETS2 & ETV6::MECOM | AML | 1 | No |
BCR::ABL1 (p190) & NUP98::NSD1 | AML | 1 | N/A |
ETV6::MN1 & CHIC2::ETV6 | AML | 1 | N/A |
Discordant Cases | Detected by RNA-Based Fusion Assay Only | Detected by RNA-Based Fusion Assay and Cytogenetics/FISH |
---|---|---|
Novel fusion with available cytogenetic/FISH studies (n = 21), n (%) | 16 (76.2%) | 5 (23.8%) |
Dual fusions with available cytogenetic/FISH studies (n = 14), n (%) | 9 (66.7%) * | 5 (33.3%) |
Low tumor content (<5%) | 27 | 30 |
Tumor content (mean, range) | 1.1% (0–4.5%) | 1.79% (0–4.5%) |
List of fusions, n (%) | 121 (70.8%) | N/A |
NUP98::NSD1; NUP98::HOXA9; NUP98::DDX10; NUP98::KDM5A | 19 (100%); 2 (100%); 1 (100%); 1 (100%) | 0 (0%) |
P2RY8::CRLF2 | 17 (85%) | 3 (15%) |
KMT2A::MLLT10; KMT2A::CBL; KMT2A-MLLT4; KMT2A::ELL | 5 (41.7%); 2 (66.7%); 2 (20%); 1 (16.7%) | 7 (58.3%); 1 (33.3%); 8 (80%); 5 (83.3%) |
SSBP2::CHD1 | 8 (100%) | 0 (0%) |
CHIC2::ETV6 | 5 (100%) | 0 (0%) |
STIL::TAL1 | 5 (100%) | 0 (0%) |
EPOR::IGH | 4 (100%) | 0 (0%) |
EP300::ZNF384 | 3 (100%) | 0 (0%) |
IKZF2::ERBB4 | 3 (100%) | 0 (0%) |
P2RY8::IGH | 3 (75%) | 1 (25%) |
DDX3X::MLLT10 | 2 (100%) | 0 (0%) |
ETV6::MECOM; FNDC3B::MECOM; NRIP1::MECOM | 2 (33.3%); 2 (100%); 1 (100%) | 4 (66.7%); 0 (0%); 0 (0%) |
PAX5::JAK2; PAX5::DNAJA1; PAX5::FOXP1 | 2 (100%); 1 (100%); 1 (100%) | 0 (100%); 0 (0%); 0 (0%) |
RUNX1::RUNX1T1; RUNX1::PRDM16; RUNX1::USP42 | 3 (10%); 1 (50%); 1 (100%) | 27 (90%); 1 (50%); 0 (0%) |
SET::NUP214 | 2 (100%) | 0 (0%) |
TCF3::PBX1; TCF3::ZNF384 | 2 (20%); 1 (100%) | 8 (80%); 0 (0%) |
PCM1::JAK2; BICD2::JAK2; TERF2::JAK2 | 1 (100%); 1 (100%); 1 (100%) | 0 (0%); 0 (0%); 0 (0%) |
CAPRIN1::PDGFRB; DIAPH1::PDGFRB | 1 (100%); 1 (100%) | 0 (0%); 0 (0%) |
CBFB::MYH11 | 1 (2.5%) | 39 (97.5%) |
BCR::ABL1 (p203) | 1 (100%) | 0 (0%) |
ETV6::NTRK3 | 1 (100%) | 0 (0%) |
FUS::ERG | 1 (100%) | 0 (0%) |
GABPB1::NUTM1 | 1 (100%) | 0 (0%) |
KAT6A::CREBBP | 1 (100%) | 0 (0%) |
LPP::BCL6 | 1 (100%) | 0 (0%) |
NUP214::ABL1 | 2 (100%) | 0 (0%) |
PICALM::MLLT10 | 2 (100%) | 0 (0%) |
RBPMS::FGFR1 | 1 (100%) | 0 (0%) |
RCSD1::ABL2 | 1 (100%) | 0 (0%) |
SSBP2::CSF1R | 1 (100%) | 0 (0%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fei, F.; Telatar, M.; Tomasian, V.; Chang, L.; Gust, M.; Yew, H.; Dyer, T.; Danilova, O.; Arias-Stella, J., III; Pillai, R.; et al. Application of RNA-Based Next-Generation Sequencing Fusion Assay for Hematological Malignancies. Int. J. Mol. Sci. 2025, 26, 435. https://doi.org/10.3390/ijms26020435
Fei F, Telatar M, Tomasian V, Chang L, Gust M, Yew H, Dyer T, Danilova O, Arias-Stella J III, Pillai R, et al. Application of RNA-Based Next-Generation Sequencing Fusion Assay for Hematological Malignancies. International Journal of Molecular Sciences. 2025; 26(2):435. https://doi.org/10.3390/ijms26020435
Chicago/Turabian StyleFei, Fei, Milhan Telatar, Vanina Tomasian, Lisa Chang, Mariel Gust, Hooi Yew, Tamerisa Dyer, Olga Danilova, Javier Arias-Stella, III, Raju Pillai, and et al. 2025. "Application of RNA-Based Next-Generation Sequencing Fusion Assay for Hematological Malignancies" International Journal of Molecular Sciences 26, no. 2: 435. https://doi.org/10.3390/ijms26020435
APA StyleFei, F., Telatar, M., Tomasian, V., Chang, L., Gust, M., Yew, H., Dyer, T., Danilova, O., Arias-Stella, J., III, Pillai, R., Aldoss, I., Stewart, F. M., Becker, P. S., Pullarkat, V., Marcucci, G., & Afkhami, M. (2025). Application of RNA-Based Next-Generation Sequencing Fusion Assay for Hematological Malignancies. International Journal of Molecular Sciences, 26(2), 435. https://doi.org/10.3390/ijms26020435